6. SITE 6101

Shipboard Scientific Party²

HOLE 610

Date occupied: 28 July 1983 Date departed: 31 July 1983 Time on hole: 3.1 days Position: 53°13.297'N; 18°53.213'W Water depth (sea level; corrected m, echo-sounding): 2417 Water depth (rig floor; corrected m, echo-sounding): 2432.8 Bottom felt (m, drill pipe): 2426.7 Penetration (m): 723 Number of cores: 27 Total length of cored section (m): 259.2 Total core recovered (m): 179.32

Core recovery (%): 69

Oldest sediment cored: Sub-bottom depth (m): 723 Nature: nannofossil chalk Age: late early Miocene (NN3) Measured velocity (km/s): 2.304

Basement: not reached

HOLE 610A

Date occupied: 31 July 1983

Date departed: 1 August 1983

Time on hole: 0.9 days

Position: 53°13.297'N; 18°53.213'W

Water depth (sea level; corrected m, echo-sounding): 2417 Water depth (rig floor; corrected m, echo-sounding): 2432.8

Ruddiman, W. F., Kidd, R. B., Thomas, E., et al., *Init. Repts. DSDP*, 94: Washington (U.S. Govt. Printing Office).
 William F. Ruddiman (Co-Chief Scientist), Lamont-Doherty Geological Observatory.

Dept. of Geological Sciences, Columbia University, Palisades, NY 10964; Robert B. Kidd (Co-Chief Scientist), Institute of Oceanographic Sciences, Surrey GU8 5UB, United Kingdom (present address: Ocean Drilling Program, Texas A&M University, College Station, TX 77843-3469); Ellen Thomas (Science Representative), Deep Sea Drilling Project, Scripps Institution of Oceanography, La Jolla, CA (present address: Lamont-Doherty Geological Observatory, Dept. of Geological Sciences, Columbia University, Palisades, NY 10964); Jack G. Baldauf, Paleontology and Stratigraphy Branch, U.S. Geological Survey, Menlo Park, CA (present address: Ocean Drilling Program, Texas A&M University, College Station, TX 77843-3469); Bradford M. Clement, Lamont-Doherty Geological Observatory, Palisades, NY (present address: Ocean Drilling Program, Texas A&M University, College Station, TX 77843-3469); James F. Dolan, Dept. of Earth Sciences, University of California, Santa Cruz, Santa Cruz, CA 95060; Margaret R. Eggers, Dept. of Geology, University of South Carolina, Columbia SC 29208; Philip R. Hill, Atlantic Geoscience Center, Geological Survey of Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia B2Y 4A2 Canada; Lloyd D. Keigwin, Ir., Dept. of Geology and Geophysics, Woods Hole Oceanographic Institution . Woods Hole. MA 02543; Margie Mitchell, Geological Research Div., Scripps Institution of Oceanography, La Jolla, CA 92093; Isabelle Philipps, Laboratoire de Géologie et Océanographie, Université de Bordeaux I, 33605 Talence Cedex France; Frank Robinson, Lamont-Doherty Geological Observatory, Palisades, NY 10964; Sassan A. Salehipour, Ocean Engineering No. 2, University of Rhode Island, Kingston, RI 02882; Toshiaki Takayama, Dept. of Geology, Kanazawa University, Kanazawa 920 Japan; Gerhard Unsold, Geologisch-Paläontologisches Institut, Universität Kiel, D-2300 Kiel, Federal Republic of Germany; Philip P. E. Weaver, Institute of Oceanographic Sciences, Surrey GU8 5UB, United Kingdom

Bottom felt (m, drill pipe): 2426.3 Penetration (m): 201 Number of cores: 21 Total length of cored section (m): 201 Total core recovered (m): 191.4 Core recovery (%): 95 Oldest sediment cored:

Sub-bottom depth (m): 201 Nature: nannofossil ooze Age: early Pliocene (NN15) Measured velocity (km/s): 1.558

Basement: not reached

HOLE 610B

Date occupied: 1 August 1983

Date departed; 2 August 1983

Time on hole: 0.75 days

Position: 53°13.297'N; 18°53.213'W

Water depth (sea level; corrected m, echo-sounding) 2417

Water depth (rig floor; corrected m, echo-sounding): 2432.8

Bottom felt (m drill pipe): 2427.5

Penetration (m): 146.8

Number of cores: 16

Total length of cored section (m): 146.8

Total core recovered (m): 136.33

Core recovery (%): 93

Oldest sediment cored: Sub-bottom depth (m): 146.8 Nature: nannofossil ooze Age: early Pliocene (NN16)

Basement: not reached

HOLE 610C

Date occupied: 2 August 1983

Date departed: 3 August 1983

Time on hole: 0.3 days

Position: 53°13.297'N; 18°53.213'W

Water depth (sea level; corrected m, echo-sounding): 2417

Water depth (rig floor; corrected m, echo-sounding): 2432.8

Bottom felt (m drill pipe): 2427.5

Penetration (m): 118.2

Number of cores: 6

Total length of cored section (m): 48.4

Total core recovered (m): 43.93

Core recovery (%): 91

Oldest sediment cored: Sub-bottom depth (m): 118.2 Nature: marly nannofossil ooze Age: late Pliocene (NN18)

Basement: not reached

HOLE 610D

Date occupied: 3 August 1983

Date departed: 3 August 1983

Time on hole: 0.5 days

Position: 53°13.467'N; 18°53.690'W

Water depth (sea level; corrected m, echo-sounding): 2445

Water depth (rig floor; corrected m, echo-sounding): 2460.8

Bottom felt (m, drill pipe): 2458.7

Penetration (m): 386.8

Number of cores: 7

Total length of cored section (m): 66.0

Total core recovered (m): 54.16

Core recovery (%): 82

Oldest sediment cored: Sub-bottom depth (m): 336.8

Nature: nannofossil chalk Age: late Miocene (NN10)

Basement: not reached

HOLE 610E

Date occupied: 3 August 1983

Date departed: 4 August 1983

Time on hole: 0.7 days

Position: 53°13.467'N; 18°53.690'W

Water depth (sea level; corrected m, echo-sounding): 2445

Water depth (rig floor; corrected m, echo-sounding): 2460.8 Bottom felt (m, drill pipe): 2458.7

Penetration (m): 327.2

Number of cores: 7

Total length of cored section (m): 67.2

Total core recovered (m): 53.31

Core recovery (%): 79

Oldest sediment cored: Sub-bottom depth (m): 327.2 Nature: white nannofossil chalk Age: late Miocene (NN10) Measured velocity (km/s): 1.66

Basement: not reached

Principal results: Six holes were drilled near the axis of the Feni Ridge in Rockall Trough. Four holes (610, 610A, 610B, 610C) were located on the crest of a sediment wave and two offset holes (610D, 610E) were drilled in an adjacent trough, 0.7 km to the northwest and in water 28 m deeper.

Two regional seismic reflectors were identified and dated. In Hole 610, which was spot cored beyond the Pliocene-Quaternary to 636.6 m sub-bottom, the regional 0.75-s reflector (two-way traveltime) was identified within a lower Miocene sequence that was continuously cored between 636 and 723 m sub-bottom. The reflector represents a hardness change within a chalk sequence, related to an increased biogenic silica content. Dissolution of the silica may have been caused by a widespread early Miocene oceanographic event. A faint reflector at 0.37 s sub-bottom (two-way traveltime) was continuously cored in Hole 610E and represents rapid lithification from upper Miocene ooze to chalk.

Sediment waves in the vicinity of Site 610 appear generally symmetrical and show no consistent wave migration on 3.5-kHz or airgun profiles. The complexity of their trends and shape is recognizable only from detailed survey lines. Holes 610 and 610A to 610D were located to allow investigation of vertical and lateral facies variations that might be related to the sediment waves.

The lithologies recovered at Site 610 are pelagic with glacial mud to interglacial nannofossil ooze cycles extending to 135 m subbottom, and nannofossil oozes and chalks to 723 m sub-bottom. No primary sedimentary structures indicative of bottom-current deposition were observed, but a general reworking of the nannofossil component was apparent. Sediment wave crest-to-trough lithologic differences are apparently slight. Sedimentation rates were remarkably linear at about 51 m/m.y. in the Pliocene-Quaternary and around 46 m/m.y. in the middle and early Miocene. No hiatuses were evident, but there is evidence of marked accumulationrate changes over the interval of the prominent reflector that was penetrated.

Heave-related core disturbance, as detected by hole-to-hole correlations, resulted in contortion of sections and under-recovery that are severe in the upper 50 m at all holes and only moderate below. Despite this, it was possible to demonstrate that an apparently complete composite section can be pieced together to 2.5 Ma using overlapping cores from five of the six holes.

BACKGROUND AND OBJECTIVES

Site 610 is on the western side of Rockall Trough at the crest of Feni Ridge (Figs. 1 and 2). Feni Ridge is a major sediment drift nearly 600 km in length and up to 700 to 1000 m thick (Fig. 2). It is believed to have been built since Oligocene-Miocene time by the action of intermittent southward flow of Norwegian Sea Overflow Water (NSOW) (Jones et al., 1970; Ellett and Roberts, 1973). The base of the drift at Feni Ridge was originally recognized at the base of a relatively transparent sequence (Roberts, 1975) and tied to a regional seismic reflector, "R-4," west of Rockall Plateau, believed to be Eocene-Oligocene in age (Ruddiman, 1972; Roberts, 1975) (Fig. 3). A number of the large sediment drifts characteristic of the North Atlantic (Hollister et al., 1978) are thought to have originated during the Eocene-Oligocene (Laughton, Berggren, et al., 1972; Vogt, 1972). Indications of more recent base-of-drift ages from drilling results of DSDP Legs 48 (Montadert, Roberts, et al., 1979) and 49 (Luyendyk, Cann, et al., 1979) have led some authors to suggest that the flow of Norwegian Sea Overflow Water did not begin until the early Miocene. The date of initiation and the ages of other prominent reflectors relevant to the accumulation history of major North Atlantic drifts are still unclear (Miller and Tucholke, 1983). Dingle et al. (1982) suggest that, at Feni Ridge, the so-called "R-4" reflector represents a mid-drift horizon and consider that anomalous positive sediment accumulation in the drift began much earlier. Dating of the uppermost regional reflectors at both Feni Ridge and Gardar Ridge during Leg 94 revealed much about changes in Norwegian Sea overflow circulation. The prime objective of variable length hydraulic piston coring (VLHPC) and extended core barrel (XCB) drilling at Site 610 was to investigate the stratigraphic history of Feni Ridge.

The surfaces of large sediment drifts are commonly ornamented with a complex distribution of sediment

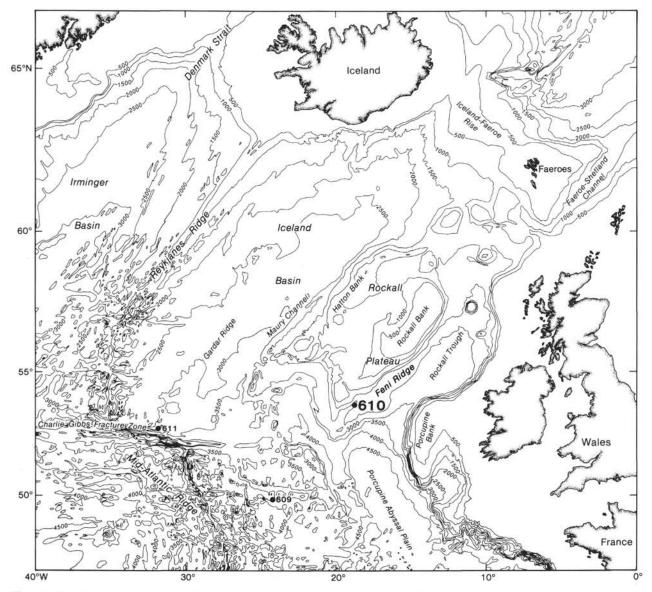
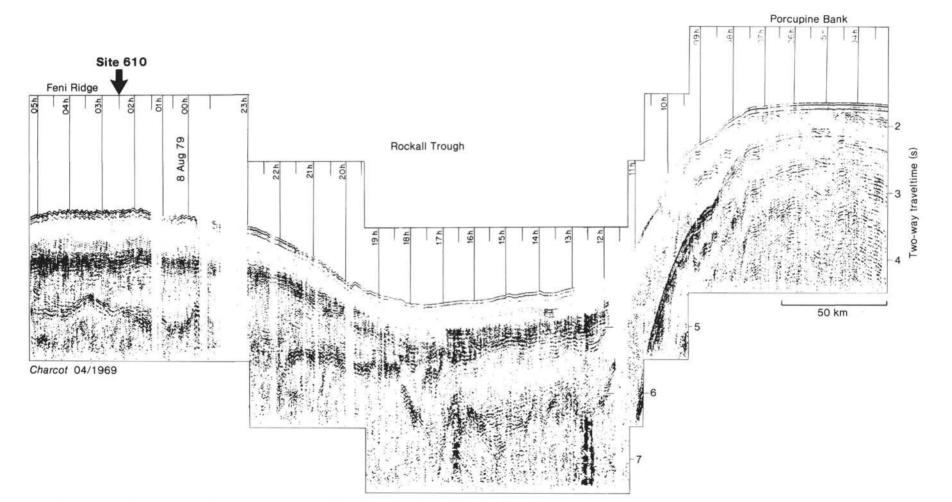


Figure 1. Location of Site 610; bathymetry given in m (after Laughton and Monahan, 1978).


waves. A long-range sidescan sonar survey run in 1977 over Feni Ridge (Fig. 4) showed that the sediment waves there are arranged longitudinally in fields of widely varying trend. On the sonographs, individual sediment wave crests over parts of the ridge flanks can be followed for up to 26 km (Roberts and Kidd, 1979). Simultaneously recorded 3.5-kHz seismic and 12-kHz echo sounder profiles indicated that the sediment waves range in amplitude from 25 to 50 m and are 1 to 4 km in wave length. An ancillary sedimentological objective at Site 610 was to test for lateral variation in the upper parts of offset VLHPC holes that might be due to migration of the sediment waves.

Deep-sea sediments deposited under the influence of bottom currents have been described as "contourites" (Hollister and Heezen, 1972), a generic term inferring that these deposits can be characterized by a sequence of sedimentary structures, grain-size, and composition changes as can "turbidites" (Bouma and Hollister, 1973). "Muddy contourites" and "sandy contourites" have been recognized by Stow and Lovell (1979), but considerable confusion still exists as to whether bottom-current deposits can be characterized solely from sediment characteristics (Stow, 1982).

We planned to document in detail the sedimentary record at Site 610 through the thickest part of a major sediment drift. In particular, we were to look for any vertical or lateral facies changes. In addition, through highresolution stratigraphy, we wanted to detect local or regional hiatuses that could relate to periods of accelerated bottom water flow.

The sedimentary sequence at Site 610 was expected, because of its high accumulation rates, to provide a very detailed paleoenvironmental history of late Neogene changes in surface-water and deep-water circulation at the northern end of the Leg 94 transect. Additionally it could monitor the effects of warm currents along the European continental margin.

During shipboard discussions by the scientific party prior to arriving on site, it became clear that there was

354

SITE 610

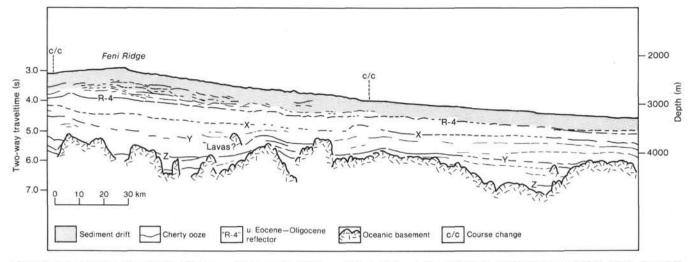


Figure 3. Interpretation of a seismic reflector profile across Feni Ridge and Rockall Trough (from Roberts, 1975; Roberts and Kidd, 1979). "R-4," X, Y, and Z were reflector designations in Roberts (1975). Site 610 drilling revised the age of this "R-4." Note the wave shapes on the surface of Feni Ridge.

considerable interest in our secondary objective, the possible local sediment facies and accumulation rate variation over the sediment waves. Time was sufficient to warrant a slight relocation of the site to tackle this objective on a recognized field of sediment waves. We decided to move the site downslope to an area where longrange sidescan sonar (GLORIA) coverage indicated that there were waves present. The originally proposed Site "7A" (Fig. 4) was located on a course change in the GLORIA survey, and as such we could not interpret the sonographs around this point. The new location (Fig. 5) was controlled by the portion of the Discovery cruise 84 air-gun line between 1300 and 1600 hr. and by a crossing Glomar Challenger Leg 12 profile, at 0700 to 1000 hr (Fig. 5). Water depths were between 2400 and 2500 m, and the sub-bottom depth to the reflector believed to be "R-4" of Roberts (1975) was picked at 0.75 s (two-way traveltime) on these two profiles. From the sonograph data, the crests of sediment waves at this location just south of the sinuous northeast-southwest trending axis of Feni Ridge appeared to have variable trends but to run roughly east-west and at an angle to the bathymetric contour between the seismic tie-lines (Fig. 5).

We planned to run an extensive survey in the vicinity of the new site with the *Challenger* water gun, PDR, and 3.5-kHz profiling systems in order to locate at least three hole locations. One was to occupy the crest of a prominent mud wave and to be a deep hole drilled to the 0.75-s reflector; the others were to be short VLHPC overlap and/or offset holes to investigate local sedimentologic and stratigraphic variations.

OPERATIONS

Detailed Site Survey

Our approach to the area of Site 610 was on a heading of 045° and speed of 10.8 knots. By about 0500 hr.³ on 28 July we were detecting the Feni Ridge sedimentwave fields on the profiler records. We were running a course at a slight angle to the *Discovery* Cruise 84 track, slowly converging on it and planning a turn to begin our survey where the two crossed near the axis of Feni Ridge. We slowed to 8 knots at 0644 hr. and slightly adjusted course to 050° at 0708 hr.; satellite fixes were received at 0652 and 0712 hr.

The turn was made at between 0750 and 0754 hr. just over the sinuous axis of the Ridge to begin a survey of its upper southern flank (Fig. 6). The new heading of 172° was run until 1000 hr. away from the axis of the Ridge from water depths of less than 2400 m to around 2600 m (Figs. 6, 7, 8). After a turn to 010°, a further long profile was run, returning to the Ridge axis at 1220 hr. Both long profiles displayed sediment waves (most clearly shown on the precision depth recorder [PDR] and 3.5-kHz records), which varied in apparent amplitude and wave length (Figs. 7, 8). Sediment wave crests were encountered at spacings of 1 to 2 km. Changes in relief on the PDR caused by the waves ranged from 10 to 35 m.

A turn was made at between 1220 and 1225 hr. to follow the Glomar Challenger Leg 12 profile on a heading of 163° down the flank (Fig. 5). Only some wave crests could be followed laterally from one major profile to another and a previously favored preliminary site location was found to lie in an interval of no major waves. Thus we determined to run another short south-north line between the first two ridge flank tracks. A turn westward was made from the Glomar Challenger Leg 12 track at between 1405 and 1412 hr., and course adjustments were made following satellite fixes at 1420 and 1448 hr. We began to follow a 347° course for the intermediate south-north track at 1530 hr. (Fig. 6). On this line we could apparently correlate at least three major sediment wave crests. We decided to drop the beacon on one of them at the location where our first major ridge flank track had crossed it at 0842 hr. To do this, we made a westward turn between 1617 and 1619 hr. and

³ All times are local (ship's time).

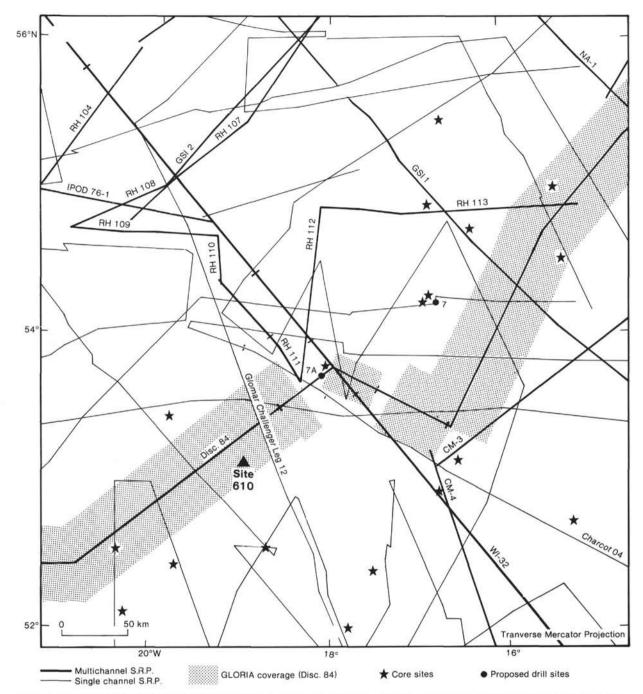


Figure 4. Site survey data for Site 610, showing GLORIA sonograph coverage. (S.R.P. = seismic reflection profile; *Discovery* 84 line was a single channel S.R.P. with simultaneous GLORIA.)

another between 1646 and 1652 hr. to run to the beacon drop on a heading of 160° (Fig. 6).

The drop was made at 1724 hr., after which we made two further passes over the beacon in a "butterfly" pattern that provided approximately northeast-southwest and west-east profiles over the site. The beacon crossings occurred at 1835 hr. on the 300° heading and 1928 hr. on the 90° heading. The tracks were well controlled by two satellite fixes at 1825 and 1900 hr., although most of this tight maneuvering was done on dead reckoning taking into account a strong current and wind from the southwest. We began to retrieve the seismic gear about 1 n. mi. after the second beacon crossing. Recovery was complete by 1947 hr., and we began positioning over the beacon.

Later averaging of satellite fixes placed the site at latitude $53^{\circ}13.297'$ N, longitude $18^{\circ}53.213'$ W, and the first hole on the wave crest was in a water depth of 2417 m (corrected). An offset hole in a trough to one side (northwest) of this mud wave crest required that we move the vessel at least 0.75 km from the beacon (Fig. 8B).

Our water gun profiles during this survey unfortunately did not identify a clear "R-4" reflector as shown on the *Discovery* 84 and *Glomar Challenger* Leg 12 pro-

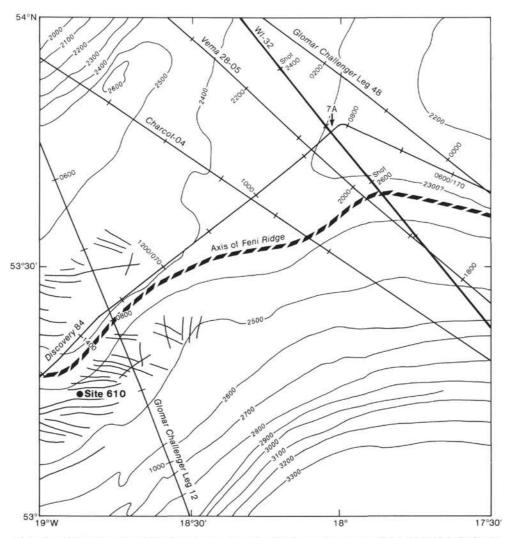


Figure 5. Relocation of the drill site from proposed site "7A" to sediment wave field at Site 610. Bathymetry is in meters, hour marks are indicated along seismic profiles (except multichannel line WI-32). Sediment-wave trends from *Discovery*-84 GLORIA survey (Roberts and Kidd, 1979).

files at 0.75 and 0.7 s sub-bottom depth, respectively. Instead a relatively coherent mixed acoustic return begins at between 0.55 to 0.57 s below the main transparent seismic unit and continues as far as penetration is detectable (0.85 s). From earlier profiles around this location we took 0.75 s as the most likely depth at which we would encounter "R-4" of Roberts (1975) and calculated that it would be located around 690 m sub-bottom.

Drilling Operations

We began running in Hole 610 at 2115 hr. on 28 July. While feeling for bottom one water core was recovered, and the first, almost full, VLHPC was recorded aboard at 0440 hr. on 29 July. This contained a good mudline and was followed by four continuous VLHPC cores to 48 m sub-bottom (Table 1). Cores 610-3, 610-4, and 610-5 showed considerable coring disturbance, mostly confined to their upper halves (top 5 m), which we decided might have been caused by sea swell that was causing the ship to heave about 10 ft. and to pitch at 3- to 5°-angles. We decided to wash down to the extended core barrel (XCB) level, and began with our first XCB core at 147 m sub-bottom. This came aboard at 1145 hr. and was followed by three continuous XCB cores extending to 185.4 m sub-bottom. All were typically pelagic nannofossil oozes with no trace of structural, compositional, or stratigraphical evidence of current deposition. We concluded that there was little point in trying to characterize these sediments further for our sedimentological "drift" objectives and determined in this hole we should now concentrate on our prime objective of obtaining the ages of significant deep reflectors.

We continued with a program of washing down four core intervals and then coring 9.6 m, such that the cores were spaced at approximately 50-m intervals. The first core in this succession, Core 610-10 (233.4–243.0 m subbottom), was recovered at 1710 hr. on 29 July, and the lowermost Core 610-18 came aboard at 1847 hr. on 30 July. Rates of recovery had slowed from 2.5 to 5.5 hr. over the 25.5-hr. period.

Each wash-down interval, of necessity, recovered a wash core that was discarded. Between Cores 610-18 and

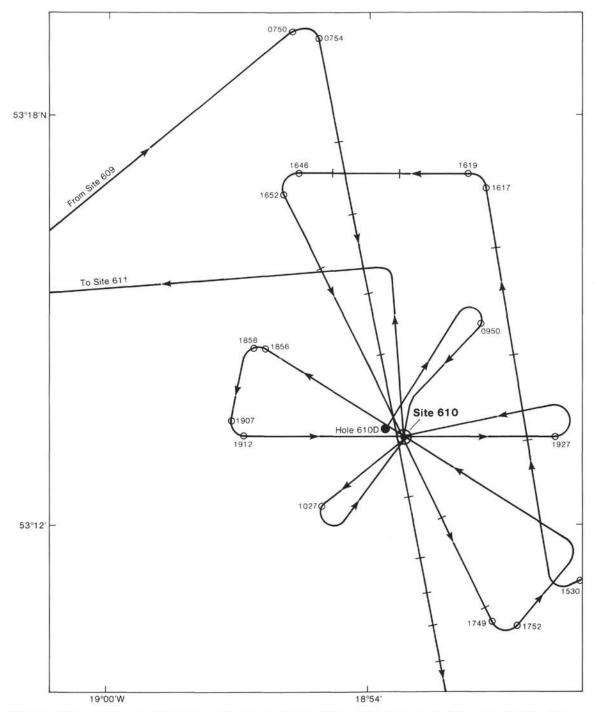


Figure 6. Pre-site surveys and departure from Site 610. Tracks in solid lines with local times and crossings of sediment wave crests (ticks) indicated.

610-19, we took the opportunity to run the core barrel pressure tool (CBPT) and obtained good data in the three-core interval between 607.8 and 636.6 m sub-bot-tom.

We began continuous XCB coring at 636.6 m subbottom with Core 610-19 and took a further eight cores over the estimated interval of the so-called "R-4" reflector to a terminal depth of 723 m sub-bottom. Core 610-19 was recovered at 0122 hr. on 31 July and the last core (610-27) came aboard at 2030 hr. Figure 9 shows a plot of penetration rate over the interval of Cores 610-16 to 610-27 constructed from drillers' records. A major increase in cutting time occurred at Core 610-19, and this gradually decreased through Core 610-24.

By the time Core 610-27 was recovered, weather and sea conditions had improved somewhat, with the prospect of getting considerably better. We began VLHPC coring again, making only a nominal offset for Hole 610A. The spud-in was made at 2340 hr., and we re-

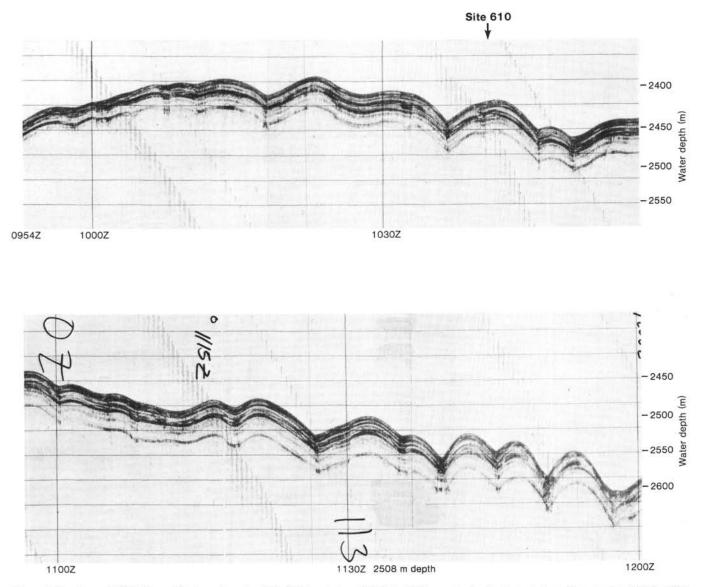


Figure 7. North-south 3.5-kHz profile from the axis of Feni Ridge at about 2400- to 2570-m water depth, through the sediment wave drilled at Site 610.

trieved a good mudline in an 8.83-m core recovered at 0010 hr. on 1 August. Core 610A-1 was undisturbed, Core 610A-2 was disturbed in Sections 2, 3 and 4, and Core 610A-3 was again undisturbed. Cores 610A-4 and -5 were disturbed, but only in the upper part of Section 1; below this level (approximately 47 m sub-bottom) the disturbance, now presumed to be due to swell, did not occur. Hole 610A was continuously VLHPC cored to 201 m sub-bottom with good recovery (95%) through the interval of the glacial-interglacial carbonate cycles. During retrieval of the cores over-pulls of between 10,000 and 40,000 lbf. were experienced beginning at only 47 m sub-bottom. Maxima of 40,000 lbf. occurred twice on recovering Core 610A-17 (153-162 m sub-bottom). We were nevertheless able to continue with the VLHPC to 201 m total depth without resorting to overcoring.

We had planned a second overlapping VLHPC hole on this sediment wave crest, but had been concerned that a third might be necessary to ensure a complete stratigraphic section over the VLHPC interval. This was partly because of the core disturbances that we attributed to swell. The breakaway piston head of the APC corer had, in the meantime, been modified to fit the VLHPC, and this was to be tried in Hole 610B. We pulled out of Hole 610A and cleared the mudline by 2120 hr.

Again a nominal offset was made, and we spudded in for Hole 610B at 2200 hr. on 1 August. Only slightly better initial core recovery ensued. Both Cores 610B-1 and -2 were undisturbed, whereas Cores 610B-3, 610B-4 and 610B-5 were disturbed in part or in whole. Sea conditions had improved as predicted, so it was not clear whether the slight improvement was due to the breakaway piston head being used or to the now calmer sea conditions and rather gentle swell.

VLHPC coring was continued in Hole 610B to a terminal depth of 146.8 m, but we recognized that the lack of some critical stratigraphic intervals necessitated another hole on the sediment wave crest.

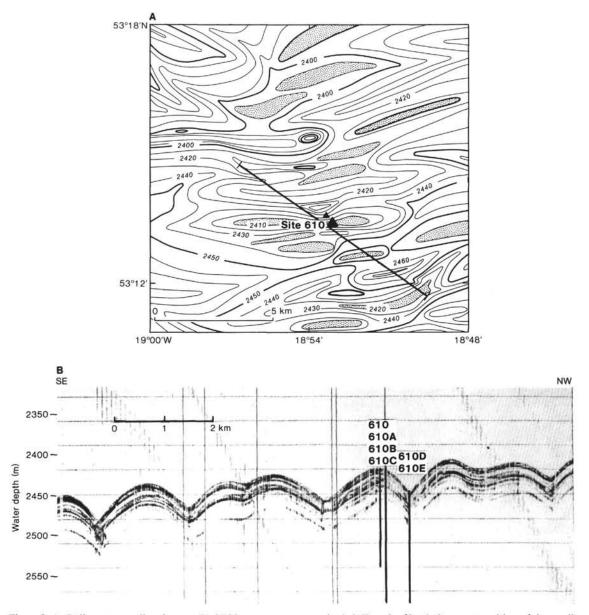


Figure 8. A. Sediment-wave directions on Feni Ridge wave crests are stippled. Trough offset holes are at position of the small triangle. Water depths in corrected meters. The position of Figure 8B is indicated. B. High-resolution seismic profile (3.5-kHz) of the sediment waves on Feni Ridge, illustrating the location of the crest and trough drilling at Site 610.

Hole 610C was spudded in at 1607 hr. on 2 August with a wash-down to 8 m sub-bottom. Two cores were taken with the 5-m VLHPC in the interval 8 to 18 m sub-bottom before a further wash-down to 26 m subbottom for Cores 610C-3 and 610C-4. Another washdown was made to recover the interval 99 to 118.2 m with Cores 610C-5 and 610C-6. At this point we pulled out of Hole 610C. The last two cores in this hole underwent 20,000-lbf. over-pulls on retrieval.

Hole 610D was to be an offset hole in the trough adjacent to the sediment wave on which we had set the beacon (Fig. 8B). The mudline was cleared at 0018 hr. on 3 August. The major offset from the beacon was followed on the PDR record over an interval of 2.5 hr. We crossed the trough axis in a direction heading 300° and then returned to it. The relative relief of the wave trough versus the crest was 32 m at this point. The eventual offset position was 850 ft. north and 1520 ft. west of the beacon. Averaging of satellite fixes later gave its position (and that of Hole 610E) as latitude: $53^{\circ}13.467'$ N, longitude: $18^{\circ}53.690'$ W in a water depth of 2445 m compared with 2417 m at Holes 610, and 610A through 610C (28 m deeper).

We spudded in Hole 610D at 0300 hr. and the first VLHPC core came aboard at 0329 hr. with a good mudline recovered. Five VLHPC cores were taken in this hole to a depth of 56.4 m sub-bottom to look for facies and accumulation rate variations from the sediment wave crest to this adjacent trough. One core interval was washed between 8.4 and 18 m sub-bottom where no good stratigraphic datum was expected. Core disturbance was found to a maximum of 70 cm downsection in Cores 610D-1 to

Table 1. Coring summa	ary, Site 610.
-----------------------	----------------

Com	Date	T'	dri	th from ll floor (m)	1.	th below afloor (m)	Length	Length	Province
Core No.	(July-August, 1983)	Time (hr.)	Тор	Bottom	Тор	Bottom	cored (m)	recovered (m)	Recover (%)
Hole 610									
1	29	0440	2427.	7-2437.3	0	0-9.6	9.6	9.52	99.2
2	29	0543		3-2446.9		6-19.2	9.6	7.97	83.0
3	29	0655	2446.	9-2456.5	19.	2-28.8	9.6	4.77	49.7
4	29	0758		5-2466.1		8-38.4	.6	8.91	92.8
5	29	0903		1-2475.7		4-48.0	9.6	9.35	97.4
Wash	29 29	1145		7-2574.7		0-147.0	99.0	0.00	0.0
6 7	29	1145 1300		7-2584.3 3-2593.9		0-156.6	9.6 9.6	8.08 9.88	8.4 102.9
8	29	1345		9-2603.5		2-175.8	9.6	9.59	99.9
9	29	1453		5-2613.1		8-185.4	9.6	9.73	101.3
Wash	29			1-2661.1		4-233.4	48.0	0.00	0.0
10	29	1710		1-2670.7		4-243.0	9.6	5.78	60.2
Wash	29			7-2728.3		0-300.6	57.6	0.00	0.0
11 Wash	29	1937		3-2737.9		6-310.2	9.6	3.57	37.2
wash 12	29 29	2210		9-2776.3 3-2785.9		2-348.6 6-358.2	38.4 9.6	0.00	0.0
13	30	0015		9-2795.5		2-367.8	9.6	3.61	37.6
Wash	30	0015		5-2833.9		8-406.2	38.4	0.00	0.0
14	30	0305		9-2843.5		2-415.8	9.6	4.84	50.4
Wash	30		2843.	5-2881.9	415.	8-454.2	38.4	0.00	0.0
15	30	0600		9-2891.5		2-463.8	9.6	8.89	92.6
Wash	30			5-2929.9		8-502.2	38.4	0.00	0.0
16 Wash	30 30	0900		9-2939.5		2-511.8	9.6	9.71	101.1
wash 17	30	1310		5-2977.9 9-2987.5		8-550.2 2-559.8	38.4 9.6	0.00 8.82	0.0 91.9
Wash	30	1510		5-3025.9		8-598.2	38.4	0.00	0.0
18	30	1847		9-3035.5		2-607.8	9.6	7.61	79.3
Wash	30			5-3064.3		8-636.6	28.8	0.00	0.0
19	31	0122	3064.	3-3073.9	636.	6-646.2	9.6	4.18	43.5
20	31	0415		9-3083.5		2-655.8	9.6	3.37	35.1
21	31	0650		5-3093.1		8-665.4	9.6	2.64	27.5
22	31	0935		1-3102.7		4-675.0	9.6	9.87	102.7
23 24	31 31	1155 1455		7-3112.3 3-3121.9		0-684.6 6-694.2	9.6 9.6	2.42 4.52	25.2 47.1
25	31	1634		9-3131.5		2-703.8	9.6	6.16	64.2
26	31	1832		5-3141.1		8-713.4	9.6	5.68	59.2
27	31	2030		1-3150.7		4-723.0	9.6	9.31	97.0
							259.2 ^a	179.32	69.2
Hole 610A									
1	1	0010		3-2435.3		0-9.0	9.0	8.83	98.1
2	1	0115		3-2444.9		0-18.6	9.6	9.56	99.6
3 4	1	0220 0300		9-2454.5 5-2464.1	0.00.000	6-28.2	9.6 9.6	9.52 9.22	99.2 96.0
5	1	0410		1-2473.7		2-37.8 8-47.4	9.6	9.57	99.7
6	i	0510		7-2483.3		4-57.0	9.6	9.45	98.4
7	1	0615		3-2492.9		0-66.6	9.6	9.35	97.4
8	1	0720	2492.	9-2502.5	66.	6-76.2	9.6	9.34	97.3
9	1	0815		5-2512.1		2-85.8	9.6	9.44	98.3
10	1	0919		1-2521.7		8-95.4	9.6	9.18	95.6
11 12	1	1016 1118		7-2531.3	12.73	4-105.0	9.6	8.90	92.7 96.7
12	1	1227		3-2540.9 9-2550.5		0-114.6 6-124.2	9.6 9.6	9.28 9.43	98.2
14	1	1321		5-2560.1		2-133.8	9.6	9.04	94.2
15	î	1423		1-2569.7		8-143.4	9.6	9.30	96.9
16	1	1505		7-2579.3		4-153.0	9.6	9.11	94.9
17	1	1605		3-2588.9	153.	0-162.6	9.6	9.08	94.6
18	1	1655		9-2598.5		6-172.2	9.6	8.00	83.3
19	1	1755		5-2608.1		2-181.8	9.6	8.33	86.7
20 21	1	1850 2000		1-2617.7 7-2627.3		8-191.4 4-201.0	9.6 9.6	9.14 8.41	95.2 87.6
							201.0	191.48	95.3
Hole 610B									
1	1	2227	2427.	5-2432.3	0.	0-4.8	4.8	4.80	100.0
2 3	1	2330		3-2441.9		8-14.4	9.6	6.34	66.0
3	2	0040		9-2451.5	14.	4-24.0	9.6	9.60	100.0
4 5	2	0151		5-2461.1		0-33.6	9.6	8.38	87.3
	2	0255	2461	1 - 2470.7	22	6-43.2	9.6	8.73	90.9

Table 1 (continued).

Core	Date (July-August,	Time	dril	th from l floor (m)		th below afloor (m)	Length cored	Length	Recover
No.	1983)	(hr.)	Тор	Bottom	Тор	Bottom	(m)	(m)	(%)
Hole 610B	(Cont.)								
6	2	0410	2470.	7-2480.3	43	2-52.8	9.6	9.18	95.6
7	2	0520	2480.	3-2489.9	52	8-62.4	9.6	9.41	98.0
8	2	0609	2489.	9-2499.5	62	4-72.0	9.6	9.26	96.5
9	2	0712	2499.	5-2509.1	72	0-81.6	9.6	9.12	95.0
10	2	0815	2509.	1-2518.7	81	6-91.2	9.6	9.24	96.3
11	2	0922	2518.	7-2528.3	91	2-100.8	9.6	8.46	88.1
12	2	1100	2528.	3-2537.9		8-110.4	9.6	8.92	92.9
13	2	1158	2537.	9-2545.5	110	4-118.0	7.6	8.27	108.8
14	2	1300	2545.	5-2555.1	118	0-127.6	9.6	9.25	96.4
15	2	1346		1-2564.7		6-137.2	9.6	8.27	86.2
16	2	1440		7-2574.3		2-146.8	9.6	9.10	94.8
						2 1 1010	146.8	136.33	92.9
Hole 610C							140.0	150.55	,
Wash	2		2427.	5-2435.5		0-8.0			
1	2	1648	2435.	5-2440.5	8.	0-13.0	5.0	4.17	83.4
2	2	1742	2440.	5-2445.5	13.	0-18.0	5.0	3.69	73.8
Wash	2		2445.	5-2453.5	18.	0-26.0			
3	2	1907	2453.	3-2463.1	26.	0-35.6	9.6	8.79	91.3
4	2	1958	2463.	1-2472.7	35.	6-45.2	9.6	8.66	90.2
Wash	2		2472.	7-2526.5	45.	2-99.0			
5	2	2034	2526.	5-2536.1	99.	0-108.6	9.6	9.50	99.0
6	2	2330	2536.	1-2545.7	108.	6-118.2	9.6	9.12	95.0
							48.4 ^a	43.93	90.8
Hole 610D									
1	3	0329	2458.	7-2467.1	0.	0-8.4	8.4	8.36	99.5
2	4	0436	2467.	1-2476.7	8	4-18.0	9.6	8.95	93.2
Wash			2476.	7-2486.3	18.	0-27.6			
3	3	0537		3-2495.9		6-37.2	9.6	8.66	90.2
4	3	0632		9-2505.5		2-46.8	9.6	8.99	93.6
5	3	0731		5-2515.1		8-56.4	9.6	8.72	90.8
Wash	3			1-2776.3		4-317.6	22.25		10,000
6	3	1238		3-2785.9		6-327.2	9.6	5.12	53.3
7	3	1400		9-2795.5		2-336.8	9.6	5.36	55.8
							66.0 ^a	54.16	82.1
Hole 610E									
Wash	3			7-2718.7		0-260.0			
1	3	2021		7-2728.3		0-269.6	9.6	5.03	52.4
2	3	2124		3-2737.9		6-279.2	9.6	6.35	66.1
3	3	2220	2737.9	9-2747.5	279.	2-288.8	9.6	9.56	99.6
4	3	2325	2747.	5-2757.1	288.	8-298.4	9.6	8.61	89.7
5	4	0034	2757.	1-2766.7	298.	4-308.0	9.6	9.60	100.0
6	4	0150	2766.	7-2776.3	308.	0-317.6	9.6	5.89	61.3
7	4	0250	2776.3	3-2785.9	317.	6-327.2	9.6	8.27	86.1
							67.2 ^a	53.31	79.3

^a Excluding washed intervals.

610D-4, but in 610D-5 it was extended into Section 2. We then washed down to 317.6 m sub-bottom. Here we were aiming to take continuous cores over a possible upper Miocene stratigraphic hiatus that had been identified tentatively in Hole 610 close to the level predicted for a mid-drift reflector. Dating of the two cores recovered revealed that we had missed the critical interval and were already approximately 40 m lower in the sequence than was Core 610-11, our target level. At this point, we decided to pull out of Hole 610D from a terminal depth of 386.8 m and to attempt a second wash-down to this required interval. We spudded in for Hole 610E at 1543 hr. on 3 August after only a nominal offset and began a wash-down to 260 m sub-bottom. At this level we began continuous XCB coring and recovered seven cores to a terminal depth of 327.2 m. We were satisfied that we had successfully recovered the stratigraphic interval missed in the previous holes and pulled out of the hole.

Postdrilling Survey

When all rig operations were complete at 0930 hr. and we were ready to leave the site, a last crossing of the sediment wave was planned to determine more finely the

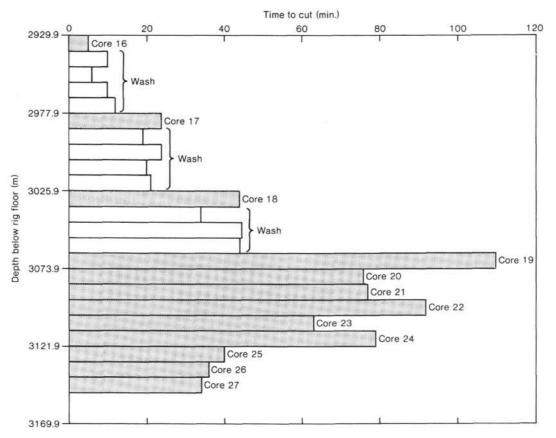


Figure 9. Penetration rate in Hole 610 over the interval 502.2 to 723.0 m sub-bottom (2929.2-3150.7 m below rig floor) as constructed from drillers' records. Cored intervals are shaded, washed intervals unshaded.

orientation of its axis. We began with a run at 4 knots while streaming the seismic gear on a heading of 045° until a turn was made at 0950 hr. (Fig. 6). Gaining speed to 8 knots and on the new heading of 225° , we determined by eventual detection of the beacon that we were on course to cross the position of Hole 610D rather than the beacon itself. Although we made a course change and crossed the beacon, the crossing was not in the required direction. Thus we made another turn at 1027 hr. to make a return crossing on a heading of 038° . The crossing was made, again only after a course change when the beacon came in range, but we were satisfied with the orientation of our approach and so a turn was made to a heading of 266° and we departed for Site 611.

SEDIMENT LITHOLOGY

The recovery of sediment from the six holes is summarized in Figure 10. Although a continuous sequence was obtained in the upper 200 m of the sediment column only, the recovered cores can be divided into two main lithologic units (Fig. 10A, B).

Unit I consists of interbedded calcareous mud and foraminiferal-nannofossil ooze of Quaternary and late Pliocene age and includes the interval 0 to 135 m in Hole 610A and 0 to 140 m in Hole 610B. Incomplete sections of the unit were recovered in all holes except 610E. The cycles are thought to be related to glacial-interglacial oscillations. Calcareous mud intervals consist of predominantly olive gray and light brown clayey silts that may contain up to 15% sand. The silt and clay fractions are made up of quartz and feldspar, with a relatively low content of clay minerals. Minor constituents include opaque and ferromagnesian heavy minerals, volcanic glass and shell fragments. Foraminifers and nannofossils are present in variable amounts. The interbedded white to very light gray oozes range from very pure carbonate with less than 5% terrigenous content to marly ooze with 30 to 60% terrigenous material. Foraminifers make up more than 10% of the sediment. Occasional diffuse pale green gray and gray laminae (pyrite-rich) are characteristic of the ooze beds.

Lithologic contacts are generally gradational, which results in the range of intermediate compositions. The sediments lack obvious primary sedimentary structures that might relate to current deposition. Intense bioturbation is clearly seen at the lithological boundaries and the trace fossils Zoophycos, Chondrites, and Planolites are common. The calcareous mud beds vary in thickness from 20 to 30 cm near the base of the unit to a maximum of 3 m at the top. The ooze layers are generally between 0.5 and 1.0 m thick throughout the section. Gravel-sized dropstones are a common constituent of the calcareous mud beds. A range of clast lithologies were seen (Fig. 11) including basalt, pumice, gneiss, amphibolite, and various sedimentary rocks. The volcanic clasts make up 36% of the dropstones logged.

Dark gray to black volcanic-ash-rich beds compose a minor lithology in Unit I. The ash occurs as thin (1-4 cm),

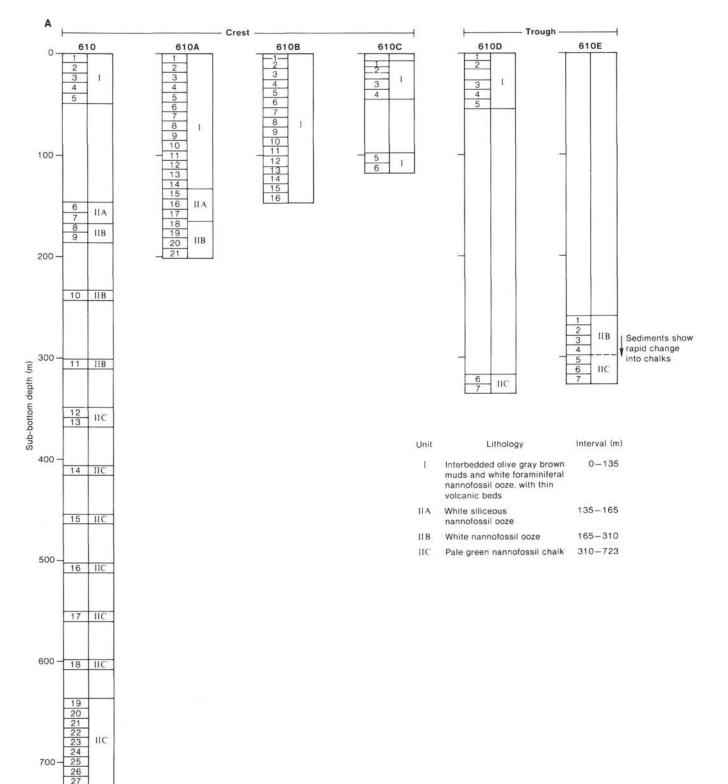


Figure 10. A. Core recovery and lithologic units sampled at Site 610 (crest and trough holes). B. Core recovery and lithologic units summarized for Site 610 crest holes.

sharp-based beds of sand-sized volcanic glass shards, with feldspars, pyroxenes, and secondary pyrite (Type 1), or dark gray calcareous mud units, which commonly have relatively sharp bases and a significant content of nonvolcanic material, principally of detrital quartz and carbonate (Type 2). Both types of ash-rich layers are associated with gravel-sized clasts of volcanic composition; their size and surficial features suggest an ice-rafted glacial origin. One incongruous sharp-based Type 1 sandy bed with an associated "volcanic dropstone" occurs in

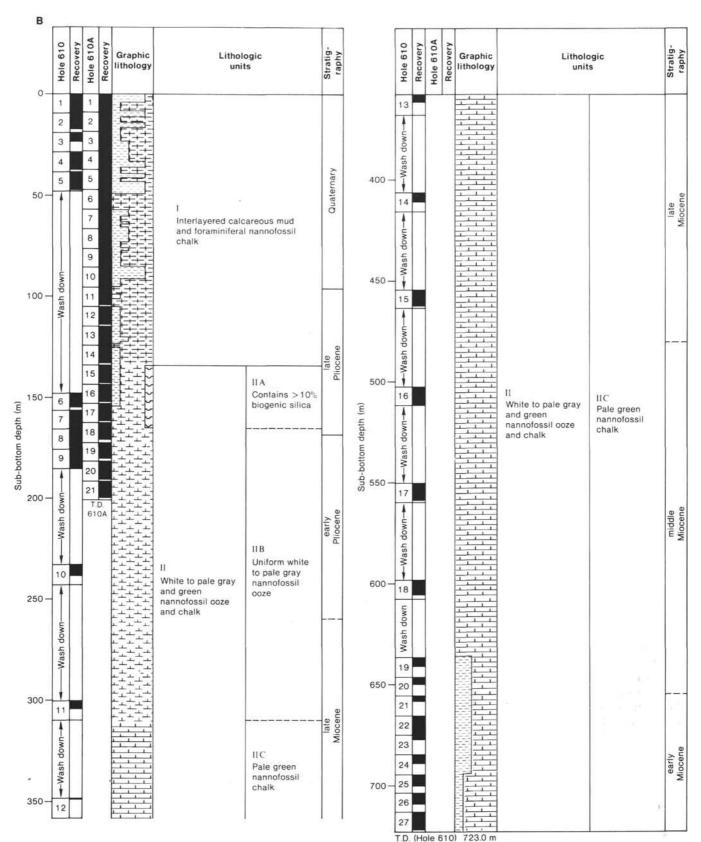


Figure 10 (continued).

SITE 610

365

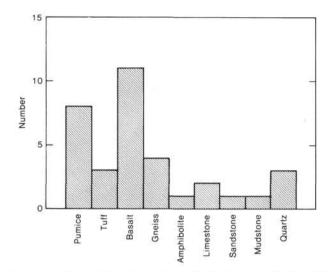


Figure 11. Composition of glacial erratics ("dropstones"), Site 610 (total number = 34; an additional 26 were unidentified).

both Sections 610A-11-5 and 610B-12-5, within a thick ooze interval that is presumed to have been deposited during an interglacial period.

The typically sharp bases of these units suggest that the ash may have been redeposited, perhaps from turbidity currents or bottom currents. Type 2 beds can generally be explained as material that first was ice-rafted and later underwent local redeposition. Type 1 beds, with their lack of quartz, suggest a more direct volcanic input, but no obvious source or transport path is clear at present.

At the base of Unit I, the calcareous mud beds become thinner and more marly, finally passing gradually into the relatively pure ooze of Unit II (Fig. 10). This lower unit includes all sediment recovered below Unit I and consists of nannofossil oozes and chalks. Unit II ranges in color from white to pale shades of gray or green and contains less than 5% terrigenous material. Three subunits have been defined within Unit II.

The topmost 20 m of Unit II (Subunit IIA, 135-165 m) contains more than 10% biogenic silica, predominantly diatoms and sponge spicules. This upper Pliocene homogeneous lithology may reflect an oceanographic change just prior to the onset of glaciation.

From 165 to about 310 m, the sequence consists of uniform white to very light gray nannofossil ooze (Subunit IIB) of early Pliocene and latest Miocene age. Occasional pyrite mottling and pale green gray laminae similar to those in the ooze layers of Unit I barely break the monotony of this subunit.

Between 280 and 310 m (in Hole 610E), a rapid change in the degree of lithification of the upper Miocene sediments is observed, from firm white ooze to the hard pale green chalk of Subunit IIC. The ooze and chalk are compositionally very similar, but slightly darker green intervals within the chalk represent slightly marlier compositions. Bioturbation structures are more clearly seen in the pale green chalk, and Zoophycos becomes common in Subunit IIC.

Toward the base of Subunit IIC (Hole 610), diagenetic features become more abundant (Fig. 12). Various

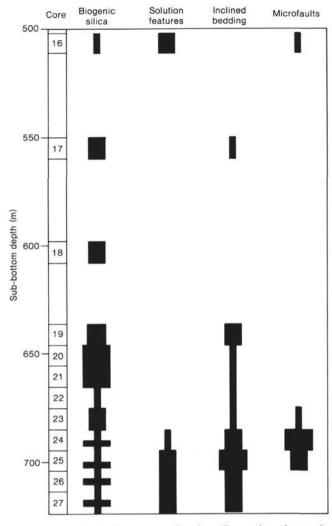


Figure 12. Qualitative importance of various diagenetic and tectonic features in lithologic Subunit IIC, Hole 610.

pressure solution features are initially observed in Core 610-13 and become very common in 610-16 (Figs. 13-16). Simple stylolites (Fig. 13) are relatively uncommon, but are found at the base of Core 610-16. More commonly, green wispy laminae are observed that apparently result from the merging of several simple stylolites (Fig. 14) (see also Hill, this volume).

Thicker green laminae containing lenses of chalk (Fig. 15) may represent a further stage of solution. This third type of solution feature is commonly observed in association with Zoophycos burrows, which may have provided a favorable geochemical environment for dissolution of CaCO₃. The green laminae become as thick as 0.5 cm. XRD analyses indicate that these laminae contain much higher proportions of quartz and smectite clay than the surrounding chalk. Dissolution of the chalk by HCl leaves a residue of similar composition. Thick intervals (up to 3 or 4 cm) of wispy solution laminae are common (Fig. 16) and contain lenses of chalk. These intervals bear some similarity to flaser chalk lithologies described at Site 608 (Hill, this volume), where undeformed Zoophycos burrows indicate the shearing to be a soft sediment process. The relationships between slow, soft sediment

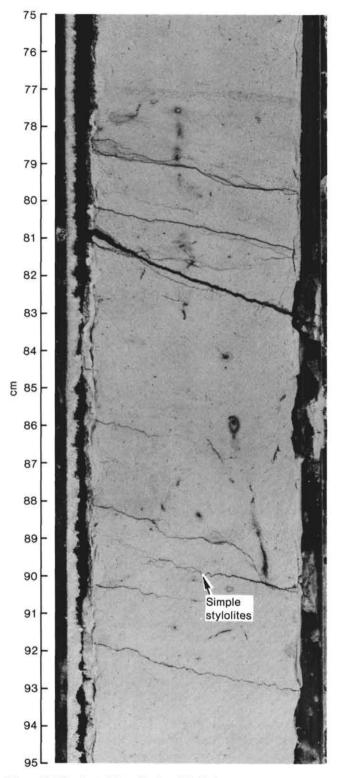


Figure 13. Simple stylolites, Section 610-16-6.

deformation (creep?), carbonate dissolution, and diagenesis present an interesting problem for further study.

Below Core 610-16, pressure solution features in Hole 610 are rare until Cores 24 to 27 (Fig. 17), where a similar range of features is observed. In these cores, the concentration of biogenic silica (diatoms and sponge spic-

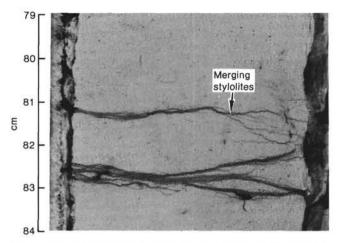


Figure 14. Merging stylolites and wispy solution laminae. Section 610-16-3.

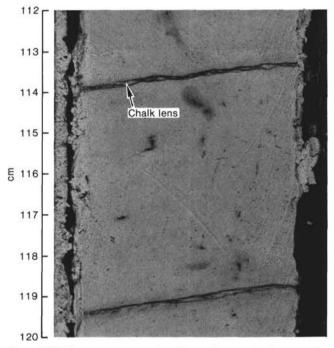


Figure 15. Thin green zones produced by carbonate solution, containing chalk lens, Section 610-16-4.

ules) is high within green solution laminae, but the surrounding chalk contains normal proportions of siliceous microfossils (Fig. 12). An increased proportion of biogenic silica is apparent from smear slides in Cores 610-17 to 610-21, particularly in 610-20 and 610-21.

The lower basal part of the lower and middle Miocene section in Hole 610 is characterized by numerous tectonic features. Cores 610-17 and 610-19 to 610-27 contain 0.5 to 6-m-thick intervals of inclined bedding. Generally, the dip lies between 10 and 20°, but within one section of Core 610-24 is as high as 45° (see also Hill; Dolan; and Baldauf, all this volume). This zone of steeply inclined bedding underlies a fine breccia bed (Fig. 17) and overlies nearly horizontal white chalk. Similar white

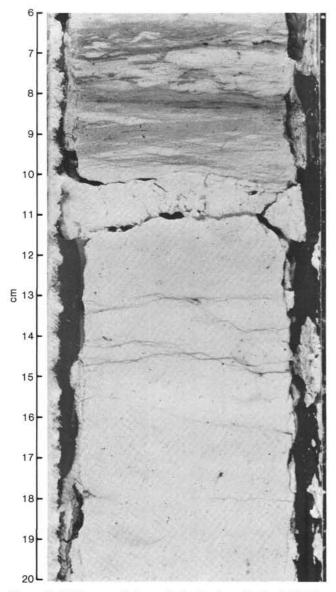


Figure 16. Thick zone of wispy solution laminae, Section 610-16-4.

chalk also overlies the breccia bed. The whole of Core 610-24 is fractured by cross-cutting microfaults showing slickensides. Cores 610-23 and 610-25 also contain numerous microfaults (Fig. 12). A similar sequence consisting of a breccia bed overlying an interval of inclined bedding occurs in Core 610-19, although the dip remains below 20° .

In the absence of supporting evidence for soft-sediment deformation, the inclined bedding, the highly fractured nature of the rock in Cores 610-23 to 610-25, and the breccias might be related to tectonic faulting. One interpretation could be that Hole 610 penetrated through a high-angle fault zone centered on Core 610-24 (around 690 m sub-bottom) where the greatest degree of tilting and fracturing has taken place. This was the level at which drilling rates significantly decreased (Fig. 9).

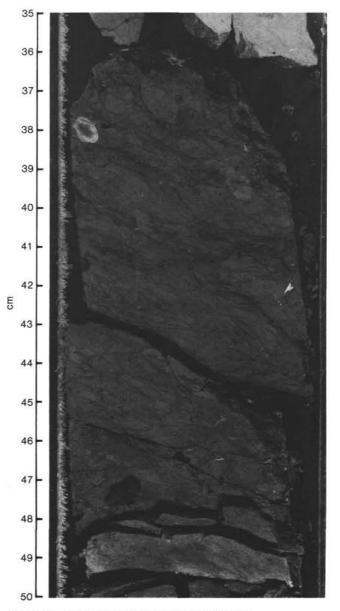


Figure 17. Fractured breccia bed in Section 610-24-2.

PHYSICAL PROPERTIES

The physical properties measured on samples from Holes 610, 610A, and 610E are shown in Figure 18 (A–J). The values of dry water content, wet water content, porosity, and void ratio (Fig. 18A–D) decrease with depth. The dry water content of 100% at the surface decreases to about 65% at 50 m sub-bottom. Measured values for dry water content decrease roughly linearly with depth, from 65% at 50 m to 45% at 300 m sub-bottom. Wet water content decreases linearly with depth from values of 45 to 50% at the surface to 30% at 300 m sub-bottom.

Porosity decreases linearly with depth from values around 65% at the surface to 53% at 300 m sub-bottom (Fig. 18C). The void ratio follows the same pattern. The

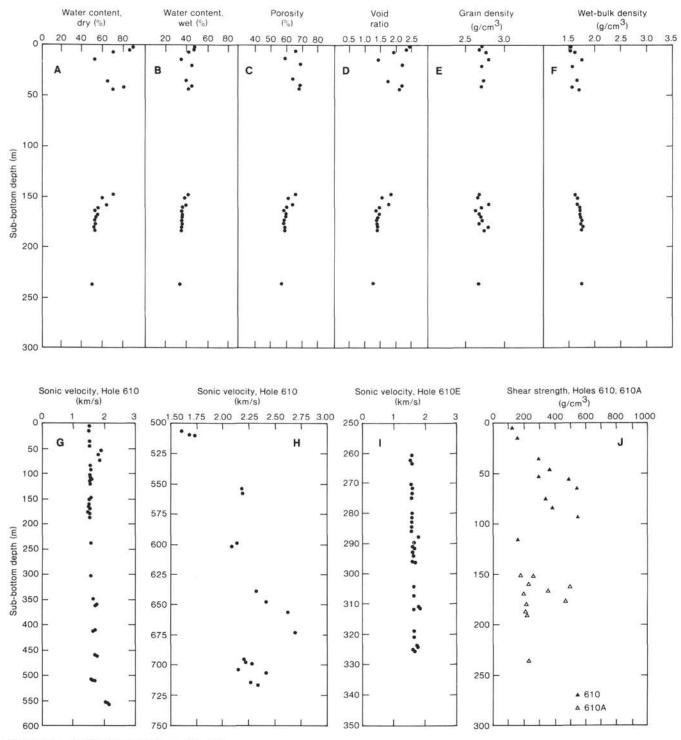


Figure 18. A-J. Physical properties at Site 610.

void ratio of 2.5 in the surface sediments diminishes to around 1.25 at the bottom of the hole (Fig. 18D).

Values measured for grain density fall between 2.65 and 2.8 g/cm³ (Fig. 18E).

Wet-bulk density values increase with depth. A value of 1.6 was measured for bulk density at the surface; this increases to 1.8 g/cm^3 at 300 m depth (Fig. 18F).

Sonic velocities stay around 1.52 km/s over the first 250 m of the sediment column, except for a short interval between 50 and 75 m in which the sonic velocity is around 1.9 km/s. Sonic velocity values increase linearly with depth from 1.55 km/s at 250 m sub-bottom to 1.9 km/s at 520 m sub-bottom (Fig. 18G). Measured values for sonic velocity in the interval between 520 and

720 m are highly variable (Fig. 18H). A very high value was observed at a depth of 675 m.

Sonic velocities measured at Hole 610E show a linear increase from 1.5 to 1.75 km/s over the continuously cored interval from 250 to 350 m sub-bottom (Fig. 18I).

Shear strength values increase with depth. The change in coring technique from VLHPC to XCB coring causes a major shift in the curve toward lower values at a depth of 110 m sub-bottom (Fig. 18J).

SEISMIC STRATIGRAPHY

As noted in the section on Operations, the water gun profiles during our detailed survey in the vicinity of Site 610 did not detect the reflector that occurs at 0.75 s on the Discovery 84 and Glomar Challenger Leg 12 reference air gun profiles and on other profiles in the area (see Jacobs, this volume). Neither did it appear when we towed a 120-in.³ air gun and crossed the beacon twice before departing the site. The Leg 94 profiles show instead an interval of relatively coherent mixed returns that begins at 0.6 s sub-bottom (two-way traveltime) below a thick acoustically transparent unit. The interval continues downward as far as 0.85 s, which is the lowest level at which returns are detected on the records (Fig. 19). We suspect that this characteristic of our profiles might be due to the filter settings of the Challenger seismic system. However, generally we find that track-totrack correlation of reflectors in the upper 1 s of penetration is difficult for single channel records taken in this region (Masson and Kidd, this volume).

Above 0.62 s, the *Glomar Challenger* seismic section displays two main acoustic units (Fig. 19). From the sediment/water interface to 0.25 s sub-bottom, the records are characterized by a wavy stratified signature that appears in phase with the sediment wave morphology at the surface (acoustic Unit A). No wave migration is apparent at this scale, although the amplitude of the wavelike forms seems to increase upward. It is not clear whether this waviness represents draping of sediments or a focusing effect caused by the surface wave relief.

Between 0.25 and 0.62 s sub-bottom occurs a relatively transparent acoustic interval, acoustic Unit B. Within this interval, a faint reflector is detected at 0.37 s, and this is traceable throughout our Leg 94 survey tracks. Acoustic Unit C is the zone described above between 0.62 and 0.85 s sub-bottom, and Unit D is defined as the interval below this interval of coherent returns that may simply be the limit of our acoustic penetration (Fig. 19).

Table 2 lists calculations of two-way traveltime, made during the drilling of Hole 610, taking selected sub-bottom intervals and using seismic velocities measured on sediment core material as it was worked on in the laboratory. The resulting cumulative sub-bottom traveltimes can be compared with two-way traveltimes to the reflectors on the seismic records.

The two lithologic units described from the holes drilled at this site are divided at 135 m sub-bottom where the glacial-interglacial carbonate cycles begin (Fig. 19). This level has no clear correspondence with the seismic records, in contrast to similar reverberant stratified units that did seem to correlate with the cycles at previously drilled Leg 94 sites.

The base of the wavy stratified acoustic Unit A at 0.25 s lies between Cores 610-9 (175.8–185.0 m sub-bottom) and 610-10 (233.4–243.0 m sub-bottom) in an uncored interval in the white siliceous nannofossil oozes of lithologic Unit IIB.

The faint reflector at 0.37 s sub-bottom lies between Cores 610-10 and Cores 610-11, probably at around 300 m. It corresponds to the boundary of lithologic Subunits IIB and IIC, which was identified where white nannofossil oozes gives way downward to pale green nannofossil chalks.

The only indication of a noticeable change in the sediment column between Cores 610-15 and 610-16 that might correspond to the top of acoustic Unit C at 0.62 s is a short interval with pressure solution features and microfaulting in Core 16 (Fig. 12).

A marked increase in sonic velocities measured from the sediment occurs below the boundary of acoustic Units B and C and reaches a maximum in Core 610-23 in average values of 2.7 km/s (Fig. 18H). The regional seismic reflector picked from survey profiles in the area at 0.75 s sub-bottom (two-way traveltime) would correspond to the interval of Core 610-19, using Table 2 data. However, it is more likely that the reflector results from the integrated effect of this relatively sudden increase in seismic velocity over the entire interval between 625 and 675 m sub-bottom. Lithologically the cause of the rise in seismic velocity would appear to be an increase in content of biogenic silica in the chalks (Fig. 12). The hardness of the chalks obviously increased dramatically over this interval, as evidenced by the drillers' log of penetration rate (Fig. 9). This plot shows that Core 610-19 took about two hours to cut. The geologic significance of this reflector will be discussed in a later section.

It is difficult to comment on whether the boundary of acoustic Units C and D at 0.85 s two-way traveltime is real or is simply due to a lack of acoustic penetration. Certainly by the lowermost Core 610-27, cutting rates for the drilling had increased (Fig. 9) and seismic velocities had decreased as rapidly as they had risen (Fig. 18H), so we infer that we had already penetrated the level of the reflector. The decrease in seismic velocity relates to an increase in microfaulting in the cores (Fig. 12). Pressure solution features also increase below Core 610-24 (684.6-694.2 m sub-bottom). We speculate that the zone defined as acoustic Unit C is bounded by intervals with a general increase in reflectivity caused by microfaulting and localized pressure solution. Characteristics of our seismic system may have emphasized these zones in the records, thus situating the regional reflector at 0.75 s sub-bottom.

BIOSTRATIGRAPHY

Holes 610A, 610B, 610C, and the upper nine cores of Hole 610, on the crest of a sediment wave, give a complete record to 201 m sub-bottom (0-4.3 Ma). The lower part of Hole 610 was spot cored every 50 m to 636 m sub-bottom and then continuously cored to 723 m subbottom (lower Miocene). Holes 610D and 610E, in the

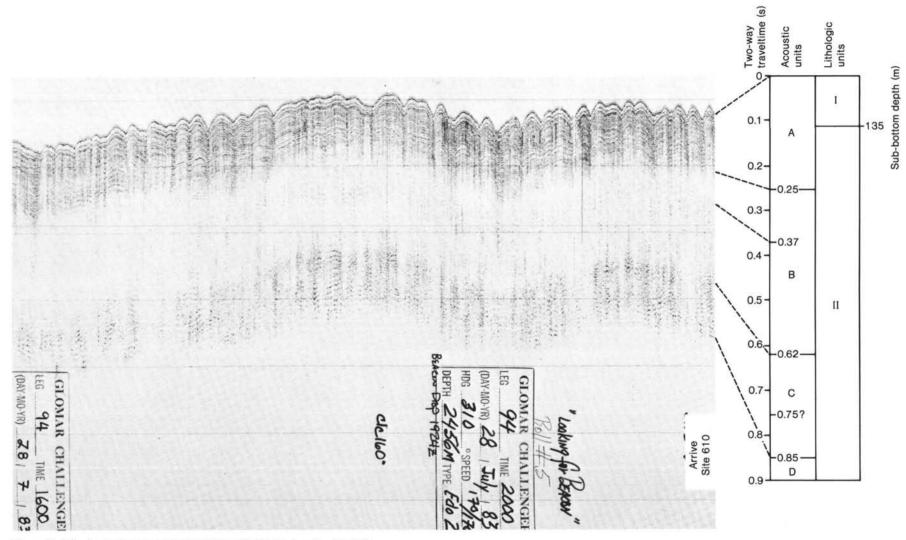


Figure 19. Seismic stratigraphy and correlation with lithologic units, Site 610.

Table 2. Two-way traveltimes measured during the drilling of Hole 610.

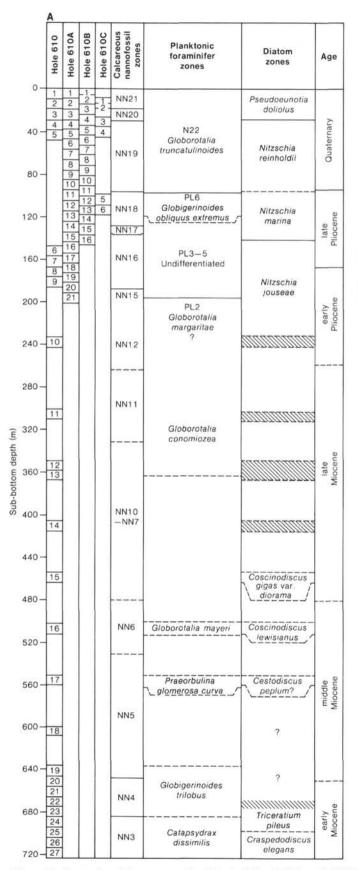
Core no.	Sub-bottom depth to base of interval (m)	Interval used in calculation (m)	Averaged seismic velocity (km/s)	Calculated two-way traveltime for interval (s)	Cumulative sub-bottom two-way traveltime (s)	Sequence of reflectors two-way traveltime (s)
5	38.4	38.4	1.542	0.050	0.050	
7 9	166.2	127.8	1.536	0.166	0.216	
9	185.4	19.2	1.547	0.025	0.241	
						0.25
10	243.0	57.6	1.591	0.072	0.313	
						0.37
11	310.2	67.2	1.602	0.084	0.397	
12	358.2	48.0	1.708	0.056	0.453	
14	415.8	57.6	1.727	0.065	0.520	
15	463.8	48.0	1.768	0.054	0.574	
						0.62
16	511.8	48.0	1.730	0.055	0.629	
17	559.8	48.0	2.168	0.044	0.673	
18	607.8	48.0	2.132	0.045	0.718	
19	646.2	38.4	2.283	0.034	0.752	
20	655.8	9.6	2.300	0.008	0.760	
22	675.0	19.2	2.697	0.014	0.774	
24	694.2	19.2	2.515	0.015	0.789	
27	723.0	28.8	2.308	0.025	0.814	

trough of a sediment wave, give a composite record to 56.4 m sub-bottom (mid-Quaternary) and from 260 to 337 m sub-bottom (upper part of the upper Miocene). The stratigraphy of all holes can be seen in Figure 20 (A and B)⁴.

The more northerly location of this site is reflected in the cooler-water assemblages of both planktonic foraminifers and calcareous nannofossils. Several of the foraminiferal zonal species are rare or absent at this site, and discoasters are also much less common. Reworking is evident, particularly of nannofossils, with Cretaceous specimens common during many of the Quaternary glacial periods and fairly abundant Eocene–Oligocene nannofossils common in the upper Miocene.

The cores provide a complete sequence back to about 4.3 Ma (early Pliocene) and a discontinuous record to about 18 Ma (early Miocene). The Quaternary consists of alternating glacial and interglacial intervals reflected by strong changes in the planktonic foraminiferal assemblages. Preservation of all groups except diatoms is good throughout this interval. Diatoms are generally rare or absent in glacial intervals. Some glacial samples contain so much detrital material that the abundance of foraminifers and nannofossils is severely reduced. Pliocene and upper Miocene samples generally contain well preserved benthic and planktonic foraminifers, although diatoms are rare or absent through the lower part of the Pliocene and upper Miocene. Preservation of benthic and planktonic foraminifers through the middle Miocene is generally moderate to good, whereas the lower Miocene Samples 610-19,CC through 610-27,CC show moderate to poor preservation, with numerous flattened foraminifers in some samples, and common recrystallization.

Stratigraphic control at this site is limited because of the reduced numbers of nannofossil zonal species (particularly discoasters and ceratoliths) and the unreliable published ages of some planktonic foraminiferal datums. In the continuously cored sequences reliable ages were obtained by a sequential method using paleontological data for rough stratigraphic placement, and then paleomagnetic data for refinement. In the spot-cored interval of Hole 610, individual cores were not sufficient to provide a recognizable paleomagnetic sequence. Thus the ages within this interval are very broadly defined (Fig. 21, Table 3).


Calcareous Nannofossils

At Site 610, sediments yielded abundant calcareous nannofossils in various states of preservation and moderate to high diversity at all six holes. An almost complete sequence was identified from the upper Pleistocene *Emiliania huxleyi* Zone (NN21) to the lower Miocene *Sphenolithus belemnos* Zone (NN3). The calcareous nannoflora assemblages at this site contrast sharply with those at previously drilled sites according to the following criteria: discoasters are missing or extremely rare in the upper Pliocene, and comparatively common Cretaceous reworked specimens and fairly abundant Oligocene–Eocene reworked specimens are found in the Quaternary and in the upper Miocene sequences, respectively.

Hole 610

The abundant occurrence of Emiliania huxleyi suggests that Sample 610-1,CC can be correlated with the upper Pleistocene to Holocene Emiliania huxleyi Zone (NN21). This sample contains abundant Gephyrocapsa caribbeanica, G. oceanica, Coccolithus pelagicus, Syracosphaera sp. and Calcidiscus leptoporus. In addition to these species, Cretaceous specimens such as Watznaueria barnesae, Prediscosphaera cretacea, and Microrhabdulus decoratus are found. Samples 610-2, CC and 610-3.CC are placed in the Pleistocene Gephyrocapsa oceanica Zone (NN20), based on the abundant occurrences of Gephyrocapsa caribbeanica and G. oceanica and the absence of Emiliania huxleyi and Pseudoemiliania lacunosa. Sample 610-2, CC contains very abundant Coccolithus pelagicus, which is a typical cold-water species. In Sample 610-3, CC, Cretaceous species Prediscosphaera cretacea, Arkhangelskiella cymbiformis, Eiffellithus turriseiffeli, Watznaueria barnesae, and Tertiary species Calcidiscus formosus, Dictyococcites hesslandii, Reticulofenestra pseudoumbilica, and Sphenolithus moriformis occur. Samples 610-4,CC and 610-5,CC contain abundant Pseudoemiliania lacunosa and gephyrocapsids and may thus represent the Pleistocene Pseudoemiliania lacunosa Zone (NN19). Cretaceous reworked specimens such as Watznaueria barnesae and Eiffellithus turriseiffeli also occur in these samples. Judging by the coexistence of Calcidiscus macintyrei and a small number of specimens of discoaster such as Discoaster surculus, D. brouweri, D. tamalis, and D. variabilis and the absence of gephyrocapsids, Samples 610-6,CC through 610-9,CC are upper Pliocene, and assigned to the Discoaster surculus Zone (NN16). Sample 610-10,CC contains very abundant Coccolithus pelagicus together with Calcidiscus leptoporus, C. macintyrei, Reticulofenestra pseudoumbilica, Sphenolithus abies, Discoaster surculus, D. intercalaris, and D. variabilis. However, because of the absence

⁴ For an updated version of the biostratigraphic summary, see Baldauf et al. (this volume).

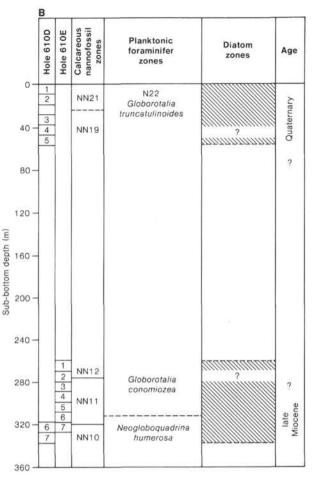


Figure 20. Biostratigraphic summary, Site 610. A. Holes 610 through 610C, on the crest of the mud wave. B. Holes 610D, 610E, in the trough. (Hachures in the Diatom column indicate samples that contain rare non-age-diagnostic fragments or are barren of diatoms.) For an updated version, see Baldauf et al. (this volume).

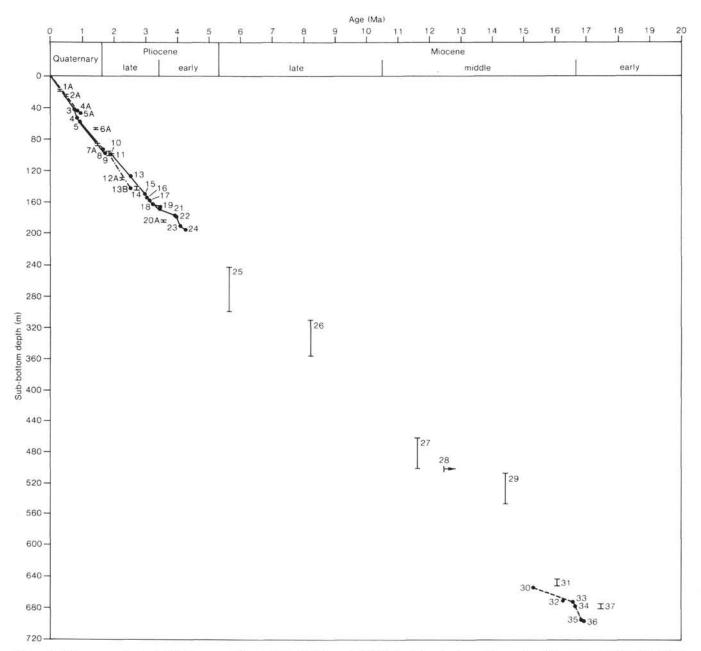


Figure 21. Time versus depth plot for the cores taken at Holes 610 through 610E. The datum levels used to construct the curves are listed in Table 3. Datum levels in Hole 610A are labeled A, in Hole 610B, B. For an updated version, see Baldauf et al. (this volume).

of age-diagnostic species such as *Discoaster asymmetricus, Ceratolithus rugosus*, and amauroliths, the exact age of this sample in uncertain. An assemblage in Sample 610-11,CC is dominated by placoliths, particularly *Coccolithus pelagicus* and *Reticulofenestra pseudoumbilica*. The presence of *Discoaster quinqueramus* places this sample in the late Miocene *D. quinqueramus* Zone (NN11). As Samples 610-12,CC, -13,CC, and -14,CC contain no age-diagnostic species, the ages of these samples are uncertain. However, the absence of five-rayed discoasters suggests that these samples may be placed below NN11. Sample 610-15,CC may belong to the NN8 *Catinaster coalitus* Zone or to the NN17 *Discoaster kugleri* Zone, on the basis of the occurrences of *Coccolithus miopelagicus* and *Discoaster deflandrei*. *Cyclicargolithus flori-* danus is found continuously below Sample 610-16,CC. According to Bukry (1973), the last appearance datum (LAD) of this species coincides with the first appearance datum (FAD) of *Discoaster kugleri*, which designates the boundary between NN7/NN6. Therefore, Sample 610-16,CC is placed in the middle Miocene *Discoaster exilis* Zone (NN6). Samples 610-17,CC through -19,CC contain *Sphenolithus heteromorphus* together with *Coccolithus pelagicus*, *C. miopelagicus*, *Cyclicargolithus floridanus*, and *Reticulofenestra pseudoumbilica* and can be referred to the middle to early Miocene NN5 *Sphenolithus heteromorphus* Zone. Samples 610-20,CC, -21,CC, and -22,CC may belong to the lower Miocene *Helicosphaera ampliaperta* Zone (NN4), on the basis of the presence of *H. ampliaperta*. Sample 610-

Table 3. Datum levels used to construct Figure 21.

Number	Datum level	Age (Ma)
1	Bottom of Emiliania huxleyi	0.28
23	Top of Pseudoemiliania lacunosa	0.47
3	Matuyama/Brunhes	0.73
4	Top of Jaramillo	0.79
5	Bottom of Jaramillo	0.91
6	Top of Helicosphaera sellii	1.37
7	Top of Calcidiscus macintyrei	1.45
8	Top of Olduvai	1.66
9	Bottom of Globorotalia truncatulinoides	1.78
10	Bottom of Olduvai	1.88
11	Top of discoasters	1.90
12	Bottom of Globorotalia inflata (PL6)	2.20
13	Top of Gauss	2.47
14	Top of Nitzschia jouseae	2.65
15	Top of Kaena	2.92
16	Bottom of Kaena	2.99
17	Top of Mammoth	3.08
18	Bottom of Mammoth	3.18
19	Gilbert/Gauss	3.40
20	Top of Reticulofenestra pseudoumbilica	3.50
21	Top of Cochiti	3.88
22	Bottom of Cochiti	3.90
23	Top of Nunivak	4.05
24	Bottom of Nunivak	4.20
25	Top of Discoaster quinqueramus	5.60
26	Bottom of Discoaster quinqueramus	8.20
27	Top of Cyclicargolithus floridanus	11.60
28	Coscinodiscus lewisianus Zone	Older than 12.9
29	Top of Sphenolithus heteromorphus	14.40
30	Bottom of Chron C5B	15.27
31	Top of Helicosphaera ampliaperta	16.00
32	Top of Chron C5C,N1 ^a	16.22
33	Bottom of Chron C5C,N1 ^a	16.52
34	Top of Chron C5C,N2 ^a	16.56
35	Bottom of Chron C5C,N2 ^a	16.73
36	Top of Chron C5C,N3 ^a	16.80
37	Top of Sphenolithus belemnos	17.40

^a See Clement and Robinson (this volume) for an alternative correlation.

23,CC on down to the bottom of this hole may belong in the early Miocene *Sphenolithus belemnos* Zone (NN3), based on the occasional occurrences of *S. belemnos* and the absence of *Triquetrorhabdulus carinatus*.

Holes 610A and 610B

Nannofossil assemblages ranging from Quaternary to lower Pliocene occur in these holes. These assemblages are similar to those observed in Hole 610.

The late Pleistocene to Holocene Emiliania huxleyi Zone (NN21) occurs in Sample 610A-1, CC and in Samples 610B-1,CC and -2,CC, where abundant Emiliania huxleyi, Gephyrocapsa caribbeanica, and G. oceanica occur, together with several reworked specimens from the Cretaceous such as Watznaueria barnesae, W. britannica, Eiffellithus turriseiffeli, Arkhangelskiella cymbiformis, and Prediscosphaera cretacea. Samples 610A-2,CC and 610B-3,CC are assigned to the Gephyrocapsa oceanica Zone (NN20), based on the coccolith assemblage without Emiliania huxleyi and Pseudoemiliania lacunosa. Cretaceous specimens such as Micula staurophora. Arkhangelskiella cymbiformis, Watznaueria barnesae, and Prediscosphaera cretacea are also found in Sample 610A-2.CC. The occurrence of abundant Pseudoemiliania lacunosa places Samples 610A-3,CC through -10,CC and 610B-4,CC through -11,CC in the lower Pleistocene Pseudoemiliania lacunosa Zone (NN19). Among them, Samples 610A,10,CC and 610B-11,CC contain no Gephyrocapsa oceanica and G. caribbeanica. Therefore these two samples are assigned to the earliest Pleistocene. Many of these samples (especially 610A-5,CC) contain comparatively abundant Cretaceous reworked specimens: Arkhangelskiella cymbiformis, Cribrosphaerella ehrenbergii, Eiffellithus turriseiffeli, E. trabeculatus, Prediscosphaera cretacea, Rucinolithus wisei, Watznaueria barnesae, W. britannica, Zygodiscus diplogrammus, and Z. sigmoides.

As discoasters are missing or extremely rare in the upper Pliocene sequences in these holes, the Pliocene/Pleistocene boundary is not sharply marked as it was at previously drilled sites. Samples 610A-11,CC and 610B-12,CC contain no gephyrocapsids except for Gephyrocapsa aperta. According to Haq and Takayama (1984), Gephyrocapsa aperta makes its first appearance above the top of the Gauss and is assigned an age of 2.0 Ma. Therefore, the Pliocene/Pleistocene boundary is placed between Samples 610A-10,CC and -11,CC and 610B-11,CC and -12,CC. Below this boundary, the nannofossil assemblages progressively change, with a gradual increase in the number of species and the number of specimens of discoasters. In the intervals represented by Samples 610A-11, CC through -19, CC and by 610B-12, CC through the bottom of Hole 610B, the number of discoasters is still limited. Therefore the distinction between the Discoaster brouweri Zone (NN18), the Discoaster pentaradiatus Zone (NN17), and the Discoaster surculus Zone (NN16) is not clear. However, in Samples 610A-11,CC, -12,CC, and 610B-12,CC through -14,CC, no discoasters or only Discoaster brouweri are recognized. Therefore these samples may be placed in the uppermost Pliocene Discoaster brouweri Zone (NN18). The remaining samples in this interval contain Discoaster pentaradiatus and/or D. surculus and are all placed in NN17 and NN16. As in the previous hole, Helicosphaera sellii and Pseudoemiliania lacunosa occur only in the upper part of NN16. Cretaceous specimens such as Arkhangelskiella cymbiformis, Zygodiscus diplogrammus, Watznaueria barnesae, and Lucianorhabdus cayeuxii occur in Samples 610A-17,CC and 610B-12,CC and -13,CC. In Hole 610A, comparatively abundant Reticulofenestra pseudoumbilica occur throughout NN16. Their abundance, however, drastically increases in Sample 610A-20,CC, and this is interpreted to mean that this species becomes extinct in Core 610A-20 and that the occurrences of this species above this sample represent reworking. Therefore Samples 610A-20,CC and -21,CC are placed in the lower Pliocene Reticulofenestra pseudoumbilica Zone (NN15). According to Haq and Takayama (1984), Reticulofenestra pseudoumbilica disappears below magnetic Anomaly 2A, which corresponds to 3.5 Ma. This is well confirmed by the present shipboard study. Sphenolithus abies occurs in Sample 610A-21,CC slightly below the extinction level of Reticulofenestra pseudoumbilica.

Hole 610C

The microflora in Samples 610C-1,CC and -2,CC generally consists of *Emiliania huxleyi*, *Coccolithus pelagi*- cus, Calcidiscus leptoporus, Helicosphaera carteri, Syracosphaera sp., Discolithina japonica, Gephyrocapsa oceanica, and G. caribbeanica. This assemblage may belong to the Emiliania huxleyi Zone (NN21). In addition, a few coccoliths reworked from the Cretaceous are recognized. Samples 610-3, CC and 610-4, CC contain Pseudoemiliania lacunosa and gephyrocapsids and are placed in the lower Pleistocene Pseudoemiliania lacunosa Zone (NN19). These samples also contain Cretaceous specimens such as Arkhangelskiella cymbiformis, Watznaueria barnesae, and Eiffellithus turriseiffeli. Samples 610C-5,CC and 610C-6,CC contain Pseudoemiliania lacunosa, Helicosphaera sellii, and Calcidiscus macintyrei. As discoasters are absent, these samples are placed in the uppermost Pliocene Discoaster brouweri Zone (NN18). Occasional occurrences of Cretaceous specimens are also recognized in these samples.

Hole 610D

Samples 610-1,CC and 610-2,CC are assigned to the upper Pleistocene to Holocene Emiliania huxleyi Zone. Emiliania huxleyi is dominant. Coccolithus pelagicus, Gephyrocapsa oceanica, and G. caribbeanica are frequent. A few Cretaceous reworked specimens occur. In Sample 610D-2,CC Watznaueria barnesae, Micula staurophora, Prediscosphaera cretacea, and Eiffellithus turriseiffeli are found. The occurrence of Pseudoemiliania lacunosa in Samples 610D-3, CC to -5, CC indicates an early Pleistocene age in the NN19 Pseudoemiliania lacunosa Zone for these samples. These samples also contain similar Cretaceous specimens. Samples 610D-6,CC and -7,CC which were obtained from the bottom of this hole after washing down, contain calcareous nannoflora characterized by the occurrences of Coccolithus pelagicus, Calcidiscus leptoporus, C. macintyrei, Helicosphaera granulata, Reticulofenestra pseudoumbilica, Sphenolithus abies, Discoaster variabilis, D. brouweri, and D. loeblichii and the absence of Discoaster guingueramus. In addition, Sample 610D-7,CC contains Discoaster prepentaradiatus, D. neorectus, and D. pansus. Therefore these two samples are placed in the upper Miocene Discoaster calcaris Zone (NN10). In Sample 610D-7,CC, fairly abundant Oligocene-Eocene reworked specimens such as Reticulofenestra umbilica, R. hillae, and Coccolithus eopelagicus are found.

Hole 610E

In Hole 610E, five calcareous nannofossil datum levels are detected. These datums are as follows in descending order:

LAD of Discoaster quinqueramus	between Samples 1,CC and 2,CC
FAD of Amaurolithus spp.	between Samples 3,CC and 4,CC
FAD of Discoaster surculus	between Samples 5,CC and 6,CC
LAD of Discoaster neohamatus	between Samples 5,CC and 6,CC
FAD of Discoaster berggrenii and/or Discoaster quinqueramus	between Samples 6,CC and 7,CC

Mazzei et al. (1979) studied the Miocene-Pliocene sequence from Site 397 on Cape Bojador, eastern Atlantic (DSDP Leg 47) for the nannofossil and planktonic foraminiferal biostratigraphy, and paleomagnetics. A sequence ranging from magnetic Epoch 7 through the Gauss is recorded with some gaps. According to them, Discoaster neohamatus has its last occurrence near the bottom of the normal polarity interval of magnetic Epoch 7, and D. berggrenii and D. quinqueramus both disappear simultaneously within the upper of the two normal polarity intervals of Epoch 5. They have also shown the first amauroliths to appear within an interval where they have no magnetic information; however, they interpret this interval to be equivalent to magnetic Epoch 6. Haq and Takayama (1984) compiled these data; on the basis of these datum planes, Samples 610-1,CC, -2,CC through -6, CC and -7, CC are placed in the lower Pliocene-upper Miocene Amaurolithus tricorniculatus Zone (NN12), the upper Miocene Discoaster quinqueramus Zone (NN11), and the upper Miocene Catinaster calcaris Zone (NN10), respectively. According to Haq and Takayama's compilation, Discoaster neohamatus has its FAD near the bottom of Epoch 8. Therefore the absolute age assigned to the bottom sediments of Hole 610E is between 8.0 and 8.5 Ma. Samples 610D-6.CC and -7.CC contain fairly abundant Oligocene-Eocene reworked specimens such as Dictyococcites bisectus, Reticulofenestra umbilica, R. hillae, Helicosphaera reticulata, Coccolithus eopelagicus, Micrantholithus sp., and Chiasmolithus sp.

Reworked Specimens

The Quaternary sediments at Site 610 are characterized by occasional occurrences of Cretaceous reworked specimens. The stratigraphic ranges of these species, according to Thierstein (1976), are limited to the Upper Cretaceous, except for *Watznaueria britannica* and *Rucinolithus wisei*, which are Lower Cretaceous species. Based on the composite ranges of these species, it is concluded that these nannofossils were reworked from Cretaceous sediments ranging in age from Berriasian to early Valanginian and Coniacian to Maestrichtian. These reworked specimens seem to be dominant during glacial intervals.

It also remarkable that Oligocene-Eocene reworked specimens are dominant in Samples 610D-7,CC, and 610E-6,CC and -7,CC. Sediments represented by these samples accumulated at low sedimentation rates.

Planktonic Foraminifers

Planktonic foraminifers from this site are abundant and well preserved throughout the upper Miocene, Pliocene, and Quaternary. Species diversity is less at this site than at sites to the south, with cooler-water species such as *Neogloboquadrina atlantica*, *N. pachyderma*, and *Globigerina bulloides* being the most common species. Warmer-water species such as *Globigerinoides sacculifer* and *Sphaeroidinellopsis seminulina* are only found in the lower part of the upper Miocene. The temperate planktonic foraminiferal zonation of Poore and Berggren (1975) has been found to be inapplicable to this site, therefore a simplified version of Berggren's subtropical temperate zonation is used instead (see also Weaver and Clement; Baldauf et al., this volume).

Holes 610, 610A, 610B, and 610C

These holes on the crest of a sediment wave jointly provide a continuous sequence to 200 m sub-bottom (lower Pliocene), cores at 60-m intervals from 200 to 636 m, and continuous cores from 636 to 723 m. The middle/ upper Miocene boundary occurs at approximately 440 m sub-bottom.

Globorotalia truncatulinoides can be found at this site. but its occurrence is sporadic and always rare. Its first appearance does not, therefore, provide a useful datum and the first appearance of sinistral Neogloboquadrina pachyderma (encrusted type) is used in preference to mark the base of the G. truncatulinoides Zone. Comparison to the paleomagnetic results from this leg shows that it is a useful marker. The base of this zone therefore lies in the washed interval between Cores 610-5 and 610-6, in Cores 610A-11, and 610B-11, and in the washed interval between Cores 610C-4 and 610C-5. The fauna of the G. truncatulinoides Zone is variable, with glacial intervals being dominated by N. pachyderma (s) and interglacials containing common Globigerina bulloides, N. pachyderma (d), Globorotalia scitula, Globorotalia inflata, and Globigerina quinqueloba.

Zone PL6 cannot be identified by the extinction of Globorotalia miocenica, because this species is absent at Site 610. The transition from G. puncticulata to G. inflata, however, occurred close to the base of Zone PL6 in Site 607 and can be used as a rough guide to the base of this zone. This transition occurs in the washed interval between Cores 610-5 and 610-6; in Core 610-13; and in Hole 610B between Samples 610B-12,CC and 610B-14, CC (no specimens of either species being found in 610B-13,CC). Globigerina bulloides, Globorotalia inflata, and N. pachyderma (d) are all common in this interval but N. atlantica (s) has not been found. This zone therefore correlates with the B2 division referred to by Poore and Berggren (1975). They placed this interval in the Pleistocene, but paleomagnetic and nannofossil data at Site 610 suggest it belongs in the uppermost Pliocene.

As at Site 609, no distinction can be made between Zones PL3 through PL5, and they are regarded as one interval. The base is taken at the last occurrence of *Globorotalia margaritae*, which occurs in the washed interval between Cores 610-9 and 610-10 and in Core 610A-21. In this interval *G. puncticulata, Globigerina bulloides, N. atlantica* (s), and *N. pachyderma* are very common. As at Sites 608 and 609, *Globorotalia* cf. *G. pliozea* can be found near the base of this interval.

Only Core 610A-21 falls into the PL2 Zone, and PL1 has not been identified at all. This is probably because Zones PL1 and PL2 lie in the washed interval between Cores 610-9 and 610-10; Hole 610A did not penetrate beyond Zone PL2. *G. margaritae* is rare even in Sample 610A-21,CC, and the fauna of Zone PL2 is very similar to the PL3-5 interval.

Sample 610-10,CC contains no G. margaritae, Globigerina nepenthes, or Globorotalia conomiozea and is therefore impossible to date. Typical G. conomiozea has, in fact, not been found in this hole. Samples 610-11,CC through 610-14,CC contain G. conoidea and numerous N. acostaensis and are therefore placed in the N. humerosa Zone. The coiling direction change in N. atlantica from sinistral to dextral occurs in the washed interval between Cores 610-11 and 610-12, which is below and not at the Miocene/Pliocene boundary, as suggested by Poore (1979).

The middle Miocene Globorotalia mayeri Zone was recognized in Sample 610-16, CC and yielded a high diversity fauna of 17 species, which included G. miotumida and G. menardii.

Three zones were recognized in the poorly preserved lower Miocene from 610-17, CC to 610-27, CC. The uppermost zone, the *Praeorbulina glomerosa* Zone, in 610-17, CC yielded only a low diversity fauna. Below this zone in Samples 610-18, CC to 610-23, CC is the *Globigerinoides trilobus* Zone, which yielded a typical midlatitude fauna with *Globoquadrina dehiscens*, *Globigerina bulloides*, and *Globigerinoides trilobus*, with *Globorotalia praescitula* appearing in the middle of the zone.

Drilling at Site 610 penetrated the *Catapsydrax dis*similis Zone in Samples 610-24,CC to 610-27,CC, and this again yielded a relatively low-diversity fauna indicative of the mid-latitudes (see Jenkins, this volume).

Holes 610D, 610E

The upper Miocene sequence is represented by Cores 610E-1 to -7, at the base of which lies Core 610D-7. Core 610D-6 is overlapped by 610E-7 (Fig. 20).

Cores 610D-1 through 610D-5 all lie in the Globorotalia truncatulinoides Zone. There is then a long washed interval to the top of Core 610E-1. Cores 610E-1 and 610E-2 contain G. conomiozea and are placed in that Zone. Below this G. conoidea is present in Samples 610E-3,CC through -7,CC and Samples 610D-6,CC and 610D-7,CC, together with Neogloboquadrina acostaensis. These samples are, therefore, all placed in the N. humerosa Zone. The presence of large numbers of neogloboquadrinids in all these samples suggests that the base of this zone was not reached.

Benthic Foraminifers

Benthic foraminifers constitute less than 1% of the total foraminiferal fauna in the 63 μ m fraction in all samples studied (list of samples given in Table 4). All samples contained sufficient individuals for counts of 200 specimens.

Samples below 610-16,CC (about 150 m) were dried at about 110°C for at least 1 hr., then soaked in kerosene for at least 15 min. Subsequently the kerosene was poured off, water added, and the samples were heated for about 30 min. This treatment was repeated for all samples. Generally the first treatment freed the tests from the sediment, but the second cleaning was necessary to remove adhering sediment; this treatment cleaned the fauna well.

Table 4. Samples used for the study of benthic foraminifers, Site 610.

Sam	ple (hole-core-	section, cm inte	rval)
610-1-1, 0-2	610-11,CC	610-19,CC	610A-14,CC
610-1,CC	610,12,CC	610-20,CC	610A-21,CC
610-3,CC	610,13,CC	610-21,CC	610E-2,CC
610-5,CC	610,14,CC	610-22,CC	610E-6,CC
610-6,CC	610,15,CC	610-24,CC	610E-7,CC
610-7,CC	610-16,CC	610-26,CC	
610-9,CC	610-17,CC	610A-8,CC	
610-10,CC	610-18,CC	610A-11.CC	

Preservation is excellent to good in samples from the uppermost 350 m. The aragonitic species *Hoeglundina elegans* is preserved in samples from the upper 50 m. Below 350 m the preservation varies from good to moderate to poor. Some specimens in Samples 610-17,CC and -18,CC are broken and show calcite overgrowth. In all samples below 610-18,CC, the tests are recrystallized and filled with clear, sparry calcite. This makes wall structure and septa hard to observe, but most specimens could be identified, and data on relative abundances in these samples appear to be reliable. Benthic foraminifers are generally not crushed in samples that contain flattened planktonic foraminifers (610-20,CC).

Relative abundances of the most common species and species groups are discussed by Thomas (this volume). The diversity is generally high (between 45 and 55 species), with the lowest values (39-42) in the upper part of the section in dark sediments (glacial cycles). Some samples of the dark sediments contain high-diversity faunas, however.

Reworking is evident in Samples 610-11,CC (Upper Cretaceous Globotruncana contusa, Eocene Osangularia mexicana), 610E-6,CC (upper Eocene through lower Miocene Cibicidoides trinitatensis), and 610-20,CC (Eocene through lower Oligocene Bulimina jarvisi).

Comparison of the benthic foraminiferal fauna with the fauna at the earlier sites is difficult because the water depth is considerably less at Site 610. Nuttallides umbonifera, which at the earlier sites was fairly abundant before the onset of glaciation, is rare throughout the section, as expected for this deep-water species. Globocassidulina subglobosa, Oridorsalis umbonatus, Epistominella exigua and Pleurostomella spp. are less abundant at Site 610, whereas Bulimina spp., Uvigerina spp., and Bolivina spp. are more abundant. At Site 608 Stilostomella spp. is common in sediments older than about 15 Ma, whereas at Site 610 Stilostomella spp. is common to abundant below about 45 m (less than 1 Ma). The lower Miocene group of "Oligocene survivors" (e.g., Cibicidoides laurisae, Cibicidoides grimsdalei), common at Site 608, is rare at Site 610; these differences are probably the result of the difference in depth of the sites.

Relative abundances of many species fluctuate strongly throughout the cored interval. The most variable groups are *Cibicidoides* spp., *Cassidulina laevigata, E. exigua, Ehrenbergina caribbea, Uvigerina* spp., *Bulimina* spp., and *Bolivina* spp. The fluctuations in relative abundances during the glacial-interglacial cycles cannot be directly related to lithology. The fauna in those sediments is characterized by the presence of *C. laevigata* (not found at the earlier sites), and the common occurrence of *Eilohedra weddellensis* and *E. caribbea*. *G. subglobosa* and *Bulimina* spp., on the other hand, are more common below the cycles. The fauna is similar to the Pleistocene and upper Pliocene fauna described from Hole 552A by Murray (1984).

The mudline sample contains common Epistominella exigua, and Uvigerina spp. is rare: thus this sample can be classified as containing the *E. exigua* fauna. This is unexpected, because Streeter (1973) describes the presence of the Uvigerina hollicki fauna in waters of 2000 to 3000 m. Throughout the section, below the mudline sample, species of Bolivina, Uvigerina, and Bulimina are present in variable abundances, but generally at least one species of this group is common or abundant. All these species are probably comparable to Uvigerina in their environmental preferences and/or tolerances. The increase in relative abundance of Cibicidoides spp. and *E. exigua* in some samples might indicate times of more vigorous circulation and younger water masses.

Remarkable is the presence of abundant *Bolivina spathulata* in Samples 610-21, CC and -22, CC placed in NN4 (33.7 and 16.0%, respectively). This species occurred in even larger relative abundance at Site 608 in Cores 608-37, CC and -38, CC: these samples were placed in NN5 and NN3, respectively; NN4 could not be identified. This suggests that the increase in relative abundance of *B. spathulata* is approximately coeval at those sites and thus might be a regional, not a local, phenomenon (see Thomas, this volume).

Diatoms

Lower Miocene to Quaternary sediments were recovered from the six holes drilled at Site 610. Diatoms occur in Holes 610, 610A, and 610B; are absent in samples examined from 610C, and are rare in Holes 610D and 610E. Within the Pliocene-Pleistocene sediments, diatoms are most abundant during interglacial intervals and are rare or absent during glacial intervals. The diatom assemblage observed is composed generally of warm-temperate species. However, as recorded at previous sites, an influx of cold-temperate species occurs within the upper portion of the Jaramillo Subchron. Reworked Miocene specimens as well as specimens of the fresh-water species *Melosira granulata* are occasionally observed.

With the exception of Samples 610-6, CC -8, CC and -9, CC, core-catcher samples examined from the upper 14 cores of Hole 610 either contain rare fragments or are barren of diatoms. Samples 610-6, CC and 610-8-1, 48-50 cm are assigned to the Pliocene Nitzschia jouseae Zone of Baldauf (1984), on the basis of the occurrence of N. jouseae. Reworked specimens of Stephanogonia hanzawae (Miocene), Goniothecium cf. decoratum (Eocene-Oligocene), and Trinacria sp. (Miocene?) occur within Samples 610-6-1, 48-50 cm; 610-6, CC; 610-8-1, 48-50 cm, and 610-8, CC. Rare, poorly preserved, non-age-diagnostic species occur within Sample 610-9, CC.

Rare to common diatoms occur within the interval from Cores 610-15 through -21. Sample 610-15, CC contains a diverse middle Miocene flora that includes: Actinocyclus ingens, Hemidiscus cuneiformis, Denticulopsis hustedtii, D. lauta, D. hyalina, Mediaria splendida, Coscinodiscus yabei, Synedra jouseana, and Rhizosolenia barboi. This sample is assigned to the Craspedodiscus coscinodiscus Zone of Barron (1985) and correlates to paleomagnetic Epoch 12. Sample 610-16-4, 48-50 cm contains common moderately preserved diatoms including Craspedodiscus coscinodiscus, Coscinodiscus vabei, Actinocyclus ingens, Rhizosolenia praebarboi. Denticulopsis punctata var. hustedtii, D. hustedtii, D. lauta, D. hyalina, Synedra jouseana, and Rhizosolenia miocenica, which places this sample into the Coscinodiscus gigas var. diorama Zone of Barron (1985). The presence of Coscinodiscus lewisianus in Section 610-16-4 and Sample 16-5, 48-50 cm suggests that these samples can be placed in the Coscinodiscus lewisianus Zone of Barron (1985) and Baldauf (1984).

A middle Miocene age is also indicated for Core 610-17 (Samples 610-17-1, 48-50 cm and -17,CC) based on the occurrence of *Coscinodiscus plicatus, Mediaria splendida*, and *Denticulopsis* cf. *hyalina*. These samples may correlate with the *Coscinodiscus peplum* Zone of Barron (1985), based on the rare occurrence of *Coscinodiscus peplum* in Sample 610-17-1, 48-50 cm.

Within the lower portion of Hole 610 (Cores 18-22), the preservation and abundance of diatoms decrease. This interval contains rare diatom fragments. Partial dissolution of these fragments as well as radiolarian tests and sponge spicules can be observed. Samples examined from Core 610-22 are barren of diatoms.

The abundance of diatoms increases below this interval with rare to common diatoms occurring in Cores 610-23 through 610-27. Cores 610-24 through 610-27 were assigned an early Miocene age based on the occurrence of *Coscinodiscus rhombicus*, *Synedra jouseana*, *Coscinodiscus praenodulifer*, *Stephanopyxis* cf. *hyalomarginata*, and *Thalassiosira spinosa*.

Five additional holes were drilled at Site 610. Sample 610A-1, CC is assigned to the *Pseudoeunotia doliolus* Zone of Burckle (1977) based on the occurrence of *Pseudoeunotia doliolus* stratigraphically above the last occurrence of *Nitzschia reinholdii*. Samples examined from Cores 610A-3 through -10 are assigned to the *Nitzschia reinholdii* Zone of Burckle (1977). Sample 610A-6, CC contains a mixture of both cold-temperate and warm-temperate species including *Denticulopsis seminae*, *Rhizosolenia barboi*, *Pseudoeunotia doliolus*, *Nitzschia fossilis*, and *Nitzschia reinholdii*.

The upper Pliocene Nitzschia marina Zone of Baldauf (1984) occurs from 610A-11, CC (48-50 cm) through 610B-15-5, 48-50 cm. The remaining cored interval (610A-15 through -21, and -22) is assigned to the Nitzschia jouseae Zone of Baldauf (1984) based on the occurrence of N. jouseae.

Samples examined from Cores 610B-1 through 610B-8 contain rare nondiagnostic fragments or are barren of diatoms. Samples examined from Samples 610B-9,CC through 610B-12,CC are assigned to the Nitzschia reinholdii Zone of Burckle (1977), as Pseudoeunotia doliolus and Nitzschia reinholdii are observed in all samples. The Nitzschia marina Zone of Baldauf (1984) extends from

Sample 610B-15, CC. The presence of *Nitzschia jouseae* in Sample 610B-16, CC allows this sample to be placed into the *Nitzschia jouseae* Zone of Baldauf (1984).

With the exception of Samples 610D-4, CC and 610E-1, CC, all other core-catcher samples examined from Holes 610C, 610D, and 610E either contain rare fragments or are barren of diatoms. Sample 610D-4, CC is assigned to the *Nitzschia reinholdii* Zone of Burckle (1977), based on the occurrence of *Pseudoeunotia doliolus*, *Nitzschia reinholdii*, and *Nitzschia fossilis*. Samples 610E-1, CC contains no age-diagnostic species.

Radiolarians

Radiolarians are present in the Pleistocene, upper Pliocene, and Miocene sediments of Site 610 (Table 5). The glacial cycles of the Pliocene and Pleistocene yield samples that alternate between very well preserved, abundant, diverse assemblages, and sparse assemblages of a few taxa indicating cold or deep water, as well as samples in which there are no radiolarians at all. In Hole 610A radiolarians were found in at least one sample from nearly every core down to Core 21,CC.

Table 5. Preservation and abundance of radiolarians in Holes 610 and 610A.

	Hole 610			Hole 610A	
Sample (core-section, interval in cm)	Abundance	Preservation	Sample (core-section, interval in cm)	Abundance	Preservation
1.CC	в		1-4, 56-58	в	
2,CC	в		1.CC	в	
3,CC	в		2-5, 56-58	B	
4,CC	в		2,CC	в	
5-2, 46-48	в		3-3, 46-48	в	
5-6, 46-48	B		3,CC	B	
6-2, 46-48	R	M	4-3, 46-48	B	
6-5, 46-48	R	M	4,CC	B	
7-2, 46-48	F	M	5,CC	в	
7-5, 46-48	F	M	6-3, 46-48	R	M
8-2, 46-48	F	P	6,CC	F	G
8-5, 46-48	F	M	7-2, 46-48	F	M
9-2, 46-48	F	M	7,CC	R	M
9-5, 46-48	R	M	8-4, 46-48	R	M
10-2, 46-48	R	M	8.CC	F	M
10-4, 46-48	R	M	9-3, 46-48	в	
11-2, 36-38	R	M	9-5, 46-48	B	
11-6, 46-48	R	M	10-3, 46-48	в	
13-2, 21-23	R	M	10.CC	F	G
14-2, 40-42	ĉ	M	11-2, 46-48	R	P
15-2, 46-48	F	G	11.CC	R	P
16-2, 66-68	F	Ğ	12-2, 46-48	C	Ġ
16-6, 46-48	F	Ğ	12.CC	R	P
16,CC	F	G	13-3, 46-48	F	M
17-3, 46-48	F	M	13.CC	B	141
17.CC	R	P	14-4, 46-48	A	G
18-2, 55-57	R	P	14.CC	R	M
19-3, 40-42	R	P	15,CC	F	G
19-5, 40-42 19.CC	B	5	16,CC	F	G
20-1, 106-108	R	P	17,CC	F	G
20-1, 106-108 20.CC	R	P	18,CC	F	G
21-2, 46-48	F	P	19,CC	F	G
	R	M		F	G
21,CC	R	P	20,CC	F	G
22-4, 116-118	R	P	21,CC	r	U
22,CC	R	P			
23-2, 46-48	F	M			
23,CC	5 · ·				
24-3, 42-44	R	P			
24,CC	R	P			
25-3, 36-38	F	G			
25,CC	F	M			
26-3, 70-72	F	м			
26,CC	R	P			
27-2, 40-42	F	G			
27-6, 40-42	R	P			
27,CC	F	G			

Note: A = >10,000 specimens/slide; C = 5,000-10,000 specimens/slide; F = 1000-5000 specimens/slide; R = <1000 specimens/slide; B = Barren. G = Good; M = Moderate; P = Poor.

The Miocene cores also contain radiolarian assemblages in varying degrees of abundance and preservation. Sample 610-15-2, 46-48 cm is placed in the Didymocyrtis antepenultima Zone, based on the presence of that species and absence of its ancestor, D. laticonus. Samples from Cores 610-16, -17, and -18 contain species characteristic of the middle Miocene zones. Diartus petterssoni Zone and Dorcadospyris alata Zone. Although these species are found in small numbers, they are all in at least two consecutive samples in this interval: Didymocyrtis laticonus, Dorcadospyris alata, Lithopera renzae, and L. neotera. In Cores 610-19 and -12, radiolarians are either too rare and poorly preserved for age determination, or they are entirely dissolved. Between Samples 610-21-2, 46-48 and 610-27, CC, radiolarian assemblages are more abundant and moderately well-preserved, and appear to be from the lower Miocene Cyrtocapsella tetrapera Zone. This age is based on the presence of C. tetrapera, C. cornuta, and Lychnocanoma elongata, and the absence of Stichocorys delmontensis and S. wolffii. In Samples 610-21-2, 46-48 cm, and 610-26-3, 70-72 cm there are single specimens of late Eocene Lithocyclia aristotelis group.

PALEOMAGNETISM

Hole 610

Paleomagnetic samples were taken at intervals of one sample per 1.5 m (one per core section) through intervals that were continuously cored (for three or more consecutive cores). Samples were not taken from intervals that were spot cored, because three consecutive cores are needed to provide a readily interpretable polarity sequence with the observed sedimentation rate.

Pilot samples from selected intervals throughout the hole were subjected to progressive alternating field (AF) demagnetization studies. The sediments generally exhibited single-component magnetizations, with some samples having soft overprints that were readily removed by AF treatment at 10 mT.

The inclination record obtained after AF treatment at 10 mT was correlated to the time scale of Berggren et al. (in press) as discussed in Clement and Robinson (this volume). The depths of polarity reversals are given in Table 6. The polarity sequences in Cores 610-6 through -9 and 610-19 through -25 are determined by data of only moderate quality (as a result of very low intensities). Because of poor recovery in Cores 19, 20, 21, and 22 it was not possible to obtain a continuous polarity record. A sequence of three normal polarity zones was observed in Cores 22 through 26, although a confident correlation of this interval to the time scale cannot be made on the basis of the paleomagnetic data alone. Two correlations appear to be possible, the first of which is indicated in Table 6. This correlation places the three normal polarity zones in Chronozone C5C and Cores 19 through 21 in Chronozone C5B. The alternative correlation is that the three normals correlate to Chrons C5C, C5E, and 6, whereas the polarity zones in Cores 19 through 21 correlate to Chron C5C. This correlation is described further in Clement and Robinson (this volume).

Table 6. Depths of reversal boundaries, Site 610.

Reversa	i	Age (Ma)	Sample (core-section, cm level)	Sub-bottom depth ^a (m)
Hole 610		10 10		
Brunhes		0.73	5-2, 67/5-4, 107	40.58/43.98
Kaena	(top)	2.92	6-2, 98/6-3, 98	149.49/150.99
59702555755 	(bottom)	2.99	6-4, 98/6-5, 98	152.49/153.99
Mammoth	(top)	3.08	7-1, 97/7-2, 97	157.58/159.08
	(bottom)	3.18	7-4, 97/7-5, 97	162.08/163.58
Gauss/Gilbert		3.40	7-7, 30/8-1, 97	165.91/167.19
Chron C5B	(bottom)	15.27	21-1, 131/21-2, 91	657.12/658.22
Chron C5C,N1	(top)	16.22	22-4, 124/22-5, 120	671.15/672.61
Chron C5C,N1	(bottom)	16.52	22-6, 90/23-1, 139	673.81/676.40
Chron C5C,N2	(top)	16.56 16.73	23-2, 57/24-1, 61	677.08/685.22
Chron C5C,N2 Chron C5C,N3	(bottom) (top)	16.73	25-2, 73/25-3, 136 25-3, 136/25-4, 48	697.07/697.94 697.94/699.19
Hole 610A				
Brunhes		0.73	5-3, 80/5-4, 100	41.61/43.31
Jaramillo	(top)	0.91	6-4, 85/6-5, 97	52.76/54.38
	(bottom)	0.98	6-6, 97/7-1, 97	55.88/57.98
Olduvai	(top)	1.66	10-5, 75/10-6, 108	92.56/94.39
	(bottom)	1.88	11-2, 97/11-3, 97	97.88/99.38
Reunion	(top)		12-1, 94/12-2, 97	104.95/107.48
Manager	(bottom)	2.47	12-2, 97/12-3, 124	107.48/109.25
Matuyama/Gauss Kaena		2.47 2.92	14-2, 97/14-3, 97	126.68/128.18
Kacna	(top) (bottom)	2.92	16-5, 97/17-1, 97 17-1, 97/17-2, 97	150.38/153.98
Mammoth	(top)	3.08	17-3, 97/17-4, 99	156.98/155.48
munnoth	(bottom)	3.18	17-6, 99/18-1, 97	161.50/163.58
Gauss/Gilbert		3.40	18-4, 97/18-5, 97	168.08/169.58
Cochiti	(top)	3.88	19-3, 97/19-4, 97	176.18/177.68
	(bottom)	3.97	19-5, 97/19-6, 57	179.18/180.28
Nunivak	(top)	4.10	20-6, 97/21-1, 97	190.28/192.38
CI	(bottom) (top)	4.24 4.40	21-3, 97/21-4, 97 21-4, 97/21-5, 97	195.38/196.88 196.88/198.38
Hole 610B		2012	an di tang dina.	
Brunhes		0.73	6-1, 97/6-2, 97	44.18/44.68
Jaramillo	(top)	0.91	7-1, 97/7-2, 97	53.78/55.28
	(bottom)	0.98	7-5, 97/7-6, 97	59.78/61.28
Cobb Mtn.	(top)		8-2, 97/8-3, 97	64.88/66.38
	(bottom)		8-3, 97/8-4, 97	66.38/68.88
Olduvai	(top)	1.66	11-4, 97/11-5, 97	96.68/98.18
	(bottom)	1.88	12-2, 95/12-3, 101	103.26/104.86
Reunion	(top)		13-2, 97/13-3, 101	112.88/114.42
Matuyama/Gauss	(bottom)	2.47	13-2, 101/13-4, 101 16-3, 99/16-4, 97	114.42/115.92 141.20/142.68
Hole 610C				
Brunhes		0.73	4-4, 31/4-4, 102	40.42/41.13
Reunion	(top)		5-4, 123/5-5, 97	104.74/105.98
	(bottom)		5-4, 97/5-6, 95	105.98/107.48
Hole 610D				
Brunhes		0.73	3-5, 97/3-6, 95	34.58/36.06
Jaramillo	(top)	0.91	4-4, 110/4-5, 80	42.81/43.44
<i>c</i>	(bottom)	0.98	4-6, 60/4-6, 96	45.31/45.67
Cobb Mtn.	(top) (bottom)		5-2, 140/5-3, 115 5-4, 92/5-5, 97	49.71/50.96 52.23/63.78
Hole 610E				
Chron 6	(bottom)	6.50	3-2, 97/3-3, 75	281.68/181.96
Chron 7,N1	(top)	6.70	5-1, 97/5-2, 75	299.38/300.66
Chron 7,N1	(bottom)	6.78	5-2, 75/5-3, 75	300.66/302.16
Chron 7,N2	(top)	6.85	6-3, 103/6-4, 12	312.04/312.63
Chron 7,N2	(bottom)	7.28	7-2, 128/7-3, 126	320.39/321.87

^a Midpoint depths of samples in third column.

Hole 610A

The same procedures were followed at Hole 610A as at 610, with paleomagnetic samples (one per section) taken throughout the 200 m that were recovered. The interpretation of the polarity sequence with the depths and ages of the major reversals is given in Table 6. The interpretation of the polarity sequence was straightforward down to a depth of approximately 130 m. Below this level, the quality of the data decreased as a result of a drop in the magnetization intensities. It was, however, still possible to identify the Gauss and Gilbert Chronozones, including the major subchronozones within each of these.

Hole 610B

As at Hole 610A, the magnetic data are of exceptional quality to a depth of approximately 130 m, below which the intensities drop coincident with an increase in carbonate content. The predominately normal polarity directions observed below this level are tentatively correlated to the Gauss Chronozone. The detail obtained in the record above this level permits detection of both the Cobb Mountain and Reunion Subchronozones. It should be noted that the polarity boundaries occur at different depths in this hole than in the other holes at this site. For example, the base of the Brunhes Chronozone varies in depth by more than 9 m in the five holes in which it is detected at this site. In the crest holes the base of the Brunhes occurs at 42, 43, 45 and 41 m (610, 610A, 610B, and 610C, respectively) whereas in the trough hole (610D) it occurs at 36 m. This variation in depth might suggest local variation in sedimentation rates even between the crest holes, with a more pronounced variation existing between the crest and trough holes.

The results from Hole 610D (as will be discussed later), however, suggest the possibility of a repeated section. Observation of possible repeated sections near the top of holes at Site 609 based on lithologic correlations (Ruddiman, Cameron, and Clement, this volume) has raised the possibility that the hydraulic piston corer may be capable of recoring the same interval in the tops of holes. Therefore, further lithologic correlations between holes at this site are needed before the variations in thicknesses of the polarity chronozones in these holes can be adequately explained.

Hole 610C

The same procedures were followed at this Hole as at the previous holes, and the polarity boundaries are likewise shown in Table 6. The short normal polarity subchronozone in Core 610C-5 is most likely correlated to the Reunion Subchronozone, although the incomplete section obtained at this hole makes this correlation uncertain.

Hole 610D

The polarity sequence obtained from Hole 610D (see Table 6) is complicated by the two short normal polarity subchronozones observed below the Jaramillo Subchronozone (at 46, 48, and 50–53 m). As discussed earlier, these two zones could represent a repeated sequence of the Jaramillo Subchronozone. Lithologic tie lines confirm that the lower of these two normals occurs in a repeated sequence; however, the upper one is problematic because of significant contortions in the upper part of Core 610D-5 (see Clement and Robinson, this volume).

Hole 610E

Although the magnetic intensities were extremely weak $(0.01 \times 10^{-6} \text{ emu/cm}^3)$ in the samples at this hole, it was possible to determine a preliminary polarity sequence using the shipboard magnetometer. Shore-based measurements using a cryogenic magnetometer indicate that the preliminary polarity sequence may be incorrect, and a more intensive sampling scheme will be necessary to define confidently the magnetozones and correlate them to the time scale (see also Clement and Robinson, this volume).

SEDIMENTATION RATES

The five holes drilled near the axis of Feni Ridge resulted in an almost complete stratigraphic section for the Quaternary through late Miocene (NN11), which was well controlled by biostratigraphic and paleomagnetic datums. Beyond that to the lower middle Miocene (NN5), our strategy in the deep Hole 610 was to wash down and spot core, resulting in less biostratigraphic control and no magnetic stratigraphy. Two pre-Pliocene intervals, however, were continuously cored. At the bottom of Hole 610, we continuously cored almost 77 m of the lower Miocene (NN4 and NN3) and in Hole 610E over 67 m of the upper Miocene (NN21–NN10). In both intervals, interpretation of the biostratigraphic and paleomagnetic datums is difficult.

The sedimentary drift sequence at Feni Ridge is characterized by relatively high rates of sedimentation (Fig. 21), but they are exceeded by the rates at our so-called pelagic Site 609 farther south. Another unexpected feature is that the accumulation rate curves are linear; relatively constant rates of 51 m/m.y. occur through the Quaternary and Pliocene in Holes 610 and 610A. Below, in the middle and lower Miocene of Hole 610, a best-fit line though the error bars results in a rate of around 46 m/m.y.

A particularly significant observation at this site is that no large hiatuses were detected. Drift sequences have hitherto been imagined as locations where intermittent changes in current velocity would erode the sediment sequence, making it less attractive than pelagic sites for fine-scale stratigraphic studies. Clearly, if intermittent erosion does occur, it is at a scale below the resolution of our present stratigraphy.

Stratigraphical control is not good below 650 m in the region of the supposed regional reflector. Between 676 m sub-bottom and the base of Hole 610 (723 m), the curve is apparently steep, giving a rate of around 65 m/ m.y. whereas between 656 and 676 m sub-bottom the rate is apparently about 14.7 m/m.y. However, a different interpretation of the paleomagnetic data and biostratigraphic data is possible (see Clement and Robinson, this volume, and Baldauf et al. this volume).

GEOCHEMISTRY

Carbonate Bomb

Samples taken from Hole 610 for carbonate bomb analysis did not adequately cover the full range of lithologies within Unit I. In Hole 610A, the upper 200 m were sampled to achieve better resolution of the carbonate content within the glacial cycles. The CaCO₃ content varies between 0 and 80% in the upper 100 m (Fig. 22) and gradually increases to over 90% between 100 and 200 m sub-bottom. Below 250 m, carbonate decreases gradually to 650 m, below which it fluctuates between 50 and 90%.

Interstitial Water

Analyses of pH, alkalinity, and salinity were run on board, using samples from Holes 610 and 610A (Fig. 23). The pH decreases downhole to a minimum of 6.8 by 150 m. Below 500 m, the pH increases to 7.5. Alkalinity shows a corresponding increase to a high of 8.2 meq dm⁻³ at 150 m, but then decreases to a value of 2 meq dm⁻³ by 600 m. Salinity decreases gradually downhole from near-surface values of around 35 to below 33‰ below 500 m.

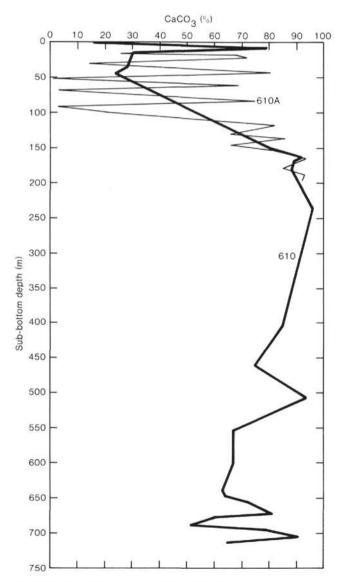


Figure 22. Carbonate bomb analyses, Site 610.

SUMMARY AND CONCLUSIONS

Six holes were drilled near the axis of the Feni Ridge sediment drift in Rockall Trough (Fig. 8). Four holes (610, 610A, 610B, 610C) were located on the crest of a sediment wave. Two holes (610D and 610E) were in the axis of an adjacent trough, 0.7 km away from and 28 m deeper than the crest, so that we could examine local sediment variation on the surface of the drift. Continuous VLHPC and XCB coring in two of the holes (610A and 610B) provided an almost complete composite section through the glacial-interglacial cycles to 2.47 Ma (Gauss Chronozone). Three of the holes (610, 610D, and 610E) were drilled beyond the Pliocene-Quaternary to date regional reflectors within the drift sequence.

Seismic Reflectors

Our prime objective at Feni Ridge was to examine the history of this major sediment drift through dating of some of its seismic reflectors. This was accomplished by a strategy of washing and spot coring to allow us to penetrate the sequence relatively quickly. Two major reflectors were within striking distance of our operations at this site. One was at 0.75 s two-way traveltime sub-bottom; a major regional reflector that had been characterized by some workers (Roberts, 1975) as the base of the drift sequence but by others (Dingle et al., 1982) as a mid-drift reflector representing a change to the modern bottom water circulation through Rockall Trough. The other target was a faint reflector at 0.37 s sub-bottom, which might represent another circulation event in the sedimentary history of the drift.

Our seismic records obtained arriving and departing Site 610 showed no clear reflector at 0.75 s sub-bottom (Fig. 19); rather, they display a zone between 0.65 and 0.85 s, which we believe masks the regional reflector seen in the reference site survey profiles. We nevertheless did penetrate a marked change in the sedimentary sequence just below 0.75 s sub-bottom which appears to represent this seismic reflector (Table 2). A sharp rise in hardness, recognized by an increase in drilling time (Fig. 9), and a consequent rise in seismic velocity (Fig. 18H), occurs over the interval 625 to 675 m sub-bottom. The hardness change is due to an increase in biogenic silica content (Fig. 12) within the lower and middle Miocene nannofossil chalks but does not represent a major lithologic change in the overall sequence. No hiatus is observed, but there is an apparent change in sedimentation rate, dropping from 46 m/m.y. to 14.7 m/m.y. in the interval between 656 and 676 m and then increasing again to over 67 m/m.y. from 676 m to the base of the hole. Three features of the sediment point to the geologic significance of this reflector:

1. Selective dissolution of the biogenic silica component occurs, such that diatoms are almost lost over the interval from Cores 610-19 to -23 (636-684 m sub-bottom), and dissolution features are observed on the remaining diatoms, sponge spicules, radiolarians, and silicoflagellates. No carbonate dissolution of the foraminifers or nannofossils is observed. Below Core 610-24, some silica dissolution is apparent, but it is much less

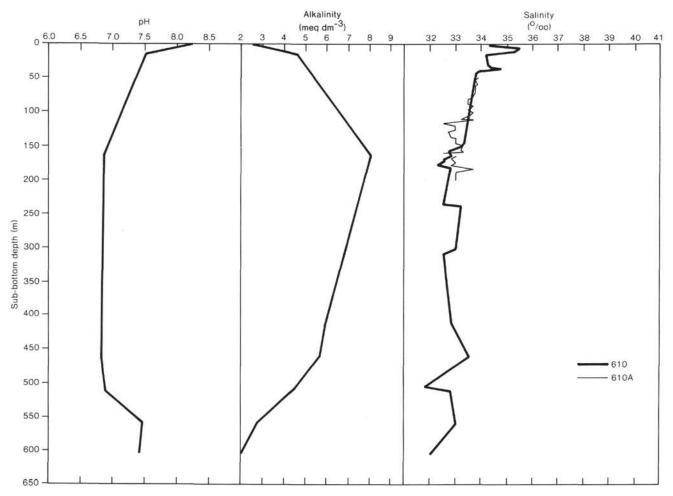


Figure 23. Interstitial water analyses, Site 610.

severe and the diatom content reverts to levels equal to those above Core 610-19 (see Baldauf; Dolan, this volume).

2. Pressure solution features (Fig. 2) are very common in the sediments within the interval from Cores 610-24 to -27 (684.6-723.0 m sub-bottom). These are presumably related to carbonate rather than to silica solution (see Hill, this volume).

3. Microfaulting and inclined bedding are commonly associated with the pressure solution features. Crushed foraminifers are common in Core 610-20, are almost absent in Core 610-22, and are slightly more common again in Cores 610-24 to -27 (see Hill; Dolan, this volume).

The lessening of silica solution below the level of Core 610-24, as evidenced by the return of abundant diatoms, suggests that the silica solution is linked to an oceanographic event rather than to diagenetic causes related to burial or tectonics (Baldauf; Dolan, this volume). A number of global oceanographic adjustments took place around this time (Keller and Barron, 1983). A major enrichment of silica occurred in the Pacific and Indian oceans, coinciding with a major decline in the Atlantic at around 16 Ma. This could correspond to the sharp decline in biogenic silica above Core 610-18. Keller and Barron (1983) map an oceanwide early Miocene hiatus

at 20 to 18 Ma that they thought might extend to the Rockall region (presumed to be due to intensified bottom-current circulation and carbonate dissolution). We have no evidence of such a major hiatus of this age at Site 610.

The pressure solution features are likely to be diagenetic in origin, and the microfaulting and inclined bedding may simply be an adjustment to these solution processes within the sediment column. However, at this stage we cannot entirely rule out a tectonic origin: possibly a general warping of the sedimentary sequence and localized faulting. Crushed foraminifers are commonly found near fault zones in Paleogene sequences on land.

Pressure solution features and microfaulting occur again in middle Miocene Core 610-16 (NN6). We suspect that their presence at two levels in the sedimentary section may be the cause of the mixed acoustic return on the seismic records between 0.65 and 0.85 s sub-bottom.

The faint reflector at 0.37 s sub-bottom is clearly seen on the Leg 94 air-gun profiles and is traceable throughout the ridge crest area that we surveyed (Fig. 19). It corresponds in the continuously drilled record in Hole 610E to an interval of rapid lithification downward from white nannofossil ooze (Unit IIA) at 280 m sub-bottom to hard pale green chalk at 310 m. Reworking of foraminifers and nannofossils occurs in the lower part of the interval, which is dated as late Miocene (NN10-NN12), and may correspond to the Messinian isolation of the Mediterranean (5.5-6.3 Ma).

Masson and Kidd (this volume) have reexamined three major northwest- to southeast-trending multichannel profiles over Feni Ridge (NA-1, GSI-1, and WI-32; the latter section passes close to Site 610-Fig. 4) in the light of our drilling results. The three uppermost regional reflectors on these profiles have clearly been penetrated at Site 610. These reflectors are at 0.37, 0.64, and 0.76 s (two-way) at the relevant shot point (2500 on WI-32). Velocities measured on the cores recovered at Site 610 (Fig. 18G, H) correspond well with the stacking velocities obtained at this shot point. Calculation of the depths to the three reflectors from both lines of evidence predicts 330-m, 530-m, and 653-m sub-bottom depths for the reflectors. In Hole 610 the first reflector represents the rapid lithification downhole from ooze to chalk. The second reflector represents an appreciable jump in seismic velocity from 1.74 to 2.6 km/s and a decrease in drilling rate, whereas the third represents another hardness change and a coincident drop in sedimentation rate. Significantly the next major reflector identified in the WI-32 multichannel profile occurs at more than 1.6 s (two-way) sub-bottom. All three of the upper reflectors define seismic units that are positive accumulations above this deep reflector, which is the top of a unit that appears to fill in lows in the acoustic basement. It seems most likely, therefore, that the onset of drift accumulation at Feni Ridge began above this deep reflector, as suggested by Dingle et al. (1982), and not at the deepest reflector penetrated at Site 610 (see also Kidd and Hill, this volume).

Sediment Waves

From our extensive presite survey and our crossings of the beacon on leaving Site 610, we learned that the sediment waves near the crest of Feni Drift are probably more complex than hitherto recognized. Interpretation of the GLORIA sonograph over the site (Roberts and Kidd, 1979; Fig. 8) had indicated a general east-west trend to the sediment wave axes (Fig. 5), but also suggested that other wave trends were present. Our 3.5- and 12-kHz profiles showed that wave crests were spaced at intervals of 1 to 2 km along track and were of variable apparent amplitude, up to 30 to 40 m. Preliminary attempts to match wave axes promoted an impression of generally east-west trends, but in detail they do not entirely match the GLORIA plan-view. Mismatches could be due to navigational effects and/or intersection of wave trends. In general, crest heights vary with the regional bathymetry, but some waves appeared to change markedly in crest height along their axes. In addition, at least half the sediment wave crests traversed appeared symmetrical and showed no obvious migration on either the 3.5-kHz or air-gun profiles.

Inconsistencies with the accepted view of sediment waves on drifts continued at the scale of the individual wave. Preliminary plots were made of distances, as measured along our survey crossings, from the beacon on the crest of the sediment wave to the troughs on either side. This wave is asymmetrical, with its steeper side to the north, and the crossings suggested a whale-backed feature, elongate in an east-west direction. Postcruise analysis of the Leg 94 and other echo-sounder records has resulted in a bathymetric map of the vicinity of Site 610 contoured at 10-m intervals (Kidd and Hill, this volume), a portion of which is illustrated in Figure 8A.

Drift Sedimentation

The uppermost sediments drilled at Site 610 (Fig. 10) proved to be remarkably similar to those recovered at Site 609, a site that is without the characteristic seismic signature or wave ornamentation of a sedimentary drift. The Pliocene-Quaternary sediment section (0-135 m subbottom) at Feni Ridge is made up of the ooze-marl-mud sequences that reflect the glacial-interglacial cycles (lithologic Unit I). Below this, a typically pelagic nannofossil ooze and chalk sequence makes up the remainder of the 173-m-thick section penetrated (lithologic Unit II). Sedimentation rates are linear and are indeed high at 51 to 46 m/m.y., but they are not so high as at the "pelagic" Site 609 (89 m/m.y.). More surprisingly, no primary sedimentary structures that could be interpreted as due to bottom-current sedimentation were observed, although general reworking of the nannofossil component was recognized throughout. The softer sediments were cut with an electro-osmotic knife in an attempt to reveal primary structures, but enhancement of burrow structures was all that resulted. Neither was lamination discovered when the cores were X-rayed ashore to check for current structures not visible to the naked eye (Hill, this volume).

Some individual beds of sandy and silty material did occur other than the generally disseminated ice-rafted material. A minor lithology in Unit I comprised a series of dark gray to black volcanic ash-rich beds. These typically occurred with sharp basal contacts that suggest local redeposition of silt- to sand-size material. Two compositional types were observed, one containing both detrital, presumably ice-rafted, material and volcanic ash, and the other made up almost entirely of volcanic components suggesting a primary ash-fall origin.

No obvious sediment wave crest-to-trough facies variations were apparent. Our limited depth sampling in the trough allows us only to comment that sedimentationrate differences were observed, but it remains unclear whether these are sedimentologically significant or the result of core recovery defects as observed at the other sites (Ruddiman, et al., this volume).

Other Objectives

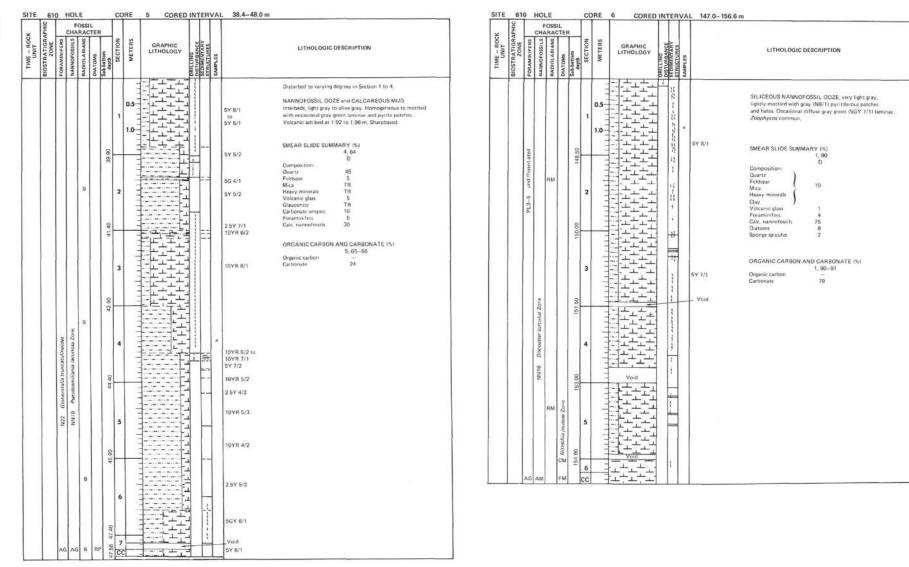
Our objectives related to Neogene paleoclimatic studies depended, as at the other sites, on recovery of a complete section for shore-based studies. Two VLHPC-XCB cored holes, 610A and 610B, were devoted primarily to this task. Heave-related core disturbance, as detected by detailed cross correlation, resulted in contorted sections and under-recovery. This effect was severe in the upper 50 m of all holes and only moderate below this depth. It was possible, however, to demonstrate that an apparently 100% complete composite section could be pieced Although our recovered time-range extended only to the early Miocene, numerous biostratigraphic and paleomagnetic datums were refined at Site 610 (see also Baldauf et al., this volume).

REFERENCES

- Baldauf, J. G., 1984. Cenozoic diatom biostratigraphy and paleoceanography of the Rockall Plateau Region, North Atlantic, DSDP Leg 81. In Roberts, D. G., Schnitker, D., et al., Init. Repts. DSDP, 81: Washington (U.S. Govt. Printing Office), 439-477.
- Barron, J. A., 1985. Miocene to Holocene planktic diatoms. In Bolli, H. M., Saunders, J. B., and Perch-Nielsen, K. (Eds.), Plankton Stratigraphy: Cambridge (Cambridge University Press) pp. 763–809.
- Berggren, W. A., Kent, D. V., and Van Couvering, J. A., in press. Neogene geochronology and chronobiostratigraphy. *In Snelling*, N. J. (Ed.), *Geochronology and the Geological Record*. J. Geol. Soc. London Mem.
- Bouma, A. H., and Hollister, C. D., 1973. Deep ocean basin sedimentation. In Bouma, A. H., Middleton, G. V. (Eds.), *Turbidites and Deep Water Sedimentation*. Soc. Econ. Paleontol. Mineral. Spec. Publ. Anaheim, pp. 79-118.
- Bukry, D., 1973. Low-latitude coccolith biostratigraphic zonation. In Edgar, N. T., Saunders, J. B., et al., Init. Repts. DSDP, 15: Washington (U.S. Govt. Printing Office), 685-703.
- Burckle, L. H., 1977. Pliocene and Pleistocene diatom datum levels from the equatorial Pacific. *Quat. Geol.*, 7:330–340.
- Dingle, R. V., Megson, J. B., and Scrutton, R. A., 1982. Acoustic stratigraphy of the sedimentary succession west of Porcupine Bank, N.E. Atlantic Ocean: a preliminary account. *Mar. Geol.*, 47:17–35.
- Ellett, D. J., and Roberts, D. G., 1973. The overflow of Norwegian Sea Deep Water across Wyville-Thompson Ridge. *Deep-Sea Res.*, 20:819-835.
- Haq, B. U., and Takayama, T., 1984. Neogene calcareous nannoplankton datum planes and their calibration to magnetostratigraphy. *Proc. Pacific Neogene Datum Planes Workshop, Osaka*, 1981, pp. 27-33.
- Hollister, C. D., Flood, R., and McCave, I. N., 1978. Plastering and decorating in the North Atlantic. Oceanus, 21:5-13.
- Hollister, C. D., and Heezen, B. C., 1972. Shaping of the continental rise by deep geostrophic contour currents. Science, 152:502-508.
- Hsü, K. J., Montadert, L., et al., 1978. Init. Repts. DSDP, 42: Washington (U.S. Govt. Printing Office):
- Jones, E. J. W., Ewing, M., Ewing, J. I., and Eittriem, S. L., 1970. Influences of Norwegian Sea overlow water on sedimentation in the northern North Atlantic and Labrador Sea. J. Geophys. Res., 75:1655-1680.
- Keller, G., and Barron, J. A., 1983. Paleoceanographic implications of Miocene deep-sea hiatuses. Geol. Soc. Am. Bull., 94:590-613.
- Kennett, J. P., and Srinivasan, M. S., 1983. Neogene Planktonic Foraminifera: A Phylogenetic Atlas: Stroudsburg, Pennsylvania (Hutchinson & Ross).

- Kidd, R. B., Searle, R. C., Ramsay, A. T. S., Prichard, H., and Mitchell, J., 1982. The geology and formation of King's Trough, northeast Atlantic Ocean. *Mar. Geol.*, 48:1-30.
- Laughton, A. S., Berggren, W. A., et al., 1972. Init. Repts. DSDP, 12: Washington (U.S. Govt. Printing Office).
- Laughton, A. S., and Monahan, D., 1978. General bathymetric chart of the oceans (GEBCO), sheet 5.04. Canadian Hydrographic Service, Ottawa.
- Luyendyk, B. P., Cann, J. R., et al., 1979. Init. Repts. DSDP, 49: Washington (U.S. Govt. Printing Office).
- Mazzei, R., Raffi, I., Rico, D., Hamilton, N., and Cita, M. B., 1979. Calibration of late Neogene calcareous plankton datum planes with the paleomagnetic record of Site 397, and correlation with Moroccan and Mediterranean sections. *In* von Rad. U., Ryan, W. B. F., et al., *Init. Repts. DSDP*, 47, Pt. 1: Washington (U.S. Govt. Printing Office), 375-389.
- Miller, K. G., and Tucholke, B. E., 1983. Development of Cenozoic abyssal circulation south of the Greenland-Scotland Ridge. *In* Bott, M. H. P., Saxov, S., Talwani, M., and Thiede, J. (Eds.), *Structure* and Development of the Greenland-Scotland Ridge: New York (Plenum Publishing Co.), pp. 549–589.
- Montadert, L., Roberts, D. G., et al., 1979. Init. Repts. DSDP, 48: Washington (U.S. Govt. Printing Office).
- Murray J. W., 1984. Paleogene and Neogene benthic foraminifers from Rockall Plateau. In Roberts, D. G., Schnitker, D., et al., Init. Repts. DSDP, 81: Washington (U.S. Govt. Printing Office), 503-539.
- Poore, R. Z., 1979. Oligocene through Quaternary planktonic foraminiferal biostratigraphy of the North Atlantic. *In* Luyendyk, B. P., Cann, J. R., et al., *Init. Repts. DSDP*, 49: Washington (U.S. Govt. Printing Office), 447–517.
- Poore, R. Z., and Berggren, W. A., 1975. Late Cenozoic planktonic foraminiferal biostratigraphy and paleoclimatology of Hatton-Rockall Basin. J. Foraminif. Res., 5:270-293.
- Roberts, D. G., 1975. Marine geology of the Rockall Plateau and Trough. Phil. Trans. R. Soc. London Ser. A., 278:447-509.
- Roberts, D. G., and Kidd, R. B., 1979. Abyssal sediment-wave fields on Feni Ridge, Rockall Trough: long range sonar studies. *Mar. Geol.*, 33:175-191.
- Ruddiman, W. F., 1972. Sediment distribution on the Reykjanes Ridge: seismic evidence. Bull. Geol. Soc. Am., 83:2039-2062.
- Shor, A. N., and Poore, R. Z., 1979. Bottom currents and ice rafting in the North Atlantic: interpretations of Neogene depositional environments of Leg 49 cores. *In* Luyendyk, B. P., Cann, J. R., et al., *Init. Repts. DSDP*, 49: Washington (U.S. Govt. Printing Office): 859-872.
- Stow, D. A. V., 1982. Bottom currents and contourites in the North Atlantic. Bull. Inst. Geol. Bassin d'Aquitaine, 31-32:151-166.
- Stow, D. A. V., and Lovell, J. P. B., 1979. Contourites: their recognition in modern and ancient sediments. *Earth Sci. Rev.*, 11:251–291.
- Streeter, S. S., 1973. Bottom water and benthonic foraminifera in the North Atlantic: glacial-interglacial contrasts. *Quat. Res.*, 3:131– 141.
- Thierstein, H., 1976. Mesozoic calcareous nannoplankton biostratigraphy of marine sediments. Mar. Micropaleontol., 1:325–362.
- Vogt, P. R., 1972. The Faeroe-Iceland-Greenland Aseismic Ridge and the Western Boundary Undercurrent. *Nature*, 239:79–81.

	HIC		F	oss	L																	
TINU	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS		Sub-battom depth	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC DESCRIPTION									
1								0.5		1=		6Y 5/2 10YR 5/4	(MARLY) FORAMI interbedded with CA				IL 00Z	E				
							1	1.0		-		2.5Y 4/2	Light gray ooze laye mottled transitions t Occasional gray gree	n (5G 5/	ray calc. 2-5G 6	areous mi /2) layers	ud. and					
						1,50		1		2.11		2.5Y 5/2 10YR 6/1	pyrite halos. Calcare homogeneous, some Dropstones of Creta Open burrows comm	times slip ceous mi	ghtly san udstone	dy interv and pumi	als.					
										1		5Y 5/2	SMEAR SLIDE SUN	MARY 1, 14 M	(%) 2,51 D	2, 141 D	3, 81 D	3, 144 D	5, 145 D			
							2	1111		13.		2.5Y 5/2	Composition: Quartz Feldspar Heavy minerals Clay	2 - 35	6 TR TR 57	TR TR 35	15 TR TR 62	1 	16 1 1 54			
						3.00	-			tu	*	5Y 6/1	Volcanic glass Micronodules Carbonate unspec. Foraminifers	1 3 3	4 - 8 7	2 - 7 3	6 11 2	TR TR	8 15 2			
							3	111				5Y 7/1 10YR 5/2	Calc. nannofossils Diatoms Sponge spicules	57 TR	18	52 TR	4	80 TR TR	3			
										14		10YR 6/2 2.5Y 7/2	ORGANIC CARBO 2 Organic carbon	N AND	CARBO 5, 76-	NATE (%	5)					
		catulinoide	ri Zone			4.50	F			D.F.		10YR 8/1	Carbonate 1	1	79							
		Globorotalia truncatulinoides	Emiliania huxleyi Zone							4			X		10YR 8/1							
	ľ	N22 Globe	NN21 Emil				6.00				1		10YR 6/2									
		z	Z			9				1		10YR 8/1										
							5			1												
						7.50						10YR 6/1										
										1		2.5¥ 4/2										
							6			1												
						0.00		-				2.5Y 6/2										
	1	AG	AG	8	в	9.48	17	-				5Y 7/2 5Y 5/2										

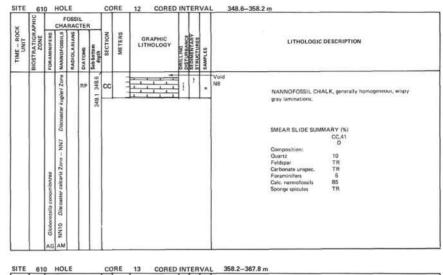

Ę	T		FOS													
APP		-	-	CTE	R											
BIOSTRATIGRAPHIC	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-hottem depth	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	SEDIMENTARY	SAMPLES		LITHOLOGIC (DESCRIPT	ION	
							1				1		- 0-10 cm badly distu	rhed to sou	ру	
							0.5					5Y 5/2	NANNOFOSSIL 002	E interbed	ded with	CALCAREOUS
						1		[-	1	- 1		5Y 6/1	MUD			
						1	-		1			2.5Y 6/2	Light gray ooze layers			
		Ŀ					1.0		111			5Y 5/2	and occasional gray gr Olive gray and brown			
					10		-		11			51 914	nous. Occasional drop Planolites.			
		1	L		12	H	-	-1.1.1	1.1	7		5Y 6/1	SMEARS SLIDE SUM	MARY IS	s -	
	1	1	1						111	i		5Y 7/1	0000100000000000	2,65	3, 126	
		t.	1				1.2		11			5BG 7/2	Composition:	D	D	D
1			L.			2	-		i.			5Y 7/1	Quartz	1	10	3
1		1	1			1	12		1			5Y 5/1	Feldspar Heavy minerals	TR	2	TR
	1						1.5		1			5Y 7/1	Clay Volcanic glass	3	60	71
1	1	2ant	1	1			1		11			5Y //1	Carbonate unspec.	1	8	13
		in			12.60	\square	-		-	:		5Y 5/1	Foraminifers Calc. nannofossils	4 89	3	5
		(ink)					1.5			1		10 2.5Y 6/2	Salic Hannondssiks	0.0	3	
		rria					-		11	1		2.3 * 612	ORGANIC CARBON	ANDCAR	DONATE	1 4805
	3	Emiliaria Iruxieyi Zone		L			1		11					4, 56		2,294
1	pion	14			1	3	1		11			5Y 7/1	Organic carbon Carbonate	30		
	atul	NN21					1		11	1		2.5Y 6/2 to	- Contractor	30		
	DUNC	Z					1.2		1 1			2.5Y 5/2				
	Globorotalia truncatulinoides		1		2		1					2.5Y 5/2				
4 -	LOT 2				4		-		4 1							
	040		E.		11		1		4							
	C		4				-		1			5Y 5/1				
	22N					4	1		1			to 5Y 5/2				
	2	Zone				1	1		1							
		2 Z					1		1	13		N4/1				
		oceanica.					1		1	1	1	IW				
		920			15.60				-	T		5Y 5/2				
		205		١.	=		1		4	5						
		Vindo							4	1		5Y 5/2				
1		Gephyrocapte					-	= = = = +		41-						
1						5						2.5Y 6/2				
		NN20				100			4 1	11						
		12					1					2.5Y 7/1				
					2		-	F. H_ +_ +								
					3 16.							2.5Y 6/2				
	1			8	16.33	6			1	,	- 1	5Y 7/2				
	Part of	A	8	1	1	CC	1	-	11			2.5Y 6/2				

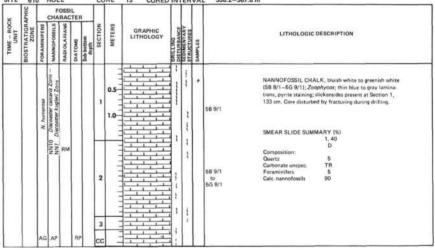
386

SITE 610

	UPHIC		F	OSS		R									
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-bottom depth	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC (DESCRI	PTION
							1	0.5				5Y 7/1 2.5Y 5/2 5Y 7/1 5Y 4/1 2.5Y 5/2	streaks throughout, 70	NUD, gra Dropston	ANNOFOSSIL OOZE y to olive gray, vertical es of sandy mud, muditone .7 m contain volcanic glass
						20.70				******		5Y 7/1	SMEAR SLIDE SUMN	4, 7 M	3, 1 D
		Actess	Zone			0	2	Contraction of the				54 1/1	Quartz Foldspar Mica Heavy minerals Clay Volcanic glass Pyrite Carbonate unspec. Foraminifers	45 5 1 20 12 10	50 5 TR TR TR 5 5 5
		catulino	ceanica			22.20						5Y 8/1	Calc. nannofossils	7	20
		Globorotalia truncatulinoides	Gephyrocapsa oceanica Zone				3	1000				5Y 7/1			
		N22 Glob	NN20 Ger			23.70		10.00				5Y 8/1 5Y 4/2 OG sample			
		AG	AG	8	в	24.27 23	4					5Y 4/2 to 2.5Y 6/2			

	610 9	F	HOI	oss	11			RE	4 CORED	TT	T	L 28.8-38.4			
×	Hdy		CHA	RAG	CTER	i						1			
TIME - ROCK	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-hottom depth	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	STRUCTURES SAMPLES		LITHOLOGIC DES	SCRIPTIO	N
							1	0.5				5¥ 7/1	Very deformed to 33,3 33.30 to 34.00 m. Interbedded MARLY 1 and CALCAREOUS M Light gray ooze is hom patches and green gray	VANNOFO UD.	OSSIL OOZE
						30.30	2	TILLE D				5GY 7/2	to brown motified to h mudclasts, <i>Chandrine</i> ash beds at 5.53 to 5.5 7,60 to 7.63 m. Sharpi SMEAR SLIDE SUMM	omogeneo at transitio 6 m, 7.37 based. ARY (%) 5, 41	us with dropstones, ins. Volcanic to 7.40 m, and 6, 70
						31,80		TTTTTTTTTTTT		4		5Y 7/1	Composition: Quartz Feldspar Mica Heavy minerals Volcanic glass Glauconite	D 30 3 TR TR 5 -	M 5 TR - TR
							3	i li i i i i i				to 2,5Y 5/2	Garbonate unspec. Foraminiters Galc. nannofossils ORGANIC CARBON A Organic carbon	10 7 45 AND CARI	35 80 BONATE (%)
		Globorotalla truncatulimoides	Pseudoemiliania lacunosa Zone			33.30	4	alana la			-	5Y 6/1 5Y 7/1	Carbonate	28	
		N22 Globorotalla	NN19 Pseudoemil			34.80		i tititi				2.5Y 5/2 5Y 4/1			
		•	e				5	Interior				2.5Y 4/2 5Y 6/2			
						36.30		111 111			1 1	5Y 6/2 10 2.5Y 5/2 5Y 7/1 5Y 5/2			
							6	tradin d			•	5Y 8/1			
		AG	AG	8	8	37.47	7 CC	-	Void			5Y 7/2			

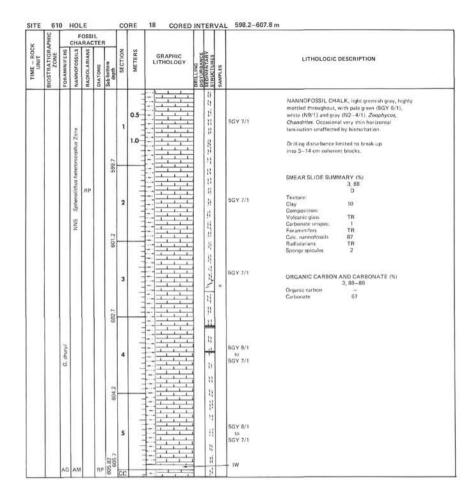

UNIT BIOSTRATIGRAPHIC ZONE FORAMINIFERS		HA	RAC	TEO	. 1								
UNIT BIOSTRATIGRA ZONE FORAMINIFERS				1En	_	1.1							
_	LORAMINIF	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Seb-battom depth	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	STRUCTURES	SAMPLES	LITHOLOG	SIC DESCRIPTION
PL3-5 undritemniated	russ amariteriated	surculus Zoni	и FM		661 19 166 6 19 1 15 1 15 1 15 1 15 1 15	1 2 3 4 5 6	1.0					Y B/1 diffue laminae. P Gomposition: Quartz Feldqae Mica Y 7/1 Heavy minerals Carbonat unspec Foraminifers Catc.nanofossils Diatoms Sponge spicules Silicoffagelates	UMMARY (%) 3, 140 4, 140 D D 10 5 1 1 2 1 8 5


	PHIC		CHA	OSS	IL	1							
TIME - ROCK	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS		Sub-bettom depth	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES		LITHOLOGIC DESCRIPTI	DN
					AG aug		1	0.5		* + + + + + + + + + + + + + + + + + + +	NB/1 N9/1	NANNOFOSSIL OOZE, white wi and gray green (SGY 8/1–5GY 7) green diffuse laminae. Pyrite halo	1) mottling. Some gray
		sted		ĘΡ	Nitzschia jouseae Zone	167.7	2	in the first state		· · · · ·	N9/1	SMEAR SLIDE SUMMARY (%) 2,80 Composition : Quartz 10 Feldupar 1R Volcanic glass TR Glauconite TR Carbonate unspec. TR Foraminifers 3 Calc. nannofossils 86	
		PL3-5 undifferentiated				.7 169.2	3	and the state of a			N9/1	ORGANIC CARBON AND CARB 2, 80–81 Organic carbon — Carbonate 89	ONATE (%)
			Discouster surculus Zone			172.2 170.7	4	and an attack		4 9 1 1 1 1 1 1	N9/1		
			NN16 D	FM		173.7	5	and marked and		and the second second	5Y 8/1 N9/1 OG sample		
					FG	21	6				N9/1		
		AG	АМ		FM		7 CC	11		1	N8/1		

	610 ¥		HOI	oss	IL		F	DRE	9 CORED	TT	T	L 175.8-185.4 m	1
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	CTE		SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE	STRUCTURES		LITHOLOGIC DESCRIPTION
							1	0.5			12 12 12 12 12	5¥ 8/1	NANNOFOSSIL DOZE, white to pale gray, mottled with gray (N4/1-N6/1) and gray green (5GY 8/1-5Y 6/2), Pyritized burrow, diffuse green laminae, Foram sand in lenticular bed at 180.65 m.
						6711	2	in the trailer				N8.5/1 Void N8.5/1	DRGANIC CARBON AND CARBONATE (%) Organic carbon
						178.8							
		undifferentiated				180.3	3	hundrun				N8.5/1	
		PL3-5	inculus Zone			18	4				1 1 1 1	Lenticular foram sand N8.5/1	
			Discouster surculus		ľ	8.181	_	111			4	5GY 8/1	
			NN16				5	a harden			1	NB/1	
						E.E81	6					NB.5/1	
		AG	AG		RP	185.26 184.8	7	1.			1 11 11		

	APHIC			OSSI RAC						Π	Τ	Ì				
LIND	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-bottom depth	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE	STRUCTURES	SAMPLES		LITHOLOGIC	DESCRIPT	rion
					1		1	0.5		- 800			N9/1	NANNOFOSSIL 002	ZE, white w	with gray (N6/1) motiling.
					1			1.0						SMEAR SLIDE SUM	MARY (%) 2,70	3, 2
						234.9	-	-						Composition:	D	м
								1 3	T-T-T-	11	1			Quartz Clay	52	5
										11	:1			Volcanic glass	TR	
	1 1			RM				17	1-1	11	13		N9/1	Carbonate unspec.	1	1
			~				2	1		4	i I			Foraminifers Calc. nannofossils	2 90	2 91
			oue							4 1	1			Diatoms	50	TR
			Amaurolithus tricorniculatus Zone?					-			1			Sponge spicules	-	TR
			ornicu			236.4	L		とチエチエチ	1	_		5¥ 7/1	ORGANIC CARBON		
		toe	trice			~		1		1 [N9/1	Organic carbon	2, 70-	71
		gar	ED(1 2		1 1	51		5Y 7/1	Carbonate	96	
		Globorotalia margaritae	pliet					-			8					
		ala	UNIT			1	3	1 8	-, -, -,	11	1		1			
		NOT	Am			L 1	12	-		1	, [
		40FM	2					-	11-1-1	1	1					
	1	0	NN12							11	11					
		PL2	~			0		-	+ . + . + .	3 1						
		۵.				231.9		-		3						
									11-1-1		1					
				RM				1.4		11	1					
					1			1	+++++++++++++++++++++++++++++++++++++++	11	11					
			1				4	-	+ , + , + ,		1					
		100	-			8.93					1					
		AG	AG		RP	238	cc		+1+1+1	8	1		N9/1			

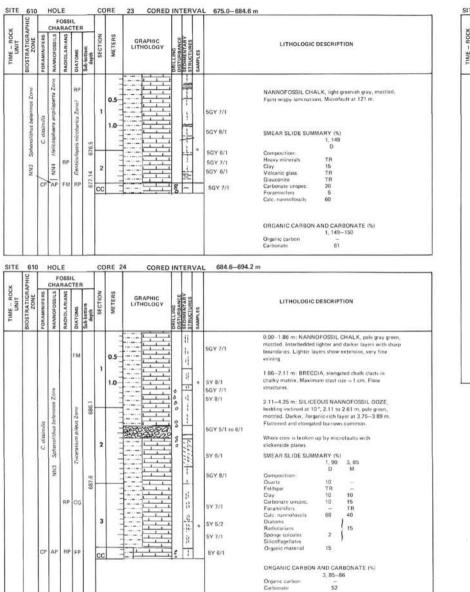
	HIC	Γ		oss		2		ORE 11 CORE	T			300.6-310.2	
UNIT UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	-	RADIOLARIANS			SECTION	GRAPHIC	DRILLING	SEDIMENTARY	SAMPLES		LITHOLOGIC DESCRIPTION
						300.6	-		4 4 4 4 4			N8.5/1	34-44 Soupy
				RM		302.58 302.1			444.4	1	•		NANNOFOSSIL OOZE, white with minor gray (N6/1) motting. SMEAR SLIDE SUMMARY (%) (0.00000000000000000000000000000000000
		Globorotalia margaritae	mus Zone				3	Void					ORGANIC CARBON AND CARBONATE (%) 1, 110–111 Organic carbon – Carbonate 92
			NN11 Discoster quinqueramus Zone				4						
						8.1	5						
				RM		308.	6					N8.5/1 N8.5/1 _ Void N8.5/1	
		AG	АМ		RP	310.1 309.6	7						



×	VPHIC	_3		RAC		1								
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS.	RADIOLARIANS	DIATOMS	Sub-bottom depth	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	STRUCTURES SAMPLES		LITHOLOGIC	DESCRIPTION
			Zone			406.2	,	0.5		0.0	1	wisp	y laminations; Zoo	L.K. pale green (5G 9/1); few faint ophycos; pyrite halos and ed and fractured by drilling.
		N. numerosa	ris Zone - NN7 Discourter kugleri Zone	см		407.3	2					- 06 Com Guar Feldi Haw Carb Fora Calc.		AARY (%) 1,41 D 12 TR TR TR 3 86 TR
			NN10 Discosster calcaris Zone			409.2	3	in the first		30		Orga	GANIC CARBON / Inic carbon Ionate	AND CARBONATE (%) 1, 35–36 - 85
			AG	АМ	RP	411.03 410.7		-						

1	Ę		F	ossi	L										
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS 2		Sub-bottom depth	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE DISTURBANCE SEDIMENTARY	STRUCTURES SAMPLES		LITHOLOGIC	DESCRIPT	ION
	BIUSTRAT 20	A, humanoa Postania	NNB Catimater coalitos Zone – NN? Discoster kugieri Zone	LADIOLARI E G	Coscineduzous gigus var. dioranu Zone Diart Dass	7 450.2 458.7 457.2 455.7 454.2	1 2 3 4 5	0.5				5G 8/1 5GY 7/1 5G 8/1 5GY 7/1 5GY 8/1 5GY 7/1 5G 8/1 5GY 7/1 5G 8/1 5GY 7/1 5G 8/1 5GY 7/1	NANNOFOSSIL CHA 56 8/11; occasional 2/	NLK, greeni bophyrcar; ing. Coring UNRY (%) 4,57 D 3 - TR TR 1 86 TR TR TR TR TR TR TR TR TR	oh grav (5GY 7/1- occasional) wispy bedding; deformation in the form 5,80 M 40 TR TR TR 60 TR TR TR TR TR TR BONATE (%)
		46	AM	СМ		463.1 461 461	6	The second second		l		5G 8/1			

	610 2		HO	oss	IL			RE					L 502.2-511.8	
1	APH		CH/	RA	TER	1								
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-bottom depth	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC DESCRIPTION
						7	1	0.5			8		NB/1	NANNOFOSSIL CHALK with thin unit of MARLY CHALK, while to light gray, homogeneous to mottled. Occasional givite mottles and holo. Zcophyces very common the 4,70 m. Microbult at 4,70 m which shows a sharp lithelogical break. Coring disturbance limited to drill bisouit rotation and rare flow-in.
						503.7	H					-	Void	SMEAR SLIDE SUMMARY (%) 4, 40
				FG	Coscinodiscus lewisianus Zone		2			5 5 5 4 V	NSI 181		N8/1	Composition: Clay Clay Clay Clay Clay Clay Clay Clay
					odilscr	505.2		-						ORGANIC CARBON AND CARBONATE (%)
					oscin	50		1						4, 62–66 Organic carbon –
					0		3	1111111111			W W		N8/1	Carbonate 94
						506.7		-			=1=		5Y 6/3	
		a drury i	exilis Zone		CM			11111			1	•	N8/1 5Y 7/1	
		Globigerina drunyi	Discosster exilis Zone				4	1111					N8/1	
			9NN			508.2	-		الم الحراد ال		n			
										00	2 22 22		5G 8/1	
						1	5	a to to to		0			N8/1	
						509.7	\vdash	-				-	OG sample	
				FG			6						N8/1	
		AG	AM	FG	RP	511.72 511.2	7 CC						N8/1 N8/1	


	VPHIC		CHA	OSS		1											
TINU	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Seb-bottom depth	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	STRUCTURES SAMPLES		LITHOLOG	IC D	ESCRIPTI	ON	
		G. aburyi	NNS Suhenolithus heteromorphus Zone 💥		FP CM BUD Z Juny Bab Juny S Du S Juny S Du		1	0.5				5GY 7/1 5GY 8/1 5GY 8/1 5GY 8/1 5GY 8/1 5GY 7/1 5GY 8/1 5GY 7/1 5GY 7/1 5GY 7/1 5GY 7/1 5GY 7/1 5GY 7/1 5GY 6/1 5GY 7/1 5GY	NANNOFOSSIL C CHALK, light gree abundan: Chandrif and wispy gray gree SMEAR SLIDE SU Composition: Quertz Ferldspa Mica Clav Carbonate unspec. Fortaminifers Calc: namofossils Diatoms Radiolarism Sponge solicules Silicoflagellates ORGANIC CARBO Organic carbon Carbonate	nish) es ar en la MMJ	gray to ver d Zoophy minae. ARY (%) 2, 105 M 5 TR TR 7 R 25 35 2 28 5	ry mottled with cost, prysite mottles 1, 85 D - - - - - - - - - - - - - - - - - -	
		AG	AM		FP	558.75	6 CC					5GY 8/1 5GY 7/1					

	HIC		F	oss	L								
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS		Sub-bottom depth	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE	SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
		G. druryi	NN5 Sphenolithus heteromorphus Zone	RP		0.81 0.37.6 638.1 636.6	2	0.5		×			MARLY NANNOFOSSIL CHALK Top 30 cm is chalk breccia to congiomerate, mostly angular class; inclined burrows and/or laminations at Section 1, 98 to 114 cm, sandy class; (2 cm) containing fearaminifers (recrystitized) at Section 1, 105 cm. Occasional Zoophycor throughout. SMEAR SLIDE SUMMARY (%) 3, 34 D Composition: D Gartz TR Galaconite glass TR Galaconite mark Carbonate unspec. 24 Foraminifers TR Calc on the species of th
		AM	AM	В	RP	640	cc	-		1			· · · · · · · · · · · · · · · · · · ·
ate 3			HOI	E OSS	IL.	2	cc	DRE	20 CORED				L 646.2-655.8 m
TIME - ROCK	BIOSTRATIGRAPHIC 00 ZONE 20		HOI	.E OSS	IL.	2	CTION D	WELERS	20 CORED GRAPHIC LITHOLOGY	DRILLING	SEDIMENTARY THIS SEDIMENTARY		LITHOLOGIC DESCRIPTION
- ROCK NIT		G. druryi FORAMINIFERS	HOI	E OSSS RAC SWEINERONDEN	IL.	647,7 646.2 Sub-bottom 24	section	WELERS	GRAPHIC	00.000 DRILLING			LITHOLOGIC DESCRIPTION

¢	APHIC			RAC		1					
TIME - HOCK	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-bottom depth	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION
		G. druryi	Helicospheers ampliaperta Zone			657.3 655.8	1	0.5			MARLY NANNOFOSSIL CHALK Occasional Zoophycos in Section 1. This core has no Core Catcher. 5GY 6/1 SMEAR SLIDE SUMMARY (%) 2, 97 D
		AM	MA NN4	FP RM	RP		2			17 ST 18	Composition: Ouriz TR Feldspar TR Heavy minerals TR Clay 40 Volcanic glass TR Carbonals unspec. 26 Calc. namofosalis 33 Sponge spicules 1
											ORGANIC CARBON AND CARBONATE (%) 1, 97-98
											Organic carbon Carbonate 74

FORAMINIFERS		RADIOLARIANS	TER	656.9 665.4 Sob-bettom	L SECTION	METERS		SAMPLES	LITHOLOGI MARLY NANNOF	
FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	665.4		0.5	00000	SAMPLES		DSSIL CHALK
					1	-	0000		MARLY NANNOF	
C. absorbilits	NN4 Helicoghaera angliaperta Zone	яр	в	622.9 671.4 669.9 568.4	2 3 4 5 6		1 111 1 1 1000000000000000000000000000		Occasional purite h Section 7 Judy Yaz position. Disturbank breccia surrounded SMEAR SLIDE SU Composition: Guertz To Heavy minerals SGY 6/1 Clay Volcanie glass Carbonate unspec. Calc. nanofossih Sponge spicules	r green fine taminar in Section 5. tituref but pieces in correct relative to in Section 1-4 occurst a stiril by flow of groundup material. MMARY (%) 5. 81 0 5. 75 76 77 78 35 78 78 78 78 78 78 78 78 78 78
	AP	RP	в	675.29 675.03 674.4	7	11111	00 00			

APHIC		F	RAC								
BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-bottom depth	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION	
						1	0.5		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NANNOFOSSIL CHALK, slightly siliceous. (a) Pale gay green, mottled, inclined bedding 80 cm), 0.60 to 2.30 m. (b) White work warpy laminae, some characteri stylolitic. Both sharp and gradational boundaries present	ticaliy
	dissemilie	Sphenal/thus belennas Zone	Craspedodiscus elegans Zone			2				SMEAR SLIDE SUMMARY (%) 1, 90 D 0 49/1 Composition: Ouartz 5 Clay 5 Carbonate umpor. 15 Grammiters 1 Cate manofowils 88 Distorms 1 Sconge valouten 5	
	IJ	NN3 Sphenallt	ۍ FG	AG		3			1	19/1 ORGANIC CARBON AND CARBONATE (%) 1, 65–66 Organic carbon – Carbonate 79	
				FM		4			00 : }}}}}	IGY 7/1	
	СМ	AM	FM	RP		cc			T	IGY 7/1	

Ta I			RAC		R								
BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-battom depth	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES		LITHOLOGIC	DESCRIP	TION
	C. dissimilits	NN3 Sphenolithus belennios Zone	RM	FP		1 2 3 4	0.5		····· -·	N9/1 5Y 8/1 5GY 8/1 to 5/1 5GY 7/1 5GY 6/1 5GY 6/1 5GY 6/1 5GY 6/1 5GY 6/1	white, mottled, Incline	ed beddin to horizo suble solu MARY (%) 1, 16 D 5 10 B3 TR TR TR 2	ntal, Common, thin, veins workfer common. tion features 2, 48 10 5 75 75 75 76 10 80NATE (%)

	PHIC			OSS		R										
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS		Seb-hottom depth	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC	DESCRI	PTION	
							1	0.5			** *	N9/1 5GY 6/1 N9/1 5GY 8/1	NANNOFOSSIL CH/ to white, Highly moti lamination and stylol inclined bedding. Pyr Slightly siliceous. SMEAR SLIDE SUM	tled with a ites, Below ite patche	abundant w 2.30 m s and fan	t wispy n, predominantly ninae common.
				FG	FG		2	and and the		101十二一 <u>第</u> 二法公元		5GY 7/1 N9/1 5GY 7/1 5GY 6/1 5GY 2/1 5GY 8/1	Composition: Quartz Clay Pyrite Carbonate unspec. Foraminifers Calc, nannofossils Diatoms Radiolarians Sponge spicules	- 5 10 1 63 TR 1 10	5 5 10 TR 80 - TR	15 5 TR 10 60 TR 10
		C. alssimilia	-bu		СМ		3	minuim		MAR - ANA WWW		5GY 7/1 5GY 8/1 5GY 7/1 5GY 8/1 5GY 8/1 5GY 7/1	ORGANIC CARBON Organic carbon Carbonate Note: Core Catcher i	1, 55 - 65	56	re (%)
		C. dissimilia	NN3 Sphenolithus belennos Zone				4			14		5GY 8/1 5GY 7/1				
			N1				5	area Lana Lana		14.14.14121		5GY 8/1 5GY 7/1				
					RP		6	and and and		=== 4 ===		5GY 8/1 5GY 7/1				
		CM	AP	FG	FM		7	1 11	Void			5GY 7/1 to 5GY 8/1				

9 FOSSIL		AL 0.0-9.0 m	1	2	-	SSIL		T		CORED	TT	AL 9.0-18.6 m	
TIME - ROCK IUNIT ZONE FORAMINIFERS MANNOFOSSILS RADIOLARIANS RADIOLARIANS DIATOMS	R GRAPHIC STRUCTURE STRUCT	LITHOLOGIC DESCRIPTION	TIME - ROCK UNIT	ZONE	CHAR	RADIOLARIANS	ER	SECTION	ME	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES		LITHOLOGIC DESCRIPTION
5 N22 Clohoronalia truncenu/intolete 5 NN21 Emiliana Kuulepi Zone a a a 2 Paendeomotia infindua Zone		25 Y 774 32 Y 772 32 Y 772 Y 772 Y 772 Y 772 32 Y 772 Y 772 Y 772 Y 772 Y 772 Y 772 Y 77		NN20 Geolytrocadaa oceanika Zonii	D NN21 Emiliaria Auxieyi Zone	8	8	1				SY 5/2 SGY 6/1 2.SY 6/2 to 6/4 SY 7/2 10 N7/1 SY 5/2 N7/1 SY 5/2 N7/1 2.SY 6/2 2.SY 5/2 N5 0 2.SY 5/2 N7/1 2.SY 5/2 N7/1 2.SY 5/2 SY 5/3 2.SY 5/3 2.SY 6/3 2.SY 6/1 SY 7/2 SY 6/1 10 SY 7/2 SY 7/2	Interbadded CALCAREOUS MUD and FORAMINIFERJ NANNOFOSSIL GOZE, olive gray and brown to vary light gay, Gradiational bookardiser and motifying at 743 m. Occasional biourbated laminae of light gay green and grav. Vary deformed to moderataiy deformed above 6.00 m. SMEAR SLIDE SUMMARY (N) 5.66 6.98 Composition: 0.07 Outrit 63 3.1 Hoavy minerals 3. TR Clay 0.07 Volcanie glass 4.2 Foraminifers 3.12 Cationais 4.72 ORGANIC CARBON AND CARBONATE (%) 5.70–71 6.83–84 Organic carbon 2.6 67

	HIC		F	oss	TER				П	Γ				
UNIT UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	because.	METERS	GRAPHIC LITHOLOGY	DISTURBANCE DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC DE		
	8101	N22 Gioborataki truncerukinoides FOR	NN19 Pseudoemiliania lacimetes Zone NN20 Gaphyrocapas oceanica Zone NA	89 B	Witzchie rejobiold? Zone		0.5 1 0.5 1.0 22 3 4 5 6				5 Y 7/1 6 Y 5/2 5 Y 5/2 5 Y 5/2 2.5 Y 6/2 2.5 Y 6/2 2.5 Y 6/2 N7/1 2.5 Y 6/2 N7/1 10 N8/1 5 Y 5/2 5 Y 5/2 10 5 Y 5/2 5 Y 5/2 10 5 Y 5/2 10 7 10 10 7 8/1 10 7 10 10 10 10 10 10 10 10 10 10	NANNOFOSSIL 002 OOZE below 7.30 m) much mottling, Olive light gray, Gravel drog Dark gray layer rich in Sharpbased volcanic a	E (becomi Gradution gray and b stones of 1 violcanic t sh beds at hycos and 5, 30 M 60 - 3 15 9 9 1 5 3 4	ui boundaries with come to white and bealt and turf. bit of 22 to 6.35 m. 5.04 to 5.06 and open burrows common. 6, 55 TR TR - 2 TR - 1 8 89 BONATE (%)
		AG		8	АМ		7 .c							

200 H				KAL	TER									
LINN	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC	DESCRIPT	ION
	810	N22 Globorotatila trunceturiinoides Fo	NN 19 Pasurdoem/like/ie Alecurode# Zone Ma	8		3	0.5				N7/1 to N8/1 N6/1 to N7/1 N8/1 N8/1 N8/1 N8/1 N8/1 N8/1 N8/1 To N7/1 10/9 7/2 2.5Y 6/2 N8/1 to 2.5Y 7/2 5Y 7/2 5Y 7/2 5Y 7/2 5Y 7/2 5Y 7/2 2.5Y 6/2 N2/1 to 2.5Y 7/2 5Y 7/2 5Y 7/2 5GY 7/1 2.5Y 5/2 SEG 4/1 N4/1 2.5Y 5/2 SEG 5/1 5Y 5/2 SGY 5/1	OOZE with interval o IFERAL OOZE at 5.4	f NANNOF f 8 to 6.00 m whothed whothed	, olive gray and brown to in gray green and gray sh with sharp bases 7.04 to 7.06 m. 4, 125 - TR TR TR TR TR TR TR TR 2 TR 3 40 55 TR TR S5 TR TR 40 55 TR TR 55 TR TR 55 TR

LINIT BIOSTRAPHIC BIOSTRAPHIC PORAMINIFERS FORAMINIFERS HADIOLARIAN RADIOLARIAN CHAUSOSSIL ANNINOFOSSIL RADIOLARIAN CHAUSOSSI CHAUSOSI CHAUSOSSI C	SECTION Current State Current Current Current Current Current Current State St	LITHOLOGIC DESCRIPTION	TIME - ROCK INUIT POST POSTALICE PORTALINE FORAXINULEIS FORAXINULEIS FORAXINULEIS FORAXINULEIS RADOIOLAILA RADOIOLAILA RADOIOLAILA RADOIOLAILA SECTION METERS ALAOIOLAILA ALAOIA	LITHOLOGIC DESCRIPTION
M22 Glabbrootekia trunczatilitekidet 1 1 8 9 Nu19 Patrufoenidet 1 <td< td=""><td></td><td>NB/1 Interbedded CA'.CAREOUS MUD and FORAMINIFERAL MANNOFOSSIL OQ2E, clive gray and brown to vary light gray. Mathematical disturbed 0.00 to 3.00 m. 25.Y 6/2 to M3/1 Highly to slightly disturbed 0.00 to 3.00 m. 2.5.Y 6/2 to M6/1 SMEAR SLIDE SUMMARY (%) D 0.0 D 0.0 Carbonate unspec. 1 1.1-15 Y 6/1 Organic carbon 2.5 Y 6/1 2.5 Y 6/1 1.5 Y 5/2 5 S/2 5 /2/2 D</td></td<> <td></td> <td>10YR 5/2 Interbeddef FORAMINIFERAL NANNOFOSSIL OOZE 56Y 7/1 and CALCAREOUS MUD, very light gay to light hown gray. Motife and burrowed. Some sandy multi intervals with sharp bates at 1.63 to 1.65 and 1.77 to 1.85 m. 5Y 5/1 SMEAR SLIDE SUMMARY (%) 5Y 5/1 SMEAR SLIDE SUMMARY (%) 5Y 5/1 D 5Y 5/1 SMEAR SLIDE SUMMARY (%) 5Y 5/1 D 5Y 5/1 SMEAR SLIDE SUMMARY (%) 5Y 5/1 D 5Y 5/1 SMEAR SLIDE SUMMARY (%) 5Y 5/1 D 5Y 5/1 Composition: 5Y 5/1 Composition: 5Y 5/1 Composition: 5Y 7/1 Composition: 5Y 7/1 Composition: 5W 7/1 Charge minerab 7 T 5W 7/1 Charge minerab 7/1 Mean TR 7/2 Carboniate unipec 6/1 Sponge sploules 5Y 5/1 Sponge sploules 5Y 7/1 Cale carbon 6/1 Sponge sploules 5Y 7/1 Car</td>		NB/1 Interbedded CA'.CAREOUS MUD and FORAMINIFERAL MANNOFOSSIL OQ2E, clive gray and brown to vary light gray. Mathematical disturbed 0.00 to 3.00 m. 25.Y 6/2 to M3/1 Highly to slightly disturbed 0.00 to 3.00 m. 2.5.Y 6/2 to M6/1 SMEAR SLIDE SUMMARY (%) D 0.0 D 0.0 Carbonate unspec. 1 1.1-15 Y 6/1 Organic carbon 2.5 Y 6/1 2.5 Y 6/1 1.5 Y 5/2 5 S/2 5 /2/2 D		10YR 5/2 Interbeddef FORAMINIFERAL NANNOFOSSIL OOZE 56Y 7/1 and CALCAREOUS MUD, very light gay to light hown gray. Motife and burrowed. Some sandy multi intervals with sharp bates at 1.63 to 1.65 and 1.77 to 1.85 m. 5Y 5/1 SMEAR SLIDE SUMMARY (%) 5Y 5/1 SMEAR SLIDE SUMMARY (%) 5Y 5/1 D 5Y 5/1 SMEAR SLIDE SUMMARY (%) 5Y 5/1 D 5Y 5/1 SMEAR SLIDE SUMMARY (%) 5Y 5/1 D 5Y 5/1 SMEAR SLIDE SUMMARY (%) 5Y 5/1 D 5Y 5/1 Composition: 5Y 5/1 Composition: 5Y 5/1 Composition: 5Y 7/1 Composition: 5Y 7/1 Composition: 5W 7/1 Charge minerab 7 T 5W 7/1 Charge minerab 7/1 Mean TR 7/2 Carboniate unipec 6/1 Sponge sploules 5Y 5/1 Sponge sploules 5Y 7/1 Cale carbon 6/1 Sponge sploules 5Y 7/1 Car

UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RIAMS	SWOLEN	L SECTION	GRAPHIC LITHOLOGY	.+.+.+.+.+.	SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC DESCRIPTION	ay to
						1	日本					OOZE and CALCAREOUS MUD. Very light gr	ay to
								1	1		N7/1 10YR 6/2	layers at 2.78 to 2.80 m and 3.62 to 3.65 m. M Occasional light gray green laminae. Zoophycou	lottled.
								H			5Y 5/2	SMEAR SLIDE SUMMARY (%) 3, 30 7, 5	
							=	Ē			5G 8/2	D D	
				FM		2		17:1:1:			5Y 5/2 5GY 7/1 5G 6/2 5GY 7/1 to	Send 12 - Silt 20 - Clav 68 - Composition	
								Ŧ	1		5GY 6/1	Feldspar 1 TR	
									-		5Y 5/1 5BG 4/1	Heavy minerals 4 TR Clay 20 15 Volcanic glass 2 1	
							-	1-1			5Y 5/1	Carbonate unspec. 6 – Foraminifers 9 11	
								NTIT.		•	10YR 5/2 5GY 4/1	Caic, nannofossils 8 73 Sponge spicules TR TR	
						3		Ę	1		2.5Y 5/2 5GY 7/1	ORGANIC CARBON AND CARBONATE (%) 3, 120-121	
								1			5G 6/2	Organic carbon – Carbonate 69	
								-	1		5GY 7/1		
		cvides	a Zor				1111	t	1				
	1	Glaboratalia truncatulinoides	Incunosa Zone	1			1	-+	1	2			
		trunc	ania la			4		-			5GY 7/1		
		otalia	Pseudoemiliania					-	1				
		labor	Service					=	1				
			1.2.1			\vdash		÷	\$				
		N22	BUNN					-	1				
								÷	1				
						5		-	8-		5GY 7/1		
							3	Ξ			5G 5/1		
			1					ŧ	1		10YR 5/2		
						-		E	i				
								-	12		5GY 7/1		
								E	1		6G 6/2		
						6		E	,		5GY 7/1 to		
	14						1-	1	3		5Y 7/1		
								Ŧ	1				
	18					-	I I I I I I I I I I I I I I I I I I I	-	1		5Y 7/1		
				RM	00	7		-	1	-	Void 5Y 7/1		

	PHIC		CHA	OSS	TER								
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC	DESCRIPTION
		N22 Głoborotańa truncantinocioles	NN19 Paudoemiliarla lacunosa Zone	RM	Wrtsschla rainholdil Zone	1 2 3 4 5 6	0.5				2.5Y 5/2 5GY 7/1 5Y 6/1 5Y 6/1 5Y 6/1 5Y 6/1 5Y 6/1 5Y 6/1 5Y 6/1 5Y 6/1 5Y 6/1 5G 5/1 107R 6/2 5GY 7/1 5GY 7/1	and CALCAREQUS I gray brown. Mottick- layers: Ashy interval a SMEAR SLIDE SUM Composition: Felopar Heavy minerals Caly minerals Caly minerals Cale: namotossils Diatoms Radiolanams Sponge spicules	INIFERAL NANOFOSSIL OOZE AUD. Vev light gray to light Pyrite halos common in ocze it 8:30 to 8:37 m. Shurpbasel. MARY (%) 2, 120 D 1 TR 5 12 80 1 TR 1 AND CARBONATE (%) 2, 38–39 3
		AG	AG	FM	FM	7			- Void		5Y 5/1 5Y 6/1 5Y 5/1 N8/0 N8/0		

1Ŧ			FC	DSSI	1			1						¥∣		FO	SSIL					L
UNIT UNIT BIOSTRATIGRAPHIC ZONE	ZONE	FORAMINIFERS		RADIOLARIANS 20	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES		LITHOLOGIC DESCRIPTION	TIME - ROCK	UNIT	BIOSTRATIGRAPHIC ZONE	52	NANNOFOSSILS	ADIOLARIANS		SECTION	METERS	GRAPHIC LITHOLOGY	
		B N22 Globerotalis truncantinovides	NN19 Peuvidienti/ilatia faccrotea Zone		8	1 2 3 4 5 6	0.5			NB/0 2.5Y 5/2 2.5Y 7/2 Void 5G 7/2 NB/0 5G 7/2 NB/0 5G 7/2 N7/0 5Y 5/1 2.5Y 6/2 5G 7/2 5G 7	Interbedded FORAMINIFERAL NANNOFOSSIL OOZE, MARLY NANNOFOSSIL OOZE and CALCAREOUS MUD, very light gray to ight gray brown, mothed to homogeneous Privite burrow carb. Volzanic auth-lich layers with sharp base at 5.19 to 5.27 m SMEAR SLIDE SUMMARY (%) 3.60 6.58 Composition: Duarz 30 16 Feldspar 1 - Carbonatic unspec, - 1 Feldspar 18, - Carbonatic unspec, - 1 Poraminicies 16 11 Cale, nanofossili 43 72 Diatoms - TR Sponge spoules - TR ORGANIC CARBON AND CARBONATE (%) 5.65-06 Organic carbon 75				N22 Neogloboguadrine ecceteensie	NN15 Papedoemidania Akontosa Zone	B	Nizejchik relimotidii Zonis	1 3 4 5 6	0.5		

DRILLING	SEDIMENTARY	SAMPLES		LITHOLOGIC DESCRIPTION
			5GY 7/1	Interhedded FORAMINIFERAL NARNOFOSSIL OOZE and CALCAREOUS MUD, very light gray to light gray brown, mottied to homogeneous, Pyvite patchas in sozas. Gray green layers common. Volcanic advidt layers with gradational bases at 3.50 to 3.67 m, 5.16 to 5.18 m, and 7.10 to 7.20 m.
				SMEAR SLIDE SUMMARY (%)
	=		5G 7/2	4, 140 O
			5Y 7/1 5G 6/1 5Y 7/1 5GY 7/1 5GY 7/1 5G 7/2	Composition: 25 City 25 Carbonate unspec. 2 Foraminiters 10 Calc. namofosits 80 Diatoms 2 - Radiolariums TR Sponge specules 1 Suicoflogellates TR
	251		5G 7/2 5G Y 7/1 58 0/1 5GY 7/1	DRGANIC CARBON AND CARBONATE (%) 4, 110-111 Organic carbon - Carbonate 3
			5Y 7/1	Carbonate 3
	C.	1	58G 4/1	
1	L'		2.5Y 6/2	
	1 alt		5Y 6/1 5Y 7/1 5Y 6/1 NR/0	
11.11	12.22		9G 6/1 59 8/1	
-	12		5Y 7/1	
	= 1		5G 5/1	
			5Y 6/1	
	-11	1	5Y 5/1	
1	1	1.		

5GY 7/1 5G 7/2

5Y 7/1

556 8/1 556 4/1 57 6/1 590 4/1 590 4/1 57 6/1

> 5Y 7/1 to 5GY 7/1

> 5Y 6/1 5GY 7/1 5G 8/2 5GY 7/1

	PHIC	6		OSSI	TER		T							
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	er of the	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRINCTURES	SAMPLES		LITHOLOG	3IC DESCRI	PTION
		N. acostensis PLS Globorotalia obliquut axtremus	NN18 Discosster Broinver/ Zone NN19 Parudoentidanie facunose Zone N	æ RM	Nuzechia munima Zona 🔗		1			*	6GY 8/1 N8/0 5GY 8/1 5G 9/2 5Y G/2 5Y G/1 5Y 5/1 N8/0 6Y 7/1 10 5Y 7/1 5Y 7/1 5Y 7/1 SY 7/1 N8/0 58 6/1 N8/0 59 7/1 N8/0 58 6/1 N8/0 59 7/1 10 59 7/1 59 7/1 50 7/1	and CALCAREOUS	MUD, very fi . few mottlet en laminae c rp base at 6, MARY (%) 3, 120 M TR 40 TR 12 47 TR 12 47 TR 12 47 TR 1 1 -	4,65 D 1 15 15 12 59 2 TR 1 TR SONATE (%)
		AG	AM	BP	в		c				N7/0			

	PHIC			OSS	L										
UNIT UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STBUCTURE	SAMPLES		LITHOLOGIC	DESCRIPT	FION	
						1	0.5			*	5Y 5/1 N8/0 10YR 6/1 5Y 6/1 5Y 7/1	FORAMINIFERAL 1 marty intervals and to bases at 4,03 to 4,05 mottled to homogene mottles.	olcanic ash m and 7.02	layers with to 7.06 n	h sharp h. Slightly
							1.0		1	ŀ	N8/0 5Y 7/1	SMEAR SLIDE SUM	MARY (%) 1,40 D	1, 115 D	3, 104 M
									11111		N8/0	Texture: Saivi Silt Clay		1.11.1	5 55 40
				RP		2	14414		1		5Y 7/1 to 5Y 5/1 5Y 7/1	Composition: Quartz Feldspar Mica	30 TR	25	35 5
							1111		1		N8/0	Heavy minerals Clay Volcarric glass Glauponite	TR 5 3	TR	2 25 20 TR
							111		1		5Y 7/1	Carbonate unspec. Foraminifers Calc. nannofossils	10 2 50	10 3 62	TR 5
		BATTERINE	*			3	1111		1		5Y 5/1	ORGANIC CARBON	1, 37-3		£%3
		shiquus ex	brouver' Zone				10.04		1		5Y 4/1 5Y 7/1 5Y 6/1 10YR 6/2 10YR 5/2	Carbonate	44		
		Glaboratelle obliquus	Discosser br				11111				NB/O				
		PL6 (NN18			4	11111				5¥ 6/1				
						1	1		1. -11-		N8/0 5Y 7/1 5Y 8/1				
						5	111		1						
						,	111		1		5Y 7/1 5GY 4/1				
									-4-		5Y 5/1 5Y 7/1				
						6	1		E		5Y 8/1				
											5Y 6/1				
						7		Void							
		AG	AG	Hib	165,	CC	-				5Y 8/1				

	2		F	ossi	A	T	RE	13 CORED	T	Г	L 114.6-12	
£	APH	<u> </u>	CHA	RAC	TER	_	32					
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRINCTURGS	SAMPLES		LITHOLOGIC DESCRIPTION
						1	0.5		+ + + 1		5Y 8/1 5Y 5/1 N8/0 5Y 8/1	SILICEOUS NANNOFOSSIL OOZE with marty intervals, serv light gray to light gray. Mottled with olive gray and gray mottles. Volcanic ash lamina at 5,47 m; ash bed at 2,91 to 2,88 m. SMEAR SLIDE SUMMARY (%)
						-	111 111				5¥ 7/1 5¥ 6/1	2,80 4,88 D Composition: D Quart – 20 Feldspar – 2 Mica – TR
		undifferentiated		ΰG		2			14		N8/0 to 5Y 8/1	Heavy minerais – 4 Clay 10 – Volcanie glas – 5 Glacomitec – TR Carbonate unspec. 10 15 Poraminicasits 65 Datoms 65 Radiolariums 1 2
		PL3-5 undif	- brouwer' Zone		vine Zore	3	in the second		11 11 7 11 11 1			Sporinge specules 10 ORGANIC CARBON AND CARBONATE (%) Organic carbon Carbonate 82
			NN18 Discouter		Nitzschie marine Zote	4	in the first				5Y 7/1 5Y 6/1 N8/0 5Y 6/1	
						_	1111		1		5Y 5/1	
					AG	5	the other		22244		N8/0	
									2		OG 5Y 6/2	
						ó	i firrit		-4 -51 -51 -51 -51 -51 -51 -51 -51 -51 -51		5Y 2/1 5Y 5/2 N8/0	
		AG	AG	RP	RP	7			**	-	5Y 8/1 Void 5Y 8/1 5Y 7/1	

	HIC			OSSI	TER										
UNIT	BIOSTRATIGRAPHIC	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC	DESCRIPT	TION	
						1	0.5		1		5Y 5/1 5Y 6/1	Interbedded NANNOF MUD with marly and i (pyrite) and gray-green	iliceous in	tervals. 1	Mottled with gray
1							1.0				N9/0	SMEAR SLIDE SUMM	3,70	4,70	6, 66
							1					Texture	м	D	M
							- 7		1 =			Sand	3	-	-
- 1							- 2					Silt Clay	32 65	2	1
- 1											1	Composition:		1.12	
							1.6		1 12			Ouartz Feldspar	25	10	15 2
						2	1.1	[1 11		10000	Mica	2	TR	-
						1	1.5	1			N9/0	Heavy minerals Clay	10	-	2
- 1							1 -	1		1	1	Volcanic glass	3	5	1
		pa	8				1.5	1	1 1		1	Glauconite	TR	7	TB
	- 1	undifferentiated	Zone				1.1	1++++++++++++++++++++++++++++++++++++++				Carbonate unspec. Foraminitera	10	7	25 TR
		2riện	in			-	-	+++++++++++++++++++++++++++++++++++++++			1	Calc. nannofossits	40	70	57
- 1	- 1	111	brouweri				1	1				Diatoms	TR	2	-
- 1	- 1	in the	Pure.					1	1.	1	1	Radiolarians Sponge spicules	1	7	-
		1.1	Discouter				1.4	1	1 h	1	1	Silicoflagellates	-	TR	-
		PL3-5	coa						E 10		and the second	?Dolomite		TR	2
- 1		L.	Dis			3	-		4		5Y 5/1 5Y 6/1	Acicular crystals			1
- 6							1.1	ナエュニュ	1 1		DY 601				
			NN18				1	T			12000.000	ORGANIC CARBON	AND CAR	BONAT	E (%)
			Z				-	T+++++			5Y 8/1		4, 70-	71	
						1	-	T+++++++++++++++++++++++++++++++++++++	1 13			Organic carbon Carbonate	66		
								F				Caroonate	00		
			-					T			5Y 8/1				
							- A				- (c				
- 1				AG			1.2	生いたいたい	1 1.		5Y 7/1				
						4			13	10	01 1/1				
	_						1.2								
-1	- 1		1		11	11	-	1 · · · ·		1	5Y 8/1				
			un.				1.2	1							
			13 2				-	1							
			pertaradiatus Zonii						1 10						
1			arad				1 3	1,	1 14	1					
1			erit.		2		1 6	· · · · · ·							
			r p		Zone				4		1				
			Discoaster		2	5			1 1:		N8/0				
			sco		INT	1					to N9/0				
			Di		2		-	han and and			14970				
			N		Nitzschie merine		1.8	1	11	11	1				
			LUNN 2		litz			1	1 1:						
			z		<	1	-	1	1 14	1					
							1 5	1	1	\square	5Y 7/1				
1								1, , , -	1		Surces.				
-1							1.1	T	1 12	1.1	TON AN				
						6		to at a to	1 ==	*	5GY 4/1				
- 1				1					1 1						
- 1							1 2			1	5Y 6/1				
							113		1		5Y 7/1				
- 1							1 3		4	E					
1							-	0.000		1					
					11	7	-	Void		1					
- 1					100	1				1					
1			AG			CC									

	PHIC			OSS	IL CTEF				T	Τ			
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		SECTION	GRAPHIC LITHOLOGY	DISTURBANCI DISTURBANCI	STRUCTURES	SAMPLES		LITHOLOGIC DESCRIPTION
			Discosster pentaradiatus Zone				1			11 11 11		NB/0	SILICEOUS NANNOFOSSIL OOZE, very light grav with darker grav and green grav mottles. Paic green grav lamine and pyrite patches. SMEAR SLIDE SUMARY (%) 1, 120 4, 21 D – Composition:
		PL3-5 undifferentiated	NN117 LINN		Nitzschia marina Zone	-	2					N8/0	Ouartz 5 5 Volcanic glass – TR Carbonate unges. 2 2 Forammilien 10 2 Cale: nannofossilis 67 77 Diatomi 1 1 Radiolarianis – TR Sponge spiculei 15 12 Salicoflagolazes TR 1
		d	surcuius Zone		Nitzsch		3			11 11 11 11 11 11 11 11 11 11 11 11 11		NB/0	ORGANIC CARBON AND CARBONATE (%) 1, 120–121 Organic carbon – Carbonate 86
			NN16 Discosster surcu				4					5Y 7/1	
					Niteschia jousnae Zone D		5					NB-0 5Y 8/1	
					W/test		6					N7/0 5G 4/2 N8/0	
		AG	AG	FG	AG	1 6	7		4	:			

	PHIC		F	OSS	IL							
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC DESCRIPTION
						2	1.0				5Y 8/1 to 5GY 7/1 5Y 7/1 N8/0 to N9/0	SILICEOUS NANNOFOSSIL OOZE, very light gray with darker gray and green gray mottles and/or diffuse laminae. Pyrite patches. SMEAR SLIDE SUMMARY (K) 2,3 2,106 D D Composition: 0 D Over12 10 – Pyrite 2 – Curbonate unspec. 3 TR Foraminifers. 7 B Foraminifers. 7 B Calc, nanofossiis 68 8/2 Diatomi 2 2 Radiolariana 2 2 Sponge spicules, 6 5
		undifferentiated	r surculus Zona		AG	3	to the former energy				5Y 7/1	ORGANIC CARBON AND CARBONATE (%) 2,5–6 Organic carbon Carbonate 66
		PL3-5	NN16 Discoaster			4					5GY 7/1 10 5Y 7/1	
					er Zone	5	and the set of the set		· · · · · · · · ·		5Y 8/1 5GY 7/1 5GY 8/1	
					Nitzschia jouseae	6	set contracts				N8/0	
		AG	AM	FG	FM	C	c				N8/0	

SITE 610 HOLE A CORE 17 CORED INTERVAL	- 153.0–162.6 m	SITE 610 HOLE A CORE 18 CORED INTERVA	L 162.6-172.2 m
	LITHOLOGIC DESCRIPTION	TINU TINU TADOLOCALING ANALOS	LITHOLOGIC DESCRIPTION
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 <td>SY 7/1 SMANDOCOSSIL QOZE, way light goay with darker goay and green reason may mottles und/or diffuse laminae, Pyrite patches. SY 7/1 SMEAR SLIDE SUMMARY (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0</td> <td></td> <td>NANNOFOSSIL OQZE, white to very light grav. Mottied with gray and pale gray green. Gray green diffue laminae common. SMEAR SLIDE SUMMARY (%) 2,65 Composition: 0 0 0 0 0 0 0 0 0 0 0 0 0</td>	SY 7/1 SMANDOCOSSIL QOZE, way light goay with darker goay and green reason may mottles und/or diffuse laminae, Pyrite patches. SY 7/1 SMEAR SLIDE SUMMARY (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0		NANNOFOSSIL OQZE, white to very light grav. Mottied with gray and pale gray green. Gray green diffue laminae common. SMEAR SLIDE SUMMARY (%) 2,65 Composition: 0 0 0 0 0 0 0 0 0 0 0 0 0
	5Y 7/1		

	610 2		-	LE OSS		T	1	19 CORED		—		
ę	APH	13	CHA	RAC	TER	_						
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITH	IOLOGIC DESCRIPTION
						1	0.5				Mortied with Occasional p N9/0 SMEAR SLII Composition Quartz SY 7/1 Carbonate ar	10 napec. 3
		undifferentiated				2			1		Foraminifers Gelc. nannofi Diatomi Radiolarians N9/0 Sponge spicu Silicoffagellar	tossils 83 T TR ules I
		PL3-5 un	Discosster surculus Zone			3	the state of the state of the				ORGANIC C Skrion-Inter Organic Carbonate N9/0	CARBON AND CARBONATE (%) rva (cm) 5, 7-6 on – 85
			NN16 Discoast			4			* * * *		5¥ 7/1	
						5			875		5Y 6/1 5GY 7/1 N9/0	
						6	in the second		2		N8/0 N9/0	
		AG	AM	FG	FP	cc					N9/0	

	PHIC		CHA	OSS	IL					L 181.8-1	
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES		LITHOLOGIC DESCRIPTION
		PL3-E undifferentiated	NN16 Discoaster surculus Zone			1	0.5		22 22222 22°	N8/0 10 N9/0 N9/0	NANNOFOSSIL QOZE, motified with purite, white to gray. Common diffuse green laminations. SMEAR SLIDE SUMMARY (%) 5.40 Composition: D Composi
			Reticulatenestra pseudoumbikus Zone			3	for the sector sector.		2111 Ann ann an a' <mark></mark>	N9/0	
			NN15 Ret		Nitzschiñ jouzeae Zone	5	A set of set of set of		· · · · · · · · · · · · · · · · · · ·	N9/0	
						6	and the set			N9/0	
		AG	AP	FG	FP	co			- 1	N9/0	

	E			ossi	IL.	<u>A</u>	Π	RE	21 CORED	TT	T	L 191.4-201.0 m		_
8	HAPH	<u> </u>	CHA	RAC	TER	-								
UNIT UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY	STRUCTURES		LITHOLOGIC DESCRIPTION	
	018	PL2 Globorotakia marganitae	NN15 Reticulationatra pseudoumbilica Zone NAN	RAC	Nitzechia (buseve Zene		1 2 3 4	0.5				N9/0 N9/0 Sy 7/1 N9/0	NANNOFOSSIL OOZE, while to gray, with pyrife motifies and pale green gray diffuse luminae. SMEAR SLIDE SUMMARY (%) 3,70 D Composition: Our to a state unspoc. Carbonite unspoc. Carbonite unspoc. Carbonite so Spenge specules 2 ORGANIC CARBON AND CARBONATE (%) 3,70–71 Organic carbon Carbonite 92	
				FG	FP		6				1	N9/0 to 5GY 8/1 N8/0 to N9/0		

e.	APHIC			OSS	TER										
UNIT - NOCA	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	BAMPLES		LITHOLOGIC DES	CRIPTION		
						1	0.5		00		10YR 8/4 5Y 5/2	CALCAREOUS MUD OOZE (0.00 to 0.80) Mattled, Common op lamine, Occasional o at 1.57 to 1.85 m.	m). Ofive gra	iv and ye and diffe	llow brown. ise gray grien
		oides				\vdash	-					SMEAR SLIDE SUM		1.101	0.75
		Cloboratalia truncatulinoides	1 Emiliania huxleyi Zone			2	a state of the second sec			•	5Y.6/2	Composition: Quartz Feldspar Heavy minerals Clay Volcanic glass Carboate unspec. Foraminifers Cale nantofossils	1,40 D 5 5 2 5 20 20 20 20 20	1, 105 D 20 5 	2,25 M 5 5 7 7 8 30 25 25 25 10
		N22	12NN			3	the second second		III III III III III III		5Y 5/3	Sponge spicules Organic matter	TR 1	2	-
		AG			69	4			"						
		AU	AU		F.P.	CC								_	

	PHIC			OSSI	TER						T				
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	SEDIMENTARY	SAMPLES.		LITHOLOGIC DES	CRIPTION	
						1	0.5		00	***		2.5Y 5/2 NB/0 10Y1 5/2 NB/0 5Y 7/1 10 2.5Y 7/1	and CALCAREOUS	MUD, very li leous to mat sal green gra	NANNOFOSSIL DOZE ght gray to olive gray tied with burrows and y diffuse lamine 3, 36
						2	interior in			*		5Y 7/1 2.5Y 7/1	Composition: Quartz Feldspar Heavy minerals Clay Volcanic glass Carbonato unspec.	D TR TR 3 TR 1	D 54 1 5 20 2 12
		Globorotalia truncatulinoides	1 Emiliania huxieyi Zone			3	in internetion			t III	•	2.5Y 5/2 2.5Y 6/2 5Y 6/1	Foraminifers Calc. manofossils Diatoms Radiolarians Spong: spicules Silicoflagellates	13 83 TR TR TR TR	3
		N22	NN21			4	in the dates of the			+ + + + + + + + + + + + + + + + + + + +		10YR 7/1 10YR 6/2 5Y 7/1 5Y 5/1			
		AG	AG		в	5	11 11			Ξ		5Y 6/1 to 5Y 7/1 5Y 7/1			

	PHIC		F	OSS	TER									
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUKTURES	SAMPLES		LITHOLOGIC DESC	RIPTION	
						1	0.5				5Y 7/1 2.5Y 5/2 5Y 7/1	Interbedded FORAMII and CALCAREOUS M and brown, Mottled, P Volcanic ash rich layer Very deformed beddin bedding at 5.00 to 7.50	UD, very i yrite halos at 7.80 m g 0.00 to 3	Zoophycos rare.
						2	the state of the s				5Y 5/1	SMEAR SLIDE SUMM Composition: Quartz Feldspar Cary Carbonate unspec. Foraminifen Galc.mamofonsis Radiolarium Spenge spikules	IARY (%) 3,95 D 58 1 25 10 5 1	5, 85 D
		oider .	a Zone			3	and and and and		- 44	•	10YR 6/2 5Y 7/1 5GY 7/1			
		N22 Globorotalia truncatulinoides	NN20 Gephyrocapse oceanics Zone			4	and and the				5Y 6/1 to 5Y 7/1 5Y 7/1 5GY 7/1 5Y 6/1 5GY 7/1			
						5	and the form				5Y 6/1 5Y 7/1			
						6	and a subset				5Y 5/1 N4/0 5Y 5/2			
		AG	AG		FP	7 CC			=		10YR 6/2 5Y 7/1			

FOSSIL CHARACTER			FOSSIL		
LOSSIF LOSSIF FORAMINEENS FORA	WELLSKY COLON	LITHOLOGIC DESCRIPTION	TIME - ROCK UNIT BIOSTRATICRAPH FORAMINIFERS MANNOPOSILS RADIOLATIONS RADIOLATIONS DIALTONS	SEDMERTURES SEDMERTURES SEDMERTURES	LITHOLOGIC DESCRIPTION
59 No.15 Gioteonala transtaulmoitee DP NN19 Proudeenilania lacunsia Zona du		Interbadded FORAMINIFERAL MANNOFOSSIL OO2E and CALCAREOUS MUD, very light gray to light offee gray and light brown. Mothed. Occasional gray green lammae. N7/0 SMEAR SLIDE SUMMARY (b) 2,112 2,112 2,140 0 D 0 D 0 D 0 D 0 D 0 D 0 D 0 D 0 D 0 D 0 D 0 D 0 D 0 D 0 D 0 D 0 Composition: 0 D 0 Feldsar 10 Symmetria 0 Foraminitem 3 10 3Y 7/1 Spongr spicules N8/0 to 10 10YR 7/1 N8/0 N8/0 to Symmetria 5Y 7/1 Spongr spicules 5Y 7/1 Spongr spicules 5Y 7/1 Spongr spicules 5Y 7/1 Spice 5Y 7/1 Spice 5Y 6/1 Spice	P DY MALE Standart Internationalities MALE Standaemiliansia bauratea Zone	NB/0 BY 7/1 to SQY 7/1 SQY 7/1 SY 6/1 SY 6/1 SQ 6/1 SY 5/1 SY 5/1 SY 5/1	Interbeddel FORAMINIFERAL NANNOFOSSIL OO and CALCAREOUS MUD, verviljeht grav to light olkur grav and light bown. Mottled. Vocanic abirich laver at 3.80 to 3.52 m, 549 to 5.53 m, and 5.85 to 5.87 m Highly disturbed by coring 0.0 to 3.0 m. Inclined bedding at 6.80 to 7.10 m. SMEAR SLIDE SUMMARY (%) 3.105 5.85 Tecture: 0 0 Sand 10 - Sand 10 - Sand 10 - Sand 10 - Gray 66 - Carpoolition: 0 - Guartz 42 - Feldbaar 1 TR Heavy minorah 4 TR Cuy 20 1 Volganic glast 4 TR Carbonate urispec 8 - Foraminifes 9 10 Cate, namofassih 12 89 Sponge spicules - TR

	PHIC	1		OSSI										
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY	STRUCTURES SAMPLES		LITHOLOG	IC DESCRIPT	TION
						1	0.5			Ŧ	5Y 7/1 to 5Y 4/1 5Y 6/1 5Y 7/1	and CALCAREOUS I gray and light brown and gray green lamin	MUD, very lig Mottled. Occ e. Rare Zoop s at 8.13 to 8	asional dropstones hycos: Volcanic ash .20 m and 8.50 to 8.57
							-			1	N8/D	SMEAR SLIDE SUM	MARY (%) 1, 125	5, 30
											10 5Y 7/1	Composition:	D	D
							1.2		1 4	-		Quartz	TR	58
						2	-	E	3		5Y 5/1 to	Feldspar Heavy minerals	-	3
						1			4 1		5Y 6/1	Clay Volcanic glass	TR	18
							1		4 6	-		Carbonate unspec.	1	8
											5Y 5/1	Foraminifers Calc. nannofossits	11 68	4
	6						-		1 1	Π.	1	Diatoms	TR	-
							1				N8/0	Sponge spicules	TR	
							-							
						3			1 F		5Y 6/1			
						1					BY 7/1 10			
		8	Zone				1			-	0.64			
		Globorotalia truncatulinoides	Pawdoemilkania lacunosa Zone				- 8	FREEE		1	2.5Y 5/2			
		atul	acum							-	N8/0 5Y 7/1 N8/0			
		TUNC	nia l						1 6		5Y 7/1			
		alia t	nilia				-		1 1	4				
		prot	duer			4					N8/0			
		doli	Panu			1			+	1	to			
		121	¢				1.5		ŧ .		5Y 7/1			
		N22	81NN				1.3	Finishen Serie and Andre	4 1	1				
							-	E	4		2.5Y 5/2 to			
								1F			5Y 5/3			
								1E		Ŧ				
					E 1				8 I.	1				
						5			i L					
							1.5	E	H E	-	5G 5/1 2.5Y 5/2			
										2	5GY 8/1			
									1 -	-	2.5Y 6/2			
								1E	1		2.5Y 5/2			
								1=	H L	-	5GY 6/1			
							1		+	-	5Y 5/1			
						6		1	d E		55 4/1 2.5V 4/2 55 4/1			
									1 [-	56.4/1			
							1.3	E	1 1		2.5¥ 4/2			
									4					
	1	L.c	CG		в		-		1 . F		2.5Y 5/2			

	PHIC		F	OSS	IL											
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLO	DGIC DI	ESCRU	PTION	
		N22 Globorotalia truncatulinoidas	NV19 Pasiotoeniilavia laisungas Zone			1 2 3 4 5 6	0.5				2.5Y 5/2 N8/0 10 N7/0 5Y 5/1 10 5Y 5/1 10 5Y 5/1 10 5Y 7/1 10 5Y 7/1 10 5Y 5/1 5Y 5/1	and CALCAREOU and light brown. M	S MUD, Incline MMAR 5,5 D 18 29 20 66 66 66 66 66 66 66 66 66 66 66 66 66	very II Rare Z Rare Z d lamin S, 6 D 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 7 8 1 1 3 3 5 5 5 5 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	NANNOFOSSIL OQZE gift grav to light olive gra opphysos. Volcanic eth- tase at 5:90 and 6:35 m.	9Y
		AG	CG		в	7	in the				5Y 5/1					

ITE 610 HOLE B			12		FOSS	IL.	TT	E 9 CORED		IVAL 72.0-81.6 m
Instant Processing Pro	RECTION RECTION RECTION RETERS METCAGE SETUCAGE RECTION RECTIO	LITHOLOGIC DESCRIPTION	TIME - ROCK UNIT BIOSTRATIGRAPH	ERS NE	RADIOLARIANS	SINOTAID	SECTION	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY STRUCTURES	LITHOLOGIC DESCRIPTION
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		SGY 5/1 Interbadded FORAMINIFERAL NANNOFOSIL OD2E and CALCAREOUS MUD, very light pay to light olive grav and light toown. Mottled. Rav Zogohytoc. Volcanic activitih layer at 0.55 to 0.58 m. Foraminiferal land at 1.74 to 1.76 m. SY 5/1 to 2.5Y 5/2 SMEAR SLIDE SUMMARY (%) 2.75 5/2 2.75 5/7 2.75 6/7 Ger 7/1 Ourtz 4 Heavy minerals 1 Carboniate unspect. 3 1 Carboniate unspect. SGY 7/1 Ourtz Carboniate unspect. 3 1 Carboniate unspect. 3 1 Carboniate unspect. 1 2 Carboniate unspect. SGY 7/1 Ourt Data unspect. 1 Carboniate unspect. 1 2 Carboniate unspect. 1 2 Carboniate unspect. 1 2 Carboniate unspect. SGY 7/1 Ourt Data unspect. 1 Carboniate unspect. 1 Carboniate unspect. 1 Carboniate unspect. 1 Carboniate unspect. SGY 7/1 Ourt Data unspect. 1 Carboniate unspect. 1 Carboniate unspect. 1 Carboniate unspect. 1 Carboniate unspect. SGY 7/1 Sys 6/2 1 SGY 7/1 Sys 6/2 1 SGY 7/1 SY 7/1 SG 7/2 Sys 6/2 SGY 7/1 SGY 7/1 Sys 6/2		N22 Globoratalia runcatulinoldea	NN19 Pauvioemiliania kountee Zont	D Mitzachia reinhobili Zone	1		+	SY 5/1 to SY 7/1 Interbedded FORAMINIFERAL NANNOFOSSIL QOZE and CALCAREOUS MUD, very light gray to light olive gray and light brown. Mottled. Rar 2 cophycol. Rar droptoms. Volcanic abt-rich bed at 7.13 to 7.19 m. SY 7/1 SY 7/1 SMEAR SLIDE SUMMARY (%) 0 SGY 7/1 SMEAR SLIDE SUMMARY (%) 0 Outartz 67 Outartz 67 Fildqaar 1 Nerendulini 3 Outartz 67 Composition: Outartz 7 Diatoms 3 Vicianic glass 3 Valcanic glass 1 Raidotarian TR Booge spoules TR Subcottaged spoules TR Subcottaged star TR

-			F	OSS	B						L 81.6-91.2		
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	TER	SECTION	SE GRAP LITHO	HIC LOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC	DESCRIPTION
	BIOSTR	N22 Gioborotalia truncatulinoides	NN19 Pseudoemiliania lacunosa Zone	RADIOL	DiaTole	3				1'AWS	N7/0 to 5GY 6/1 5Y 6/1 5Y 7/1 5Y 7/1 10YR 6/2 5Y 7/1 10YR 6/2 5Y 7/1 10YR 6/2 5Y 7/1 10YR 6/2 5Y 7/1 5Y 7/1	OOZE, NANNOFOSS MUD, very light gray	or homogeneous. Dropstones. r at 3.71 to 3.76 m.
					Nitzschia rewholdi/ Zone	6					N8/0 5GY 1/1 N8/0		
		AG	AG		FM	cc					N7/0		

×	APHIC		CHA	OSSI	L							
UNIT UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	STRUCTURES SAMPLES		LITHOLOGIC DESCRIPTION
		P.L.B. Globorotakia obligius extremus	NN18 Discoster brower Zone?		Mitzehia reinheideli Zene	3	0.5			·····································	2.5Y 5/2 5GY 7/1 5GY 7/1 5GY 7/1 2.5Y 5/2 5Y 5/1 5Y 7/1 5Y 5/1 5Y 7/1 5Y 5/1 5Y 7/1 5Y 5/1 5Y 7/1	Interchedide FORAMINI FERAL NANNOFOSSIL OOZE and CALCAREOLIS MUD, very light gray to light oting gray, Mottled or homogeneous. Volcanic ash at 8 5a os 50 m. <u>A 58</u> Omposition: Durit: TR Feldpar TR Ody 1 T Carbonate unspec. 1 Foraminiters 13 Calch: manofossik 84 Diaroms 1 Spoone spicules TR Silicoflagellates TR
		AG	AG		СМ	6 CC	-				5GY 7/1	

	PHIC			OSS	TER										
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC D	ESCRIPTIO	N	
						1	0.5		H-2-		5GY 7/1 to 5Y 5/1	NANNOFOSSIL OO gray to pale olive gra laminae. Pyrite mott interval at 7.10 to 7. SMEAR SLIDE SUM	iy, Mottled v les common 14 m. IMARY (%)	vith pale s Volcanic	reon grav ash-rich
						H						Composition:	3, 70 D	3, 142 D	5, 113 M
		THUS				2	the line of the li		*****		NB/O to	Ouartz Feldspar Volcunic glass Glauconite Pyrite Carbonate unspec.	15 1 	TR 1 	35 TR 35 16
		obliquus extr					0.000		-		5Y 7/1	Foraminifers Calc. nannofossils Diatoms Radiolariam Sponge spicules	8 60 1	3 75 2 1 3	5
		PL6 Globarotalia obliquus extremut				3	doorfron		· · 李 · · ·		2.5Y 4/2 5Y 7/1	and the store of the			
			Zant				item an				N8/0 to 5Y 8/1				
			Discosster browwei Zane			4	to firm		2-2-2		5Y 7/1 to 5Y 6/1				
			NN18 Dis				10.0		井		2.5Y 6/2				
			4N		Nitzschia reimboldii Zone	5	The state				N8/0				
					trachia re		=		# #	*					
					N	6	Turnel of		<u>:</u> :::::::::::::::::::::::::::::::::::		N8/0				
								Void							
		AG	AG		FM	7	1		ļ.,		5Y 7/1				

	HIC			OSSI	L TER										
IND	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC	DESCRIPTI	ION	
						1	05				5Y 5/1 5Y 7/1 5Y 6/1 5Y 6/1 5Y 4/1 5Y 5/1 5Y 5/1 5Y 6/1 5Y 7/1	NANNOFOSSIL 002 volcanic ath-rich beds gray in marky interval Mottling pervasive, py pale green gray lamin 4.82 m and 7.77 to 7, and 4.33 to 4.44 m.	. Oozé, sery k. rite common M. Dark gray	light gray 1. Occasio ash bed	to light onai at 4.75 to
		SIN				H	-		4		5Y 6/1	SMEAR SLIDE SUM	MARY (%) 3, 111	4, 30	6, 31
		Globorotalia obliguus extremus				2	0.000				5Y 0/1	Composition: Quartz Feldspar Mica Heavy minerals	25 - -	M 60 10 TR 5	M 75
		rotalia c							12		5Y 6/1	Clay Volcanic glass	5	20	15
		Globa				Н					5Y 5/1 5Y 6/1	Glauconite Carbonate unspec. Foraminifers	3	TR	TR
		PL6				3	and so the				5¥ 7/1	Calc: nannofossils Sponge spicules	68 1	5	5
			Zone				1994		==	•	5Y 6/1				
			Discoaster brouweri .			4			- 12- 11		5Y 5/1 5Y 5/1 10Y# 6/1 5Y 5/1 5Y 5/1 5Y 8/1				
			NN18 Diso				1000		11		N7/0 5Y 8/1				
					a Zone				4		5Y 6/1				
					Nitzschia marina	5	10110		-1		5Y 8/1				
					NI						5Y 7/1				
						6	1000		1	•	5Y 6/1				
		AG	AG		FP	cc	-				5Y 7/1 N8/0				

SIT

	2		F	oss	11.		T	14 CORED							
×	APH				TER	_									
UNIT UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	motavas	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOG	IC DESCI	RIPTION	B
						3	0.5		1		5Y 6/1	NANNOFOSSIL O FORAMINIFERA marity intervals. Mo green gray laminage to 7.80 m.	L OOZE (4,15 to 8 pyrite	3.33 m1, and Diffuse pale
						-			11 1 1		5Y 7/1 N8/0 to	SMEAR SLIDE SU	MMARY 1, 140 D	(%) 3, 141 D	6, 80 D
		entiated				3	2		+11		5Y 8/1	Quartz Feidspar Mica Heavy minerals Clay	15	10	20
		-5 Undifferentiated									5Y 5/1 N8/0	Volcanic glass Carbonata unspec. Foraminfiers Calc. nannofossils Diatoms	TR 10 8 61 1	TR 5 20 53	5 20 3 50 TR
		PL3-5					3					Radiolarians Sponge spicules	5	TR 12	TR TR
			eri Zone						a la		5Y 5/1 5Y 8/1				
			NN18 Discoster brouweri				3		t - 2 22 24 25		5Y.8/1				
			Z		ne,:		5				5Y 6/1				
					Nitzschia manina Zone	-			:# == #		5Y 8/1 5Y 5/3 5Y 2/1				
					Nita		5		****		5¥ 5/1				
							7				5Y 8/1				
		AG	AG		AM	C	c		1		5Y 8/1				

	610 ≌			oss		T					L 127.6–13				
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC	DESCRIPT	ION	
						1	0.5				5Y 7/1 5Y 5/1 5Y 8/1	NANNOFOSSIL OO VOLCANIC ASH bea gray to dark gray. Mo green gray and dark g SMEAR SLIDE SUM	ring beds, a stuled with o ray laminae MARY (%)	ery light i occasional	gray to I pale
						\vdash	-				0101	Texture: Sand Silt	2, 140 M 20 55	3, 110 D	4, 85
		undifferentiated				2			1	j	5Y 4/1 N2/1 10YR 5/1	Clay Composition: Quartz Feldspar	25 25 15	5	-
		PL3-5 undit					10.0				N3/1 N2/1 SY 5/1 SY 5/1 SY 5/1 N2/1 SY 5/1 N2/1 10YR 6/1	Mica Heavy minerals Clay Volcanic glass Glauconite	3 5 15 40 TR	1111	- 5 TR -
			r surculus Zone			3	and confirm		****		N9/0	Carbonate unspec. Foraminifers Calc. nannofossils Diatoms Radiodarians Sponge spicules Siticoflagellates	TR 2 	2 8 87 TR TR 2 TR	10 40 40 TR TR 5 -
			NN16 Discoaster			4	test configura				N8/0 to 5Y 7/1				
					Nitzschia marina Zone	5					5Y 7/1 5Y 5/1 5Y 6/1 5Y 8/1				
		AG	AG		СМ	6			+++ -+		5Y 7/1				

	610 9		HOL	oss			DRE	16 CORED		—	L 137.2-1	
ŝ	APH		CHA	RAC	TER	_						
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC DESCRIPTION
						1	0.5				5Y 8/1 5Y 7/1 to 5Y 6/1	NANNOFOSSIL OOZE with marily intervals and extranic ash rich interval (1.24 to 1.28 m), very light gray to light gray. Motsled, Occasional pale green/gray laminae.
		undifferentisted				2					5Y 7/1 to 5Y 6/1	
		PL3-5 und	Zone			з	the state of the state		* = = = = = = = = = = = = = = = =		5¥ 8/1	
			6 Discosser surculus Zone			4	A FREE DEPARTMENT				NB/0	
			NN16			$\left \right $			11 13 1		5Y 7/1	
					Nitzschla jouseae Znne	5			12 12 - 1- 12 I		N8/0	
					Nita	6			******		5Y 8/1 to 5Y 7/1	
						7					N.8/D	
		AG	AG		CG	co	-		1		N8/0	

ć	VHIC		CHA	OSS	TER							
UNIT UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	SEDIMENTARY	SAMPLES	LITHOLOGIC DESCRIPTION
	18			7H	ō	1	0.5		20		* SA	2.5Y 5/2 Interbedded CALCAREOUS MUD and FORAMINIFERAL NANNOFOSSIL ODZE, olive grav to very light grav, Motile div burrowing, Zoophycor present. Volcanic ash layer at 0.72 to 0.79 m. Pale green/grav laminae. 10YR 6/1 SMEAR SLIDE SUMMARY (%) 10YR 6/1 0 5Y 6/1 Composition: Quartz 5Y 5/1 Composition: Carbonate unspec. Dotate unspec. 5Y 5/1 Composition: Carbonate unspec. 5Y 5/1 Composition: Carbonate unspec. 5Y 5/1 Composition: Carbonate unspec. 5Y 5/1 Carbonate unspec. 2.5Y 5/2 SY 5/1 5Y 5/1 String Grammatic String Stri
		N22 Globorotalia truncatulinoirdes	NN21 Emiliaria huxleyi Zone			2				S		5Y 8/1 5Y 7/1 5Y 8/1
						3	the Level					5Y 5/1 5Y 6/1
		AG	AG		в	cc	4					5Y 7/1 5Y 7/1

	DHIC		СНА	OSS	IL	2									
TINU	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC D	ESCRIPTI	ON
							0.5		0		114	N8/0	Interbedded CALCAR NANNOFOSSIL OOZ Mottled. Zoophycos. F	E, olive gra	
		Globorotalia truncatulinoides	Emiliania huxleyi Zone			1	1.0 -					5Y 6/1 to 5Y 5/1	SMEAR SLIDE SUM Texture: Sand Silt Clay Composition: Ouartz Feldpar Clay Volcanic glass Carbonat unspec. Foraminifers Calc.namofossis Organic matter	ARY (%) 1, 142 D 25 73 47 5 10 5 25 1 5 25 1 5 2	2,81
		N22 Glaborot	NN21 Emilian			2				* · · · · · · · ·		5Y 7/1			
						3	-					5Y 8/1 5Y 8/1			
		AG	AG		в	co	-	Void		1222		5¥ 7/1			

~	PHIC	-		OSSI	L								
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY	SAMPLES		LITHOLOGIC	DESCRIPTION
		N22 Gioborotakia truncatulivoides	NN 19 Peerdoemiliania lacunosa Zona			3	0.5				N8/0 to 5Y 8/1 5Y 8/1 5Y 8/1 5Y 8/1 5Y 8/1 5Y 7/1 5Y 6/1 5Y 5/1 5Y 6/1 5Y 5/1 5Y 6/1 5Y 5/1 5Y 5/1 5Y 5/1 5Y 5/1 5Y 5/1 5Y 5/1 5Y 5/1 5Y 6/1 5Y 6/1	and CALCAREOUS and brown. Dark gray mud at 4.11 to 4.40 8.02 to 8.07 m with	INIFERAL NANNOFOSSIL OOZE MDD, very light gray to olive gray y patches of volcanic adh rich msociated bioturbatted . Mostled. Gray/green laminae. MARY (%) 3, 130 D 10 50 40 40 40 5 5 5 5 5 5 5 5 5 5 5 5 5
			AG		в	6					10YR 4/1 5Y 4/1 5Y 4/1 '0YR 4/1		

FOSSIL CHARACTER	R		APHIC	FOSSIL				
UNIT UNIT UNIT ZONE FORAMINIFERS MANNOFORSILS RADIOLATIANS DIATOMS	RECTION RELEAS RECTION RELEAS RECTION RELEAS RECTION RELEAS RECTION RELEAS RECTION RELEAS RECTION RELEAS RECTION RELEAS RECTION RELEAS RECTION RELEAS RECTION RELEAS RECTION RELEAS RE	LITHOLOGIC DESCRIPTION	TIME - ROCK UNIT BIOSTRATIGRAP ZONE FORAMINIFERS	NANNOFOSSILS RADIOLARIANS DIATOMS	SECTION	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION
DV N22 Globerotalle truncetul/inclute D NN19 Pacubernil/anti dicurrate Zonq		SY 0/1 SY 2/1 SY 2/1 OOZE and CALCAREOUS MUD, very light pay to olve gray, Dark pay volcamic advicts intervals at 0.2 to 30 gray, 0.87 to 27 m. 3 99 to 4.0 gray, 0.87 spay, soleanic advicts intervals at 0.2 to 8.0 gray, 0.87 to 27 m. 3 99 to 4.0 gray, 0.87 spay, 0.8 are 0.7 m. 3 99 to 4.0 gray, 0.8 are 0.7 m. 3 90 to 4.0 gray, 0.87 to 27 m. 3 99 to 4.0 gray, 0.8 are 0.7 m. 3 90 to 4.0 gray, 0.8 are 0.7 m. 3 90 to 4.0 gray, 0.8 are 0.7 m. 3 90 to 4.0 gray, 0.8 are 0.7 m. 3 90 to 4.0 gray, 0.8 are 0.7 m. 3 90 to 4.0 gray, 0.8 are 0.7 m. 3 90 to 4.0 gray, 0.8 are 0.7 m. 3 90 to 4.0 gray, 0.8 are 0.7 m. 3 90 to 4.0 gray, 0.8 are 0.7 m. 3 90 to 4.0 gray, 0.8 are 0.7 m. 3 10 to 4.0 gray, 0.8 are 0.7 m. 3 10 to 4.0 gray, 0.8 are 0.7 m. 3 to 5.5 to 5.	PL8 Grobovozňie edvigunz tertnenuz	B) Discouter Innumeri Zona	4			6Y 6/1 Interbadded NANNOFOSSIL OOZE and IMARLY) NANNOFOSSIL OOZE were light grav to light oliver and light brown. Dark grav volanic ash layer at 1.35 to 1.40 m, 3.70 to 3.70 m, 7.69 to 7.70 m, and 7.83 to 7.86 m. Mottled, Pale grant/grav luminae. NS/0 SMEAR SLIDE SUMMARY (%) 1.138 1, 140 4, 16 SW 7/1 Mca NS/0 SMEAR SLIDE SUMMARY (%) 1.138 1, 140 4, 16 Composition: Out tz 4 Out tz 4 SY 7/1 Mca Mca TR Volcanic glass 75 SY 8/1 0 SY 6/1 0 SY 6/1 5 SY 7/1 SY 6/1 SY 8/1 SY 7/1 SY 8/1 SY 7/1 SY 8/1 SY 8/1 SY 8/1 SY 7/1

			F	oss	C IL CTER			6 CORED					
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	REFILION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC D	ESCRIPTION
							0.5-					NANNOFOSSIL DOZE	OSSIL ODZE and MARLY , very light gray to light olive folcanic ash interval 1.15 to preon/gray laminee.
							1.0				NB/U	SMEAR SLIDE SUMM Composition: Quartz	ARY (%) 5,130 D
							2				t0 5GY 7/1	Heavy minerals Clay Volcanic glass Cale, nannofossili Diatoms Sponge spicules	2 20 1 40 TR TR
											5Y 6/1		* Reassessed. Questionable position
								新生生			5Y 7/1		(st2l),
		Giobaratalia obliquus extremus	eri Zone			;	3				N8/0		
		la obligu	ir brouwe				8	문화로	1		5Y 6/1		
			8 Discosser brouweri Zone								NB/0.		
		PLG	NN 18			*					5Y 6/1		
									1		5Y 6/1		
							5		\$11 II I		N8/0 10 5GY 7/1		
									-				
							6						
											5Y 6/1		
							7	Void			0.000		
		AG	AG	1	в	S	c			1	5Y 4/2		

	PHIC			OSS	TER										
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	SAMPLES		LITHOLOGIC	DESCRI	PTION	
						1	0.5			•	2.5Y 6/3 2.5Y 5/2 2.5Y 5/2	Interbedded CALCA NANNOFOSSIL OO gray. Dark gray volca and parto at 6.55 m pale green/gray patch SMEAR SLIDE SUM	ZE, olive nic ash-ci Mottled, man ooz MARY (5	gray and i ch beif at <i>Zoophyc</i> e layers, C 6)	brown to very light 3.51 to 3.53 m os. Occasional Dropstones.
		Glabiorotalia truncatulim idez	Ernitiania huxleyi Zone			2					5Y 5/2 5Y 5/2 5GY 6/1 2.5Y 6/2	Texture: Sand Silt Cary Composition: Querta Felopar Heavy minerals Carbonate unpec. Foraminifers Calc. namofossile Diatoms Radiolarians Sponge spicules	1,8 	1,96 15 30 50 67 1 2 15 10 2 1 10 2 1	4,55
		Globarotalia	NN21 Emi			4					N8/0 2.5Y 7/2 N8/0 2.5Y 7/2 N8/0 5Y 7/1 2.5Y 5/2				
		AG	AG		в	6			-1-1		2.5Y 7/2 2.5Y 6/7 5Y 5/2				

TIME - ROCK UNIT

SITE 610 HOLE D

G. truncatulinoides NN21 Emiliania huxieyi Zone

AG

FOSSIL CHARACTER SUSSIL CHARACTER SUSSICUTION SUSSICUT

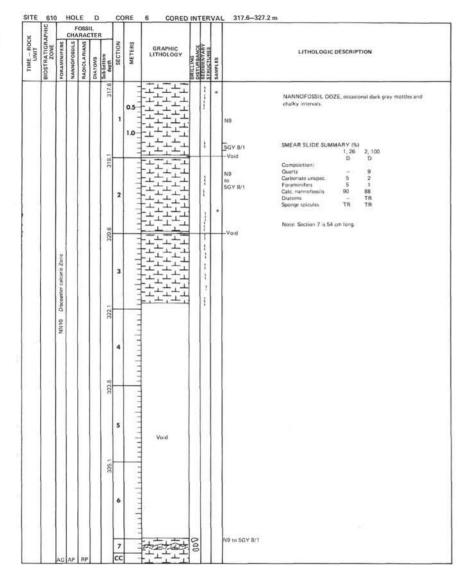
								×	APHIC	h	CHA	_	
SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES		LITHOLOGIC	DESCRIP	TION	TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS
1	0.5			5Y 6/1 5Y 7/1 5Y 6/1 to 5Y 7/1 N8/0	NANNOFOSSIL OO	ZE, ofive gi tones. Zooj m.	UD and FORAMINIFERAL ray and brown to very light phyces. Volcanic ash+ich		8	-	Z	R	0
2				5Y 7/1 5Y 5/1 5Y 6/1 to 5Y 5/1	Texture: Sand Silt Composition; Quartz Feldspar Heavy minerals Clay Volkanic glass Pyrite	5. 20 D - - - TR 1 TR	5, 75 D 20 35 45 58 1 3 225 1				Zone		
3				58G 4/1 5Y 5/1 to 5GY 6/1 2.6Y 5/2	Carbonate unspec, Foraminifers Calc. nannotossils	1 15 83	10 1 1			G. truncatulinoides	Pseudoemiliania lacunosa		
4			* ****	5GY 6/2 5GY 7/1 5Y 6/1 5Y 7/1 5GY 7/1 5GY 7/1 5GY 7/1 10 5Y 7/1							61NN		
5	and so the set	Void	 	N8/0 5GY 5/1 2.5Y 5/2 5G 5/2 2.5Y 5/2									

2.5Y 5/2 2.5Y 6/2 5Y 7/1 5Y 6/1 5Y 7/1 5Y 6/1

N8/0

Void

7


cc

E	-		F	E OSSI RAC	-	T	RE	3 CORED	Π					
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOG	IC DESC	RIPTION
						1	0.5				N8/0	NANNOFOSSIL OG gray. Thin (1-5 cm	OZE, olin) volcani 3.82 and	SMUD and FORAMINIFERAL re gray and brown to very light is alth-rich beds throughout, 4.12 m. Foraminiferal sand illy mottled.
									1			SMEAR SLIDE 5U	2,115	4, 45
			Zone			2	THE FEETEN			1	5G 5/1 2.5Y 6/2 5G 4/1 5G 5/2 5G 5/2 5G 4/1	Texture: Sand Silt Clay Composition: Quartz Feldspor Heavy minerals Volcanic glass	D 15 35 50 51 1 5 6	D
		G. truncatulimoides	Pseudoemiliania lacunosa			3		pp			5Y 5/3	Carbonate unspec. Foraminifers Calc. nannofossits Diatoms Sponge spicules	10 13 5 TR	1 14 84 TR TR
			6LNN			4	and and areas		41 1 22 -1		2.5Y 5/2 N8/0 5G 7/2 N8/0 5G 7/2 N8/0 2.5Y 6/2 2.5Y 5/2 2.5Y 5/2			
						5	d'accellance			1 1 1	2.5Y 6/2 2.5Y 5/2			
		AG	AG		в	6	and a second second				5Y 6/1 to 5Y 5/2 5G 5/1 2.5Y 5/2 5G 5/1 2.5Y 5/2 2.5Y 5/2 2.5Y 5/2 2.5Y 5/2			

	HIC			oss								
UNIT UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	SWOLVIO	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC DESCRIPTION
						2	0.5				2.5Y 5/1 A8 3Y 7/1 2y 7/1 5Y 5/2 5Y 5/2 2.5Y 5/2 5G 4/1 SCY 6/1 to 5Y 5/1 5Y 5/2	Inter-biedid CALCAREOUS MUD and FORAMINIFERAL NANNOFOSSIL 002E, olive brown and brown to pale green and gray. Thin (1–6 cm3 volcanic rich beds through- out; occasional pobbles (drosstones), Zoophycos: sedimentary (valis at a Section 4, 10 cm (4 cm) obmosed predominantly of pyrite micromodules and volcanic ath. SMEAR SLIDE SUMMARY (%) 3, 40 6, 45 M D Texture: Sand 30 – Sitt 25 – Capy 25 – Capy 35 – Capy 15 – Composition: Ouartz 71 – Feetapa 1 TR Heavy minorah 3 – Clapi 10 TR Volcanic glass 14 – Carbonate unspec. 1 –
		truncatulinoides	Pseudoemiliania lacunosa Zone			3	and another a				50 4/1 5V 5/2 50 4/1 5V 5/2 2 5Y 5/2 2 5Y 5/2	Carbonite unspec. 1 Foraminifers – 11 Calc. nannofossils TR 89 Duatoms – TR Sponge spicules – TR
		G. trunt	NN19 Pseudoern			4					N8 5GY 6/1 to 5Y 5/2 8 GY 7/1 5Y 5/1 5Y 7/1 5Y 7/1 5GY 5/1 5GY 5/1 5GY 5/1 5GY 5/1 5GY 5/1 2.5Y 5/2 2.5Y 5/2 2.5Y 5/2	
						5	the second second second				2.5 y 7.2 2.5 y 5.2 5G y 7/2 5G y 6.1 5Y 5/2 to	
		AG	AG		FM	6			abor adams are are		2.5Y 5/2 5GY 7/1 10 N8 5GY 7/1	

	HIC			OSS	L				Π			
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	STRUCTURES SAMPLES		LITHOLOGIC DESCRIPTION
						1	0.5				5GY 7/1 to 2.5Y 5/2	Interbedded CALCAREOUS MUD and FORAMINIFERAL NANNOFOSSIL OOZE, olive brown and brown to white and pale green. Thin (1-7 oni volcanis-rich beds through- out; Zoophycos; occasionally motified.
						2					- 5G 4/1 2.5Y 5/2	
		Globorotalia truncatulmoides	Preudoemiliaria lacunosa Zonc			3	or return on				56Y 7/1 5Y 7/1 to 2.5Y 5/2 2.5Y 6/2 2.5Y 5/2 2.5Y 6/2 2.5Y 6/2 5GY 7/1 to 5GY 6/1	
		Globorotal	NN19 Pseudoemilia			4					2.5Y 5/2 5GY 7/1 N9 5GY 7/1	
						5	and a set of second	pp		11 17 - 1	5GY 7/1 to 5GY 5/1 2.5Y 5/2 to 2.5Y 6/2 5GY 7/1 5GY 8/1 5GY 8/1 5G 4/1 2.5Y 5/2	
						6	a contractor o				5GY 7/1	
		AG	AG		в	cc				-	2.5Y 5/2 to 2.5Y 6/2	

421

	APHIC			OSS	TER						
UNIT UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES		LITHOLOGIC DESCRIPTION
						1	0.5		0000	N9 to 5GY 8/1	NANNOFOSSIL QOZE to CHALK pale green to white; com- mon Zoaphycol; some dark mottling. Disturbance is in the form of drill biscuits with occasional flowage or tragmentation.
			Discoaster calcaris Zone			2	to the test for the			- 5GY 8/1 N9 5GY 8/1 N9 5GY 8/1 N9	
			NN10			3				N9	
						4			~		
		AG	AG		6	cc	-		11-1-	5GY 8/1	

2	THIC	3	F	OSS RAG		R						
UNIT UNIT	BIOSTHATIGHAPHIC ZONE	FORAMINIFERS	NANNDFOSSILS	RADIOLARIANS	DIATOMS	Sub-bottom depth	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENYARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
		Gioborotalia margaritae	NN12 Ameurelithus tricomiculatus Zone				2	0.5				NANNOFOSSIL OOZE, white Zengehycos at Section 3, 55 cm. Pyrilized worm burrow at Section 2, 135 cm; dark mottling throughout. SMEAR SLIDE SUMMARY (%) 2, 100 Composition: Quartz 9 Carbonate nnspec 2 Foramatifera 1 Cale. nanofosilis 88 Diatoms TR Sponge spicules TR
	_	AG	АМ		FP.		4 CC	-				

×	APHIC	_	CHA	_		1						
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-bettern depth	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY		LITHOLOGIC DESCRIPTION
			Amaurolithus tricomiculatus Zone				1	0.5				NANNOFOSSIL OO2E, white, dark gray mottling throughout; 2 cm pyrite-rich layer at Section 3, 10 to SMEAR SLIDE SUMMARY (%) 3, 108 Composition: Pyrite 10
		Globigerina nepenthes	NN12 Amaurolit				2	10.03 CONTRACTOR			1	Carbonate unspec. 5 Foraminifers 2 Calc, nannolossils 81 Diatoms 1 Radiolarians TR Sponge spicules 1
		Globige	mus Zone				3	to characterization				
			NN11 Discuster quinqueranus Zone				4	CONTRACT (ALC				
		AG	AM		в		5	-				

SITE 610

UNIVERSIDE NO UNIVERSIDE NO Signification Signification NO Signification Signification	₽ FOSSIL	RED INTERVAL 279.2–288.8 m	SITE 610 HOLE E CORE 4 CORED INTERVAL 288.8
N9/0			
000 000 <td>0.5 1 1 0.5 1 1 1 1 1 1 1 1 1 1 1 1 1</td> <td>N9 5GY 7/1 NANNOFOSSIL CHALK, while to very pale green; occasional green (5G 7/1) laminase at 8.46 to 8.58 m. Dark motifing throughout. Slight drilling disturbance in the form of drill bucuits.</td> <td>B B C C C C C C C C C C C C C</td>	0.5 1 1 0.5 1 1 1 1 1 1 1 1 1 1 1 1 1	N9 5GY 7/1 NANNOFOSSIL CHALK, while to very pale green; occasional green (5G 7/1) laminase at 8.46 to 8.58 m. Dark motifing throughout. Slight drilling disturbance in the form of drill bucuits.	B B C C C C C C C C C C C C C

5GY 8/1

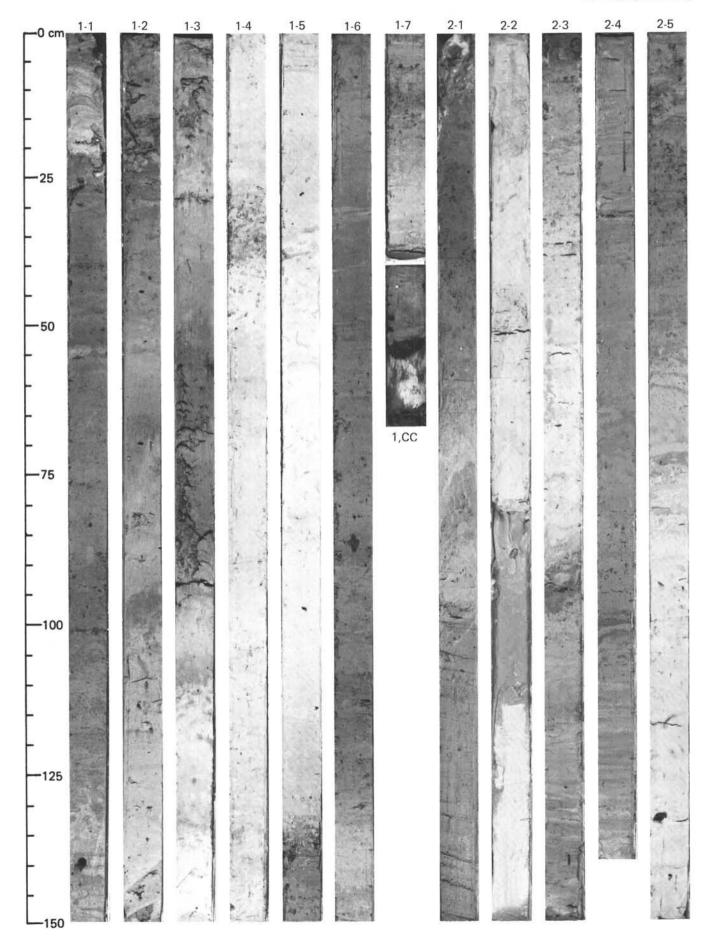
6G 7/1

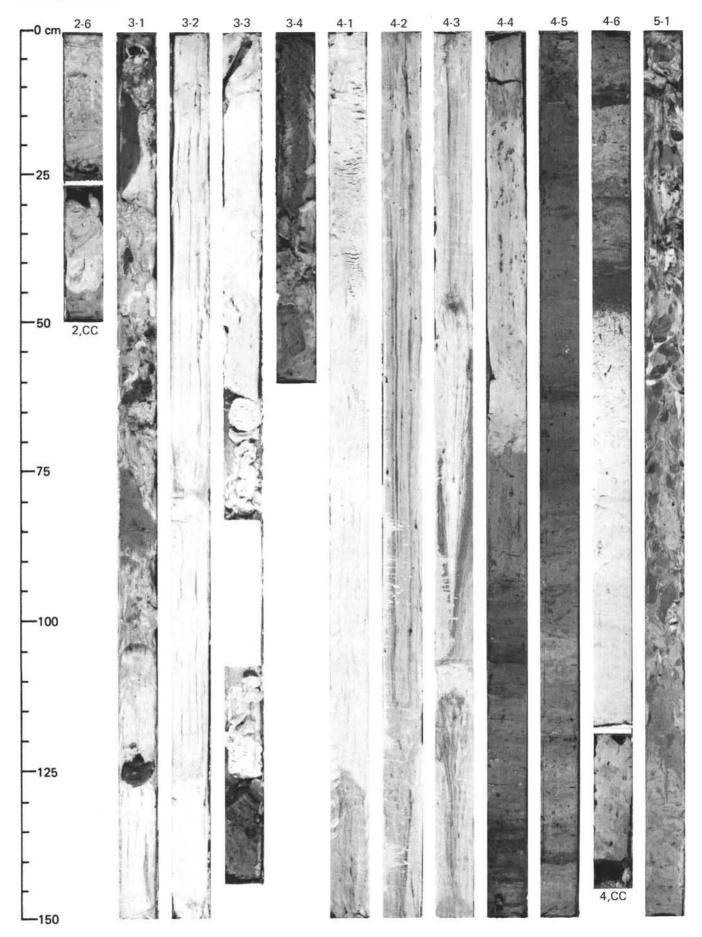
NU

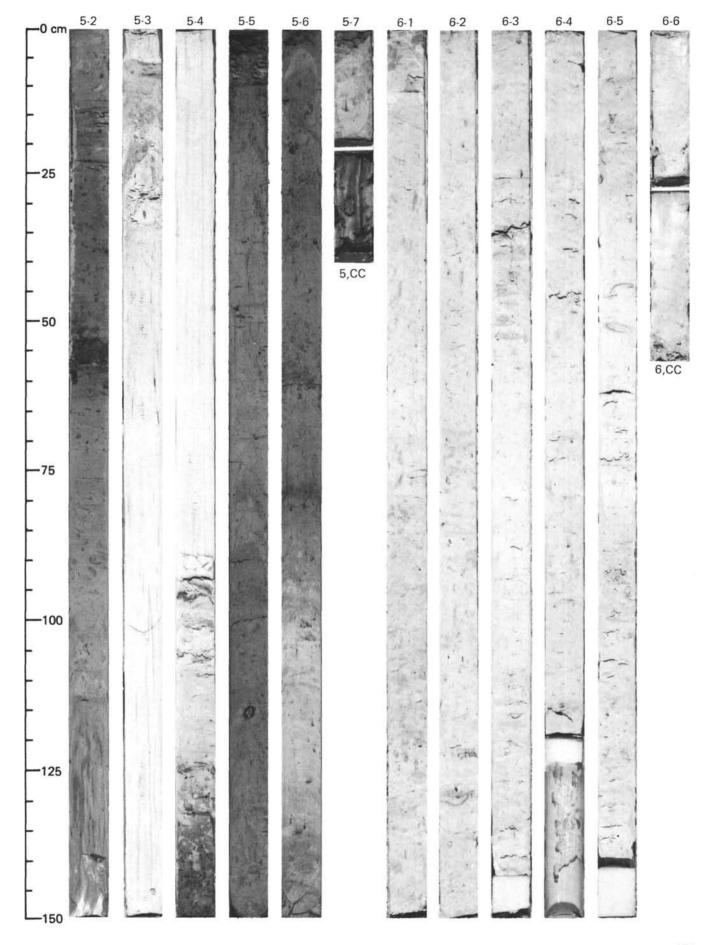
CC

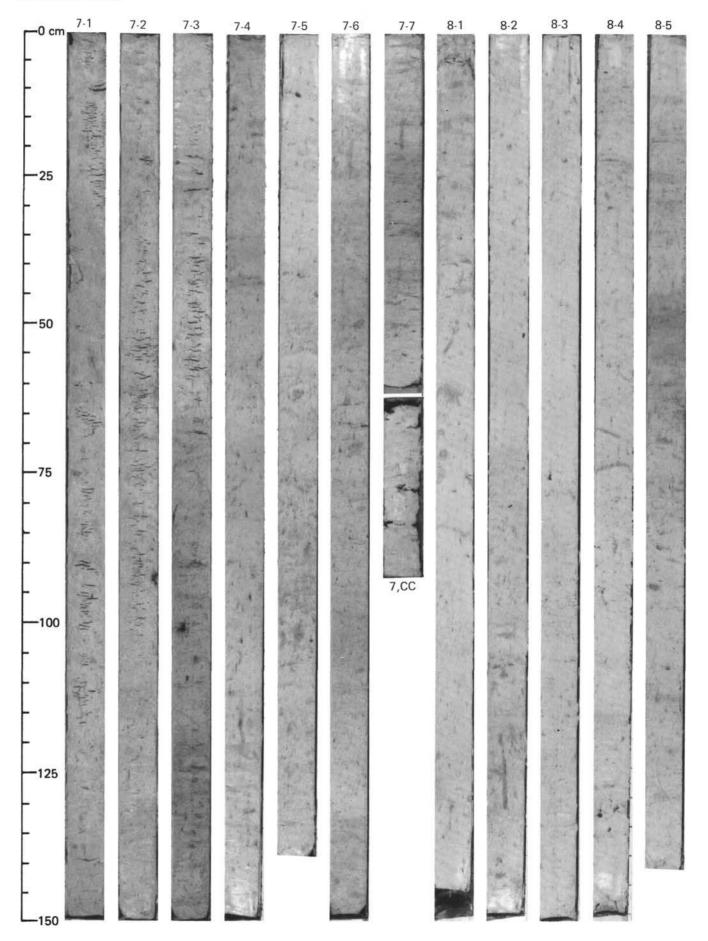
1		CHA	RAC	TEF	R							
FONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-bottom depth	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SECIMENTARY	SAMPLES	LITHOLOGIC DESCRIPTION
	Globigarina neperithes PORAMIN	NN11 Discouster quinqueramus Zone NAMOFC	RADIOLA R	B	Sub-better depth	3	2 0.5			SERUCTU SECONDER	* SAMPLES	NANNOFOSSIL CHALK, white with faint green hue. Very homogeneous. Occasional Zoophycoz. Faint green laminee at 6,10 m. Slight drilling disturbance in the form of drill biscuits. SMEAR SLIDE SUMMARY (%) 2,130 D Composition: Carbonite unspec. 1 Foraminifers 3 Calc. nannofossils 96
						5	and the data					N9/0
						6	11111		1			5G 9/1

5G 9/

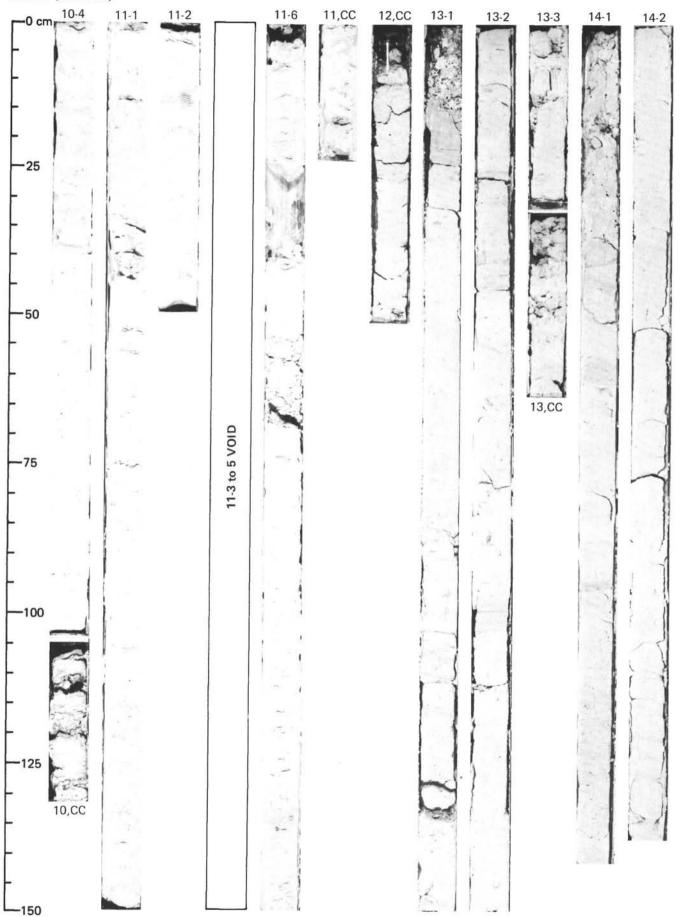

co

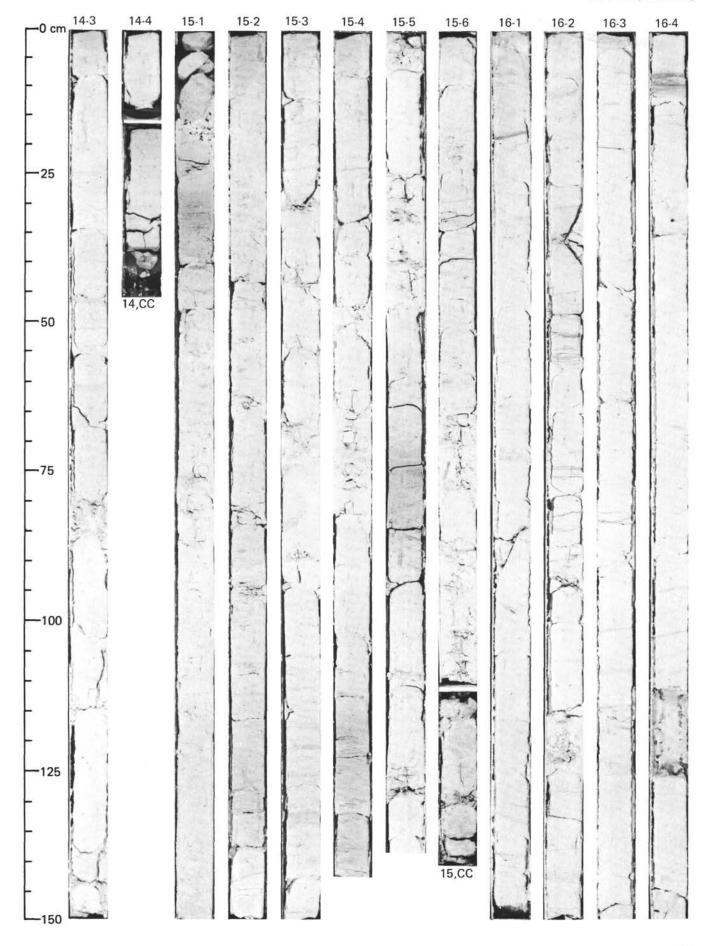

TE		0 1	F	OSS	IL.	. 11		RE	5 CORED	П	Г	L 298.4-308	
	APH	<u> </u>	CHA	RAG	TE	R							
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-battom depth	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	SAMPLES		LITHOLOGIC DESCRIPTION
9	ISO18	Giobigarina insperithes FORA	NN11 Discoaster quimqueriaruu Zone	DIGYU	B B	26/bit	3	0.5				N9/0 5Y 7/1 N9/0 5G 7/1 5P 7/1 5GY 7/1 N9/0 5Y 7/1 N9/0 5Y 7/1 SGY 7/1 N9/0	NANNOFOSSIL CHALK, while, becoming very pale green towards base. Occasional pale green/gray faminae. Common Zoophycoz. Otherwise homogeneous. Drilling disturbance in the form of drill biscuits. SMEAR SLIDE SUMMARY (%) 1,63 0 Composition: Carbonate unsport Forministe Composition: Domogeneous Dom
							6					5GY 7/1 N9/0 to 5G 9/1	
		AC	AG		8		7			000		5G 9/1 5G 9/1	

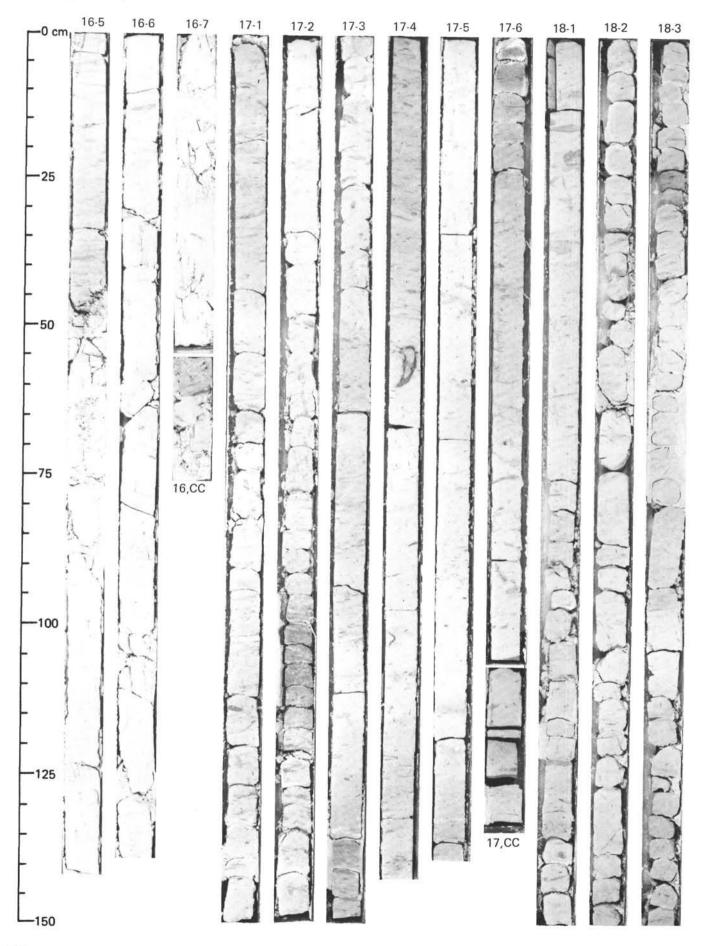

×	PHIC		F	OSS		R								
TIME - ROCK	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-bottom depth	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	STRUCTURES	SAMPLES		LITHOLOGIC DESCRIPTION
							1	0.5					5G 9/1	NANNOFOSSIL CHALK, very pule green, lightly mottled in places. Occasional Zoophycor. Sharp, pyritized iaminae, 4.18 m. Pyrite halos. Some drill biscuit coring deformation.
		Globigerina nepenthes	Discoaster quinquerartus Zone		RP		2	The state of the second		1 1 1 1 1	* * *		.5G 9/1	SMEAR SLIDE SUMMARY (%) 3, 80 D Composition: Feldipar TR Foraminifers 9 Cale, nanofosilis 90
		Glos	NN11 Discoss				3	and the fam					5G 9/1 N4/0	
							4	There is the second		- 40			5G 9/1	
		AG	AM		в		œ	-		-			5G 9/1	

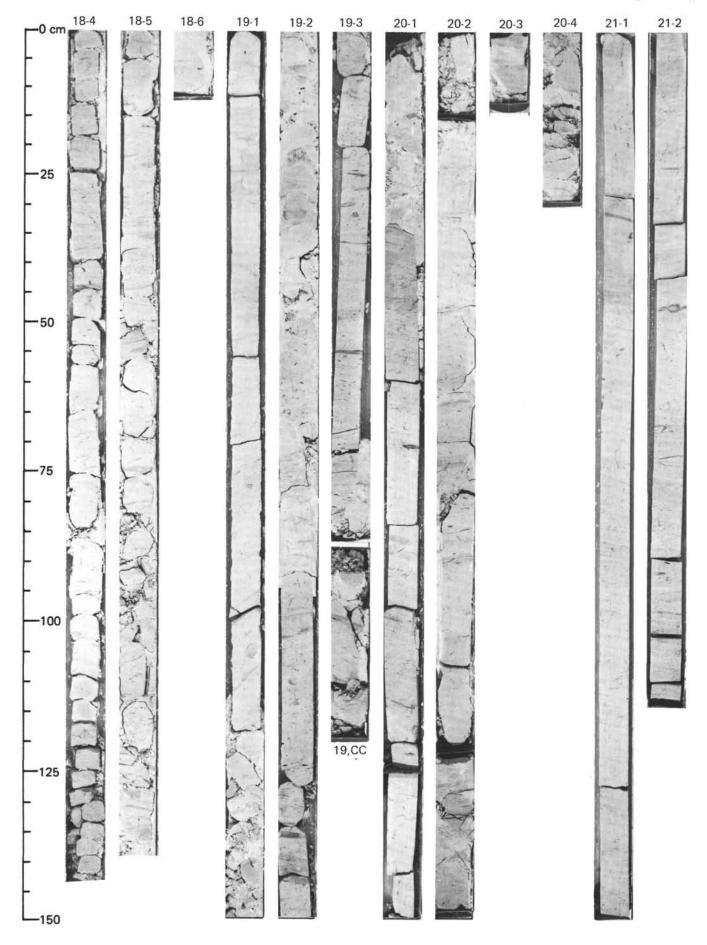

SITE 610

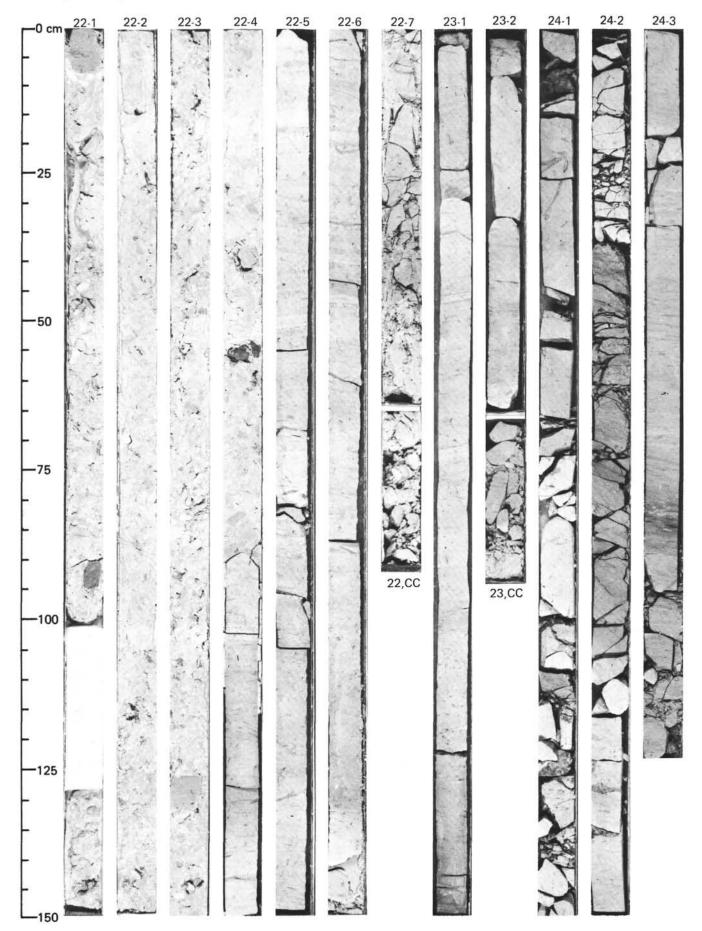
	PHIC		F	OSSI	L	4								
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS			SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE	SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC DESCRIPTION
	10	Globigerma napanther	NN10 Discoaster calcaris Zone NN11 Discoaster quinqueranus Zone N	80	2	36	1 2 3 4 5	0.5		1 1		88	N9/0 N8/0 N9/0 5G 8/1 5G 9/1 5GY 7/1 5GY 7/1 5GY 7/1 5GY 7/1 5G 9/1 5G 9/1 5G 9/1 5G 9/1 5G 9/1 5G 9/1 5G 9/1	NANNOFOSSIL CHALK, white to very pale prent. Occasional months. Common Zoophyscos. Docasional prent/gray luminae. Drift biscuits throughout. MEAR SLIDE SUMMARY (%) (%) Composition: Promonitor: Composition:
		AG	AG		в		6 CC			1			5G 9/1 5G 9/1	

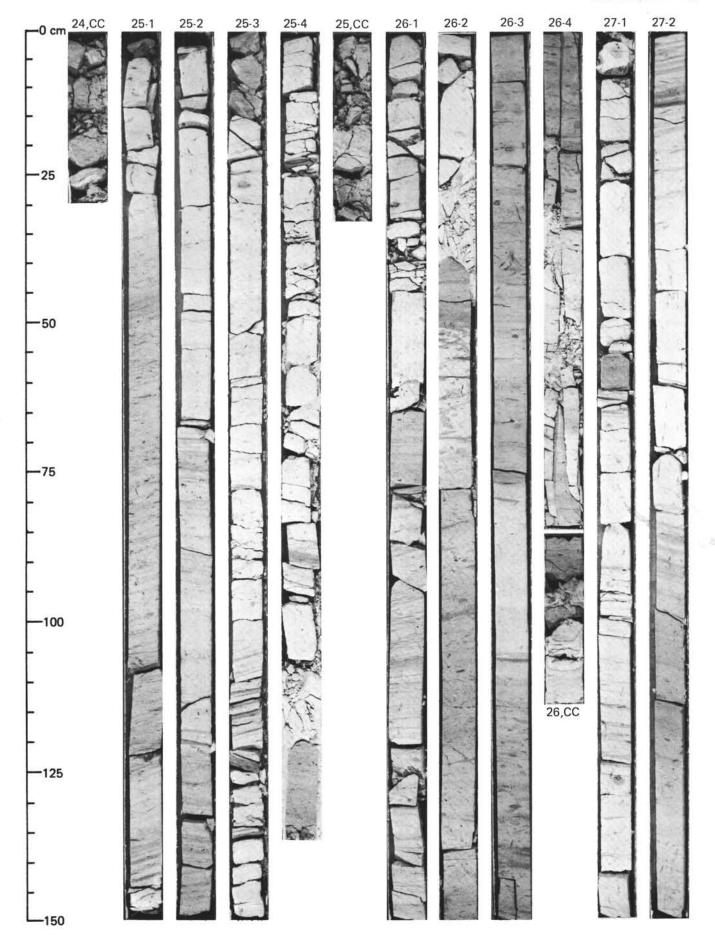


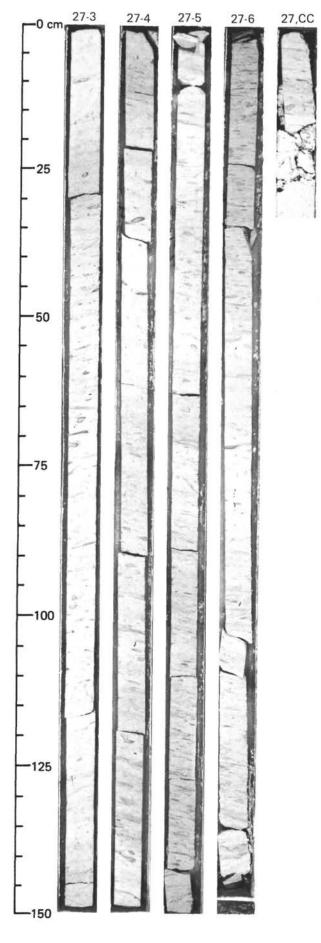


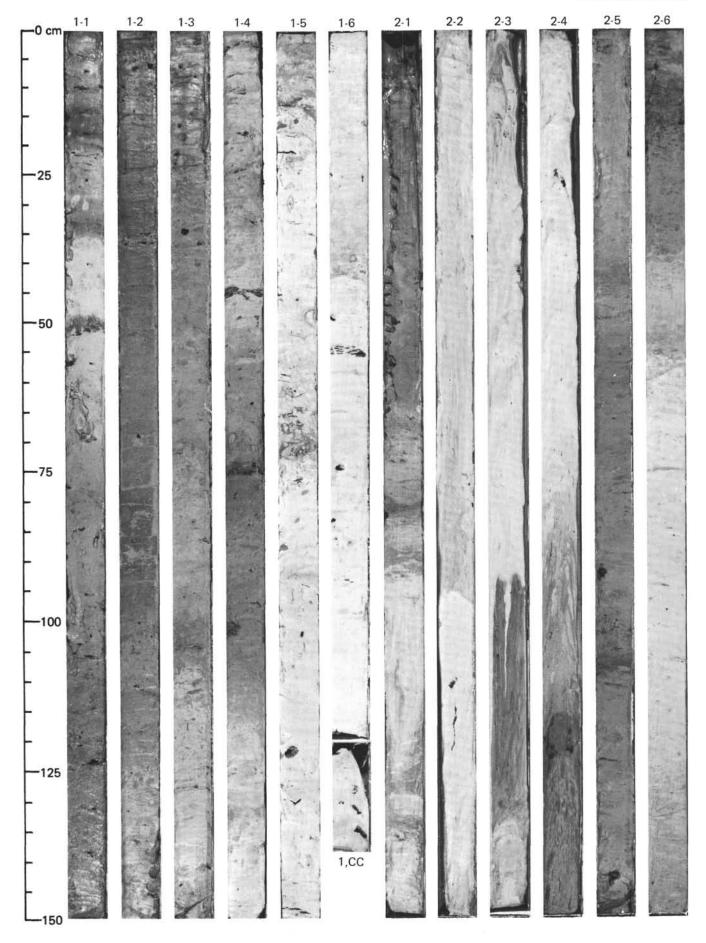


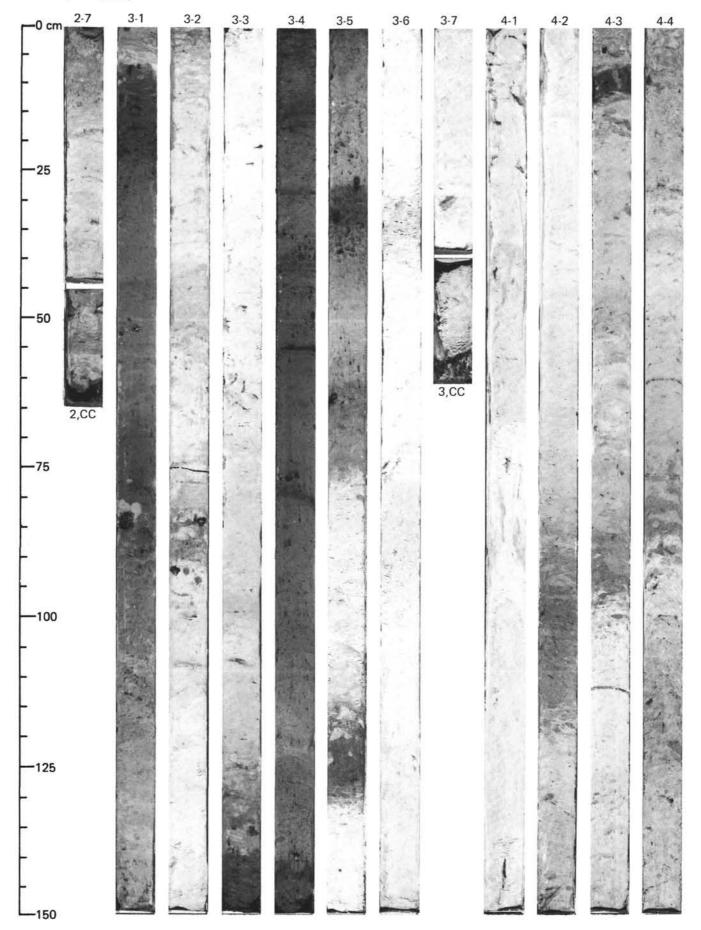


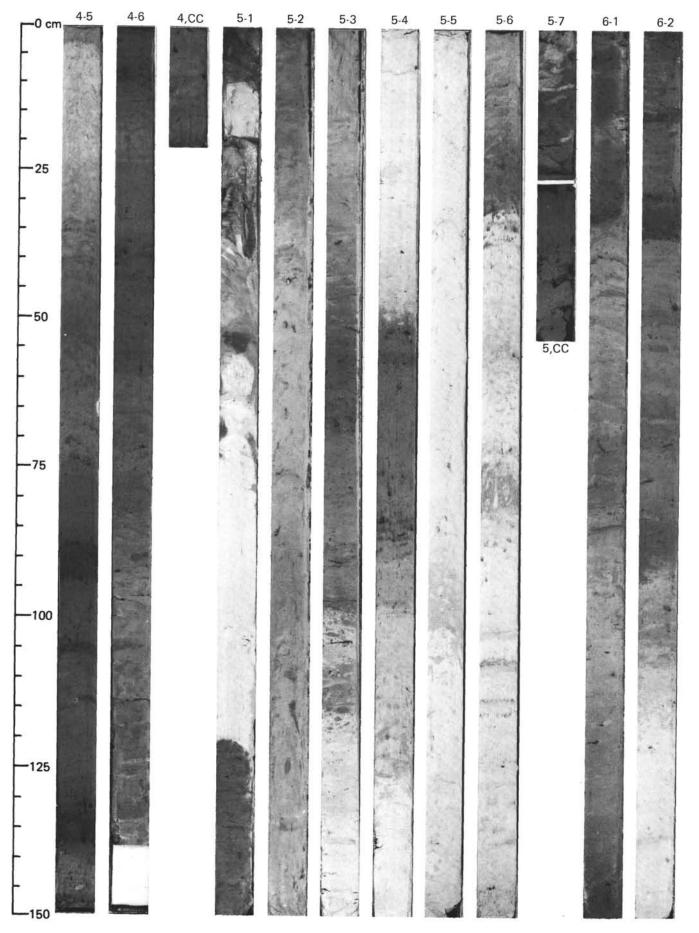

-0 cm ⁸⁻⁶	8-7	9-1	9-2	9-3	9-4	9-5	9-6	9-7	10-1	10-2	10-3
-		×		1.7			100	A Start		1	
- ta			and the second	An a we	1 mg		1 may	- AL	Contraction of the	12	12 to 1
-	Long and			生活		in the second	1000		and the second	-	
-	and a			the -			e. +				1 200
-25	and the second	1	-	1		-	in the second	- 1		1	-
14	in the		-1-4-4	*****	the state		. ·	- 1	10-10-10 10-10-10	1	
100/13			40,5		1	ANDA	1	-		and the second	and the
1.1-2	1	A CONTRACT					the second		And the second sec	1	1
-50	N Part	and the second	1.	14		1.1	the second		and the	1 Ale	
-				F		F.	* 4	2		5	and the second
and the second sec	1		-	-	1	and the second	1.1	Part of the second s	Sale .		1203
-	8,CC	The second		State State	44	a (1 million			
- main		14 1	a fait		1.4	1 3		100	- Xi	1.5	
-75			7.2			5.50	1000	9,CC		47	
					in the					A I	
-		<u></u>		20	No. of Street, or other	1 1	-		M-	TO A	1. 5.
-		- 1	17.1		the start		2.4		Ser.		-
-100			1	100	No. 1	and the			Jal		a and
-		14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100 M	Art.						-	
-			And And		and the second	4	100				-
		1 4		100	and the second	14.2	C.L.				T
-		5-1	A.C.	17	AND AND	1	Chice of		1		1
-125			and a second	142		N. Carl			1		1 start
17		1	-		1 the		Come !			- F	
· · · · .				*	14.40	a way	and the			in the	
-		CHE I		1 miles	The second	1	The second second			tests	
_150			-			1.11			1-1		7.2.

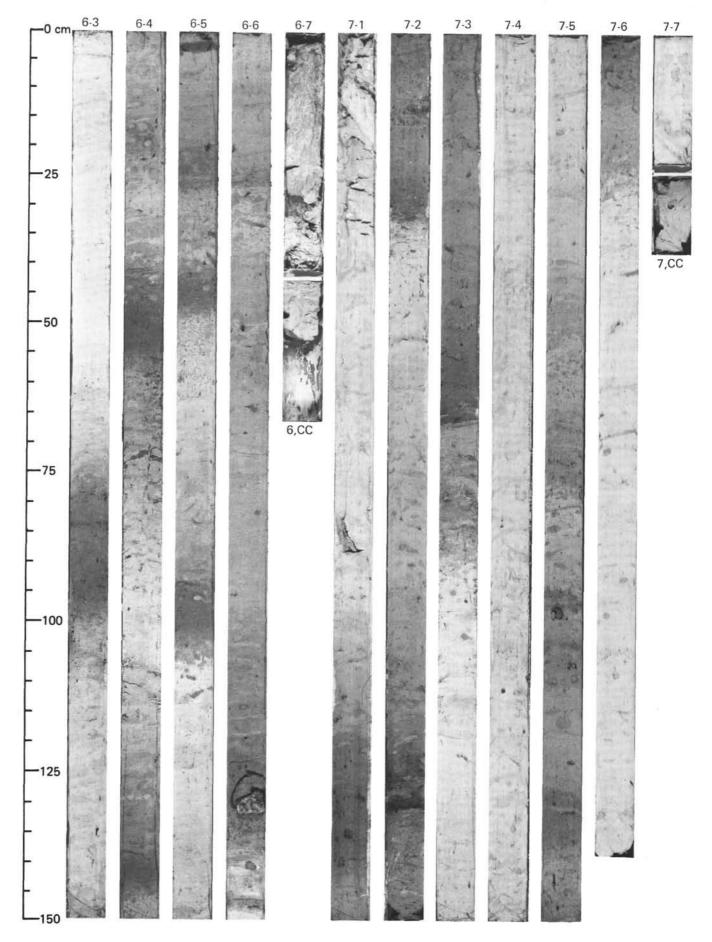


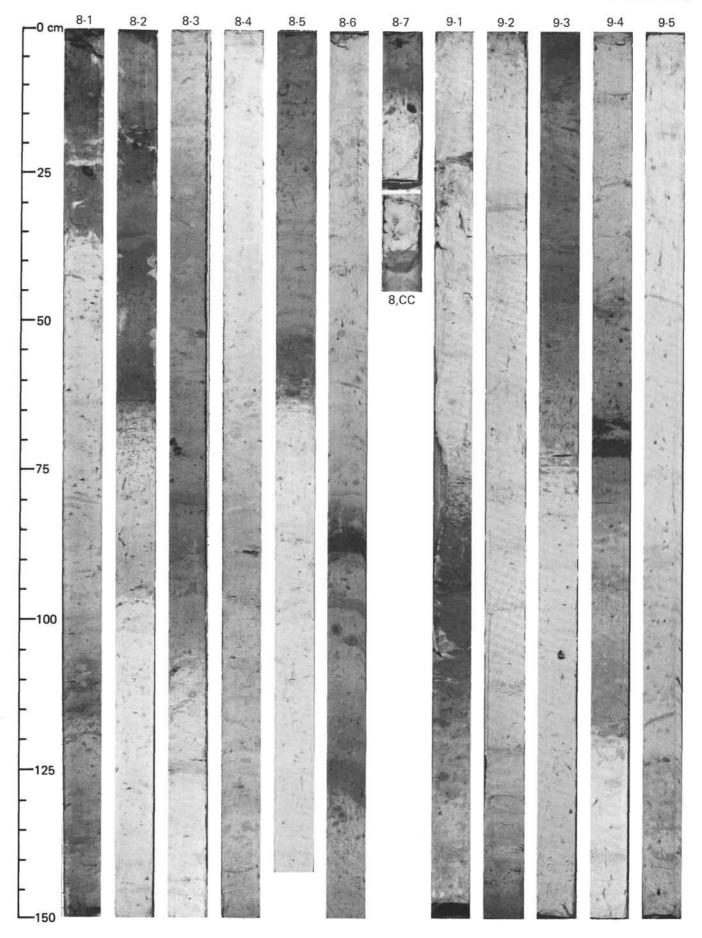


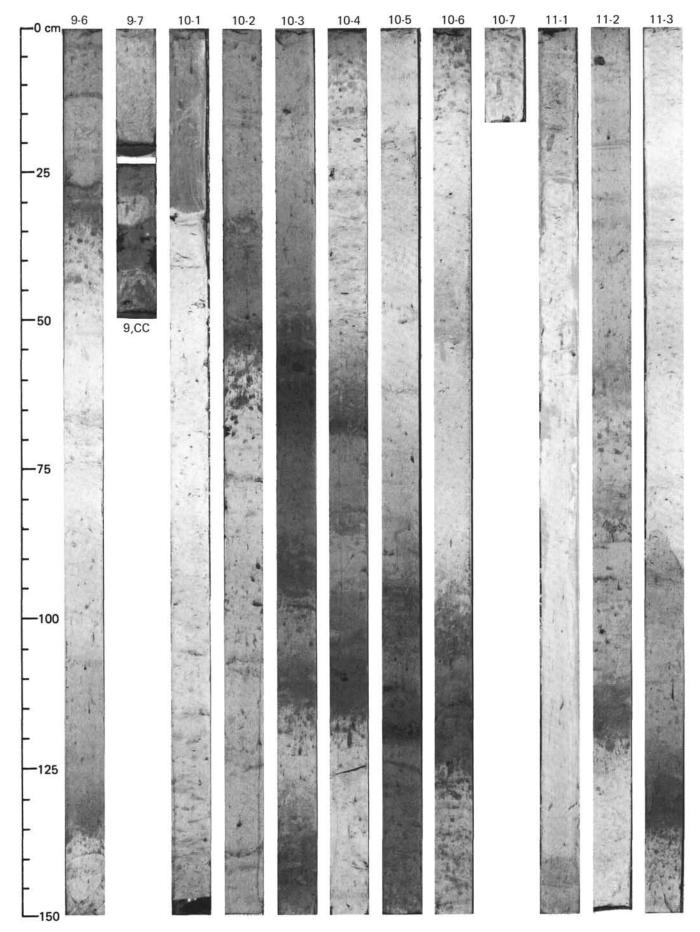


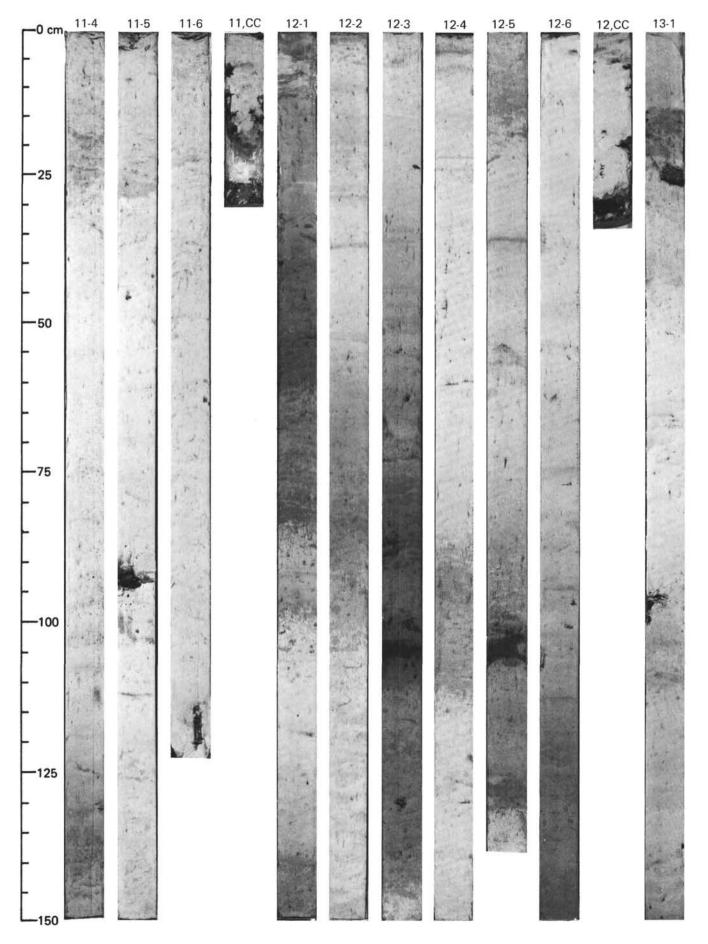


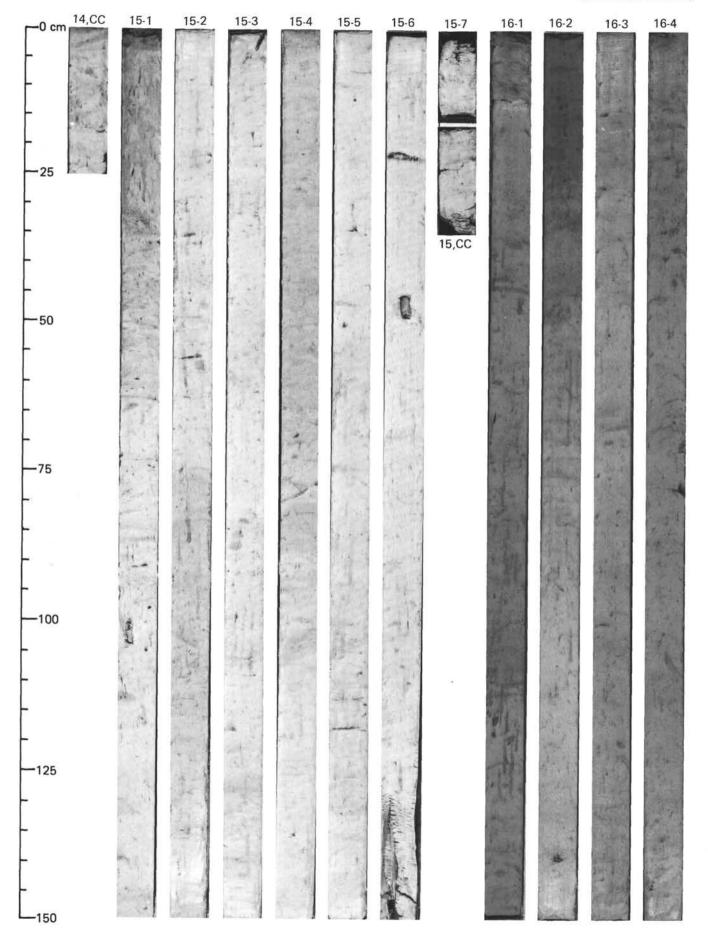


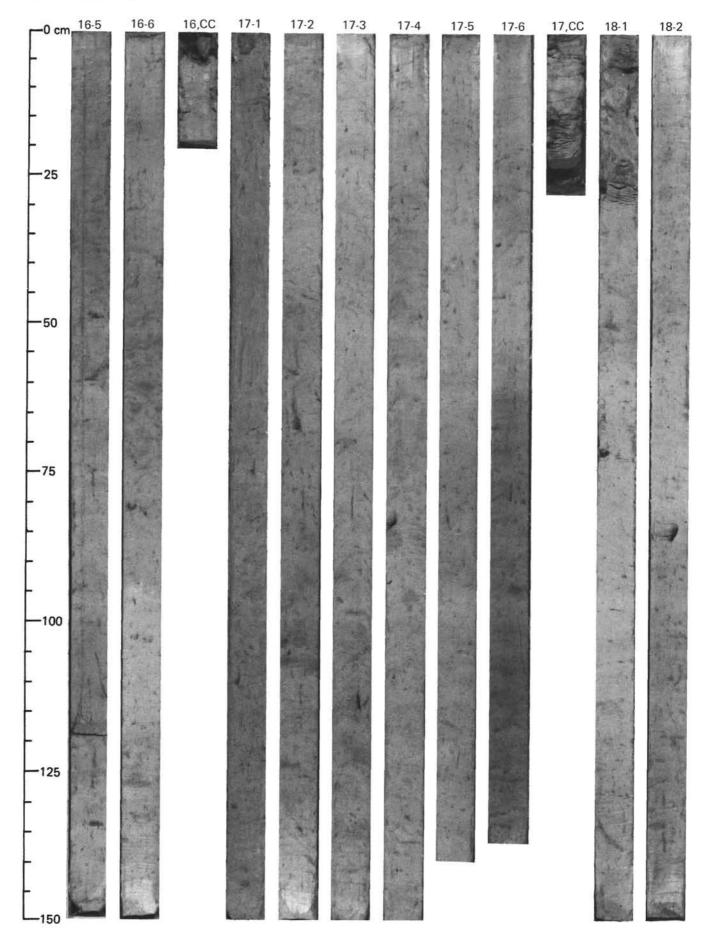


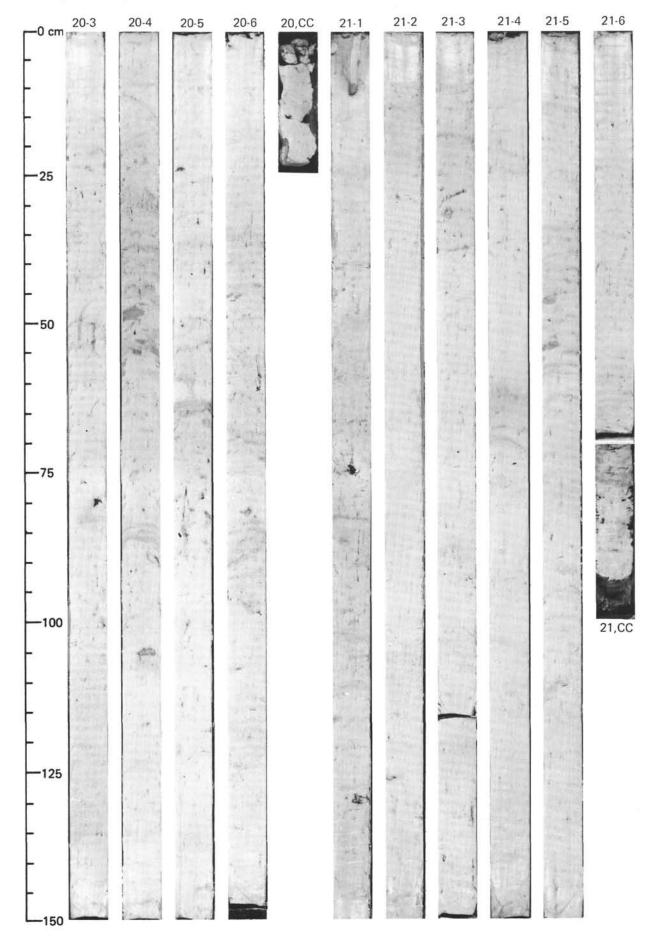


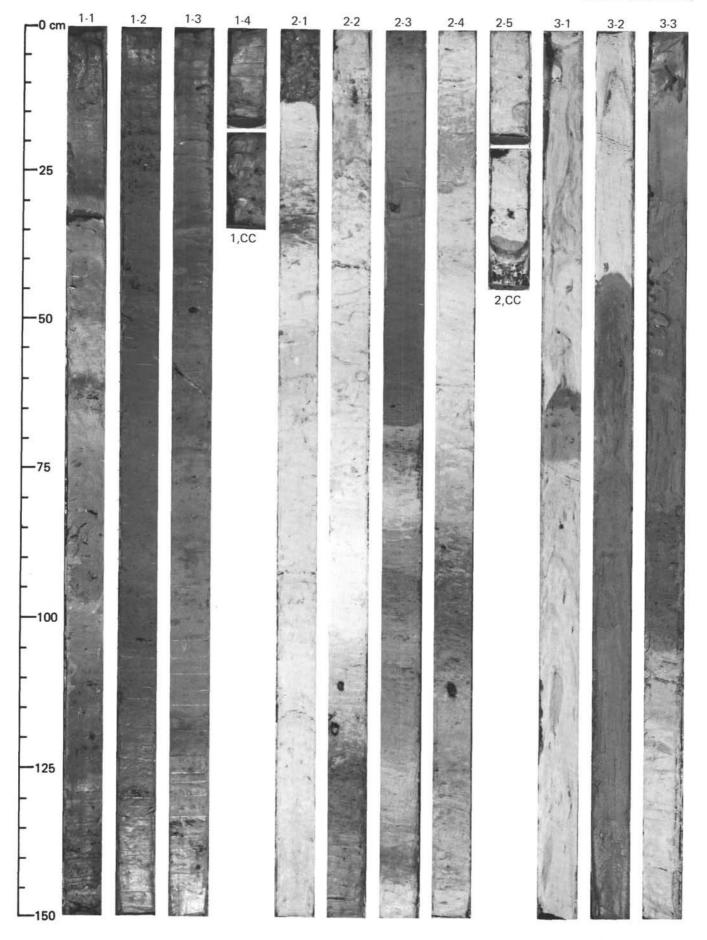


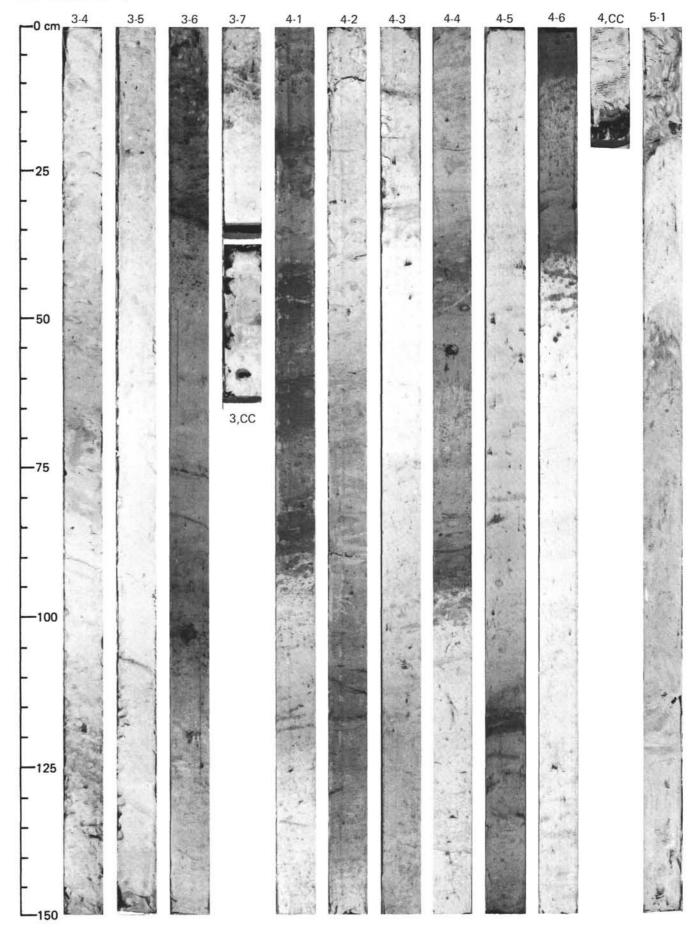


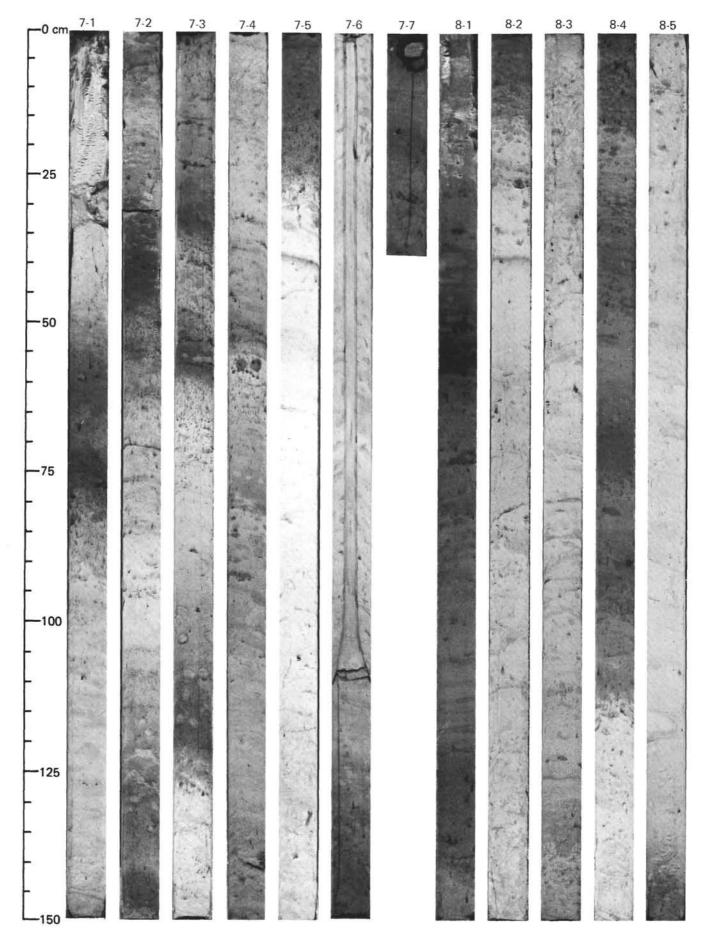


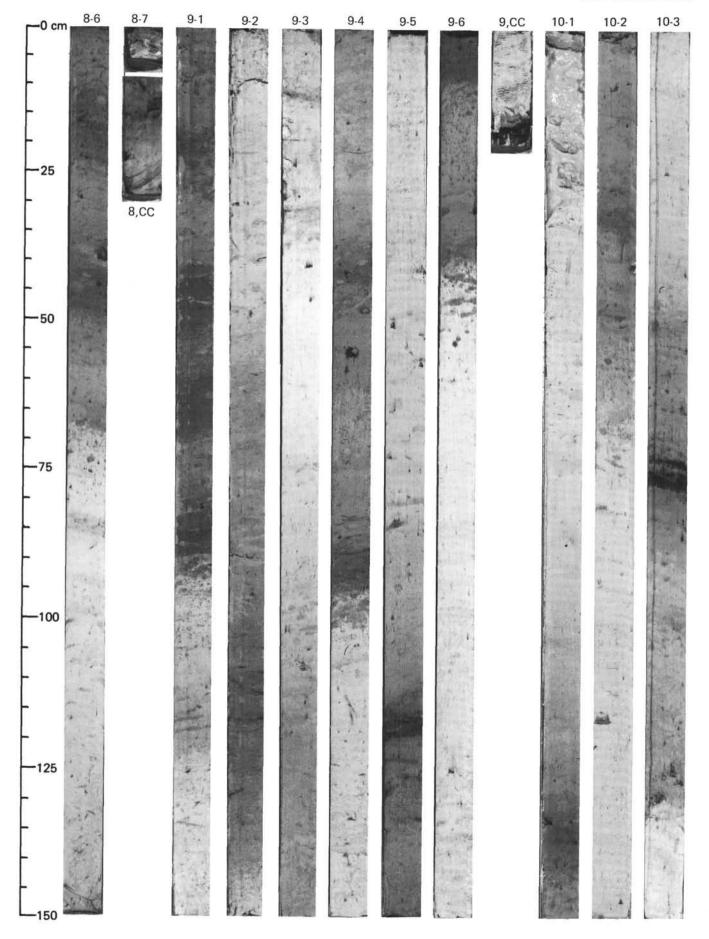


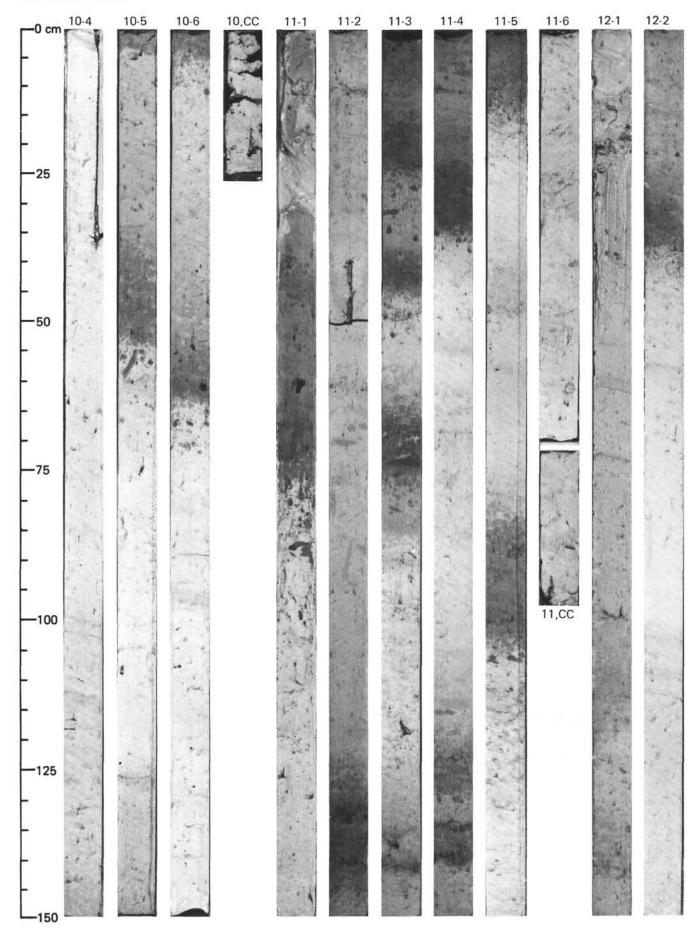


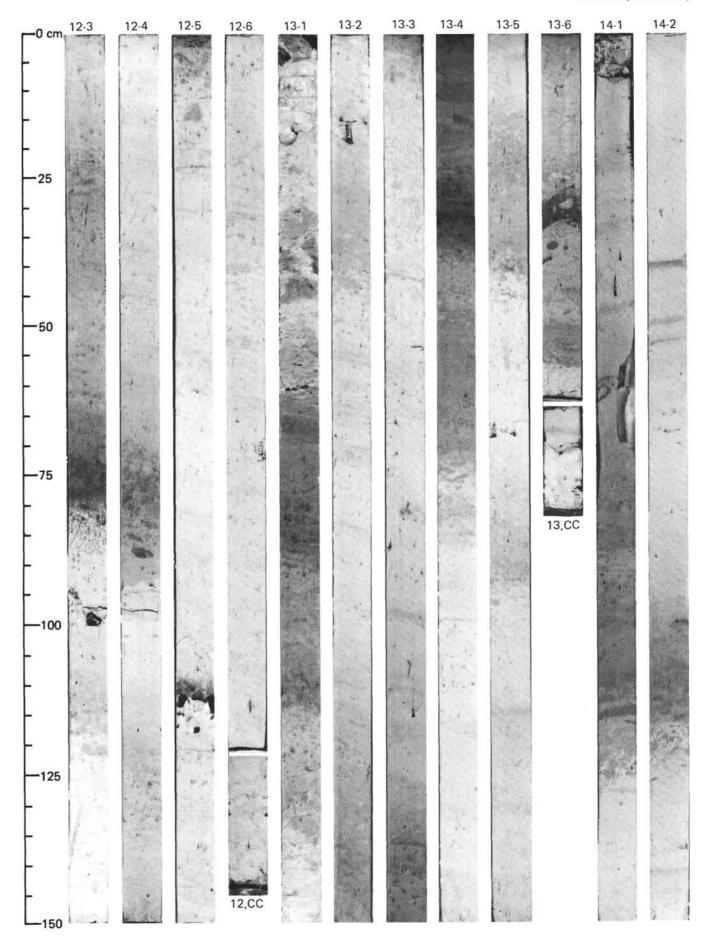

0 cm 13-2	13-3	13-4	13-5	13-6	13-7	14-1	14-2	14-3	14-4	14-5	14-6
-	sont of		- Part	1 A	144 STA		3				
- 12.0		-	and also		20.0		1	- 1		11 (A)	1
-	14-1		· · · ·	All and a second	A					Constant of the	Part
-	-	1 mart		1	Cart .		Ser.	a star a f	1		新教生
-25	1.74		-	the start of			1				
-	1	1.1	Aures	a the				7:	P. 3. 27	-	
-		and the second	4 . A.	P				et an e a	-		
	. 1	a the		and I	Seal and		1.2.3		2		
-						1	1.80	244	15		Qui
-50		F			10.00		-	and a second			in the
-	1		in the		13,CC	1. 4	1		14		ME L
- Color	Ser.					1.1	and the		Para IT		A SA A
-	1000	States -	1.3			1			- delan		
-	and and	and the second	i g	-			5	1. A.	1. T.		
-75	5	1000		AND ST		14	A.	Rest			
-	100								The		R. Cont
-			-12-0	-		a.		And all a	1		
-	-			12		- in		Electron of	- These	100	
-	A. A.			and the second		199	-				
-100		-				-					
	A			Sec. all		1.14		Alfrance.	fin a	15-14	1.40
-			.1	1.1				e.	An an an		
1.1.2		-	1 -	es.				1	1 - h	23	i altra
1.2.2	all and	1941 (A) 1941 (A)	ne	1-2		1	1		1.		
-125			A State	14 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		1-1	10-		the second		render +
- 4	1		1	12				100	The second		
	4-14	11				in the second				1	
	T-		1			7		and the	1 Section	A	
	1			12		1		1 3			
L_150	and the first	And a local		to the second second		D			Constant of the	transmitted by	



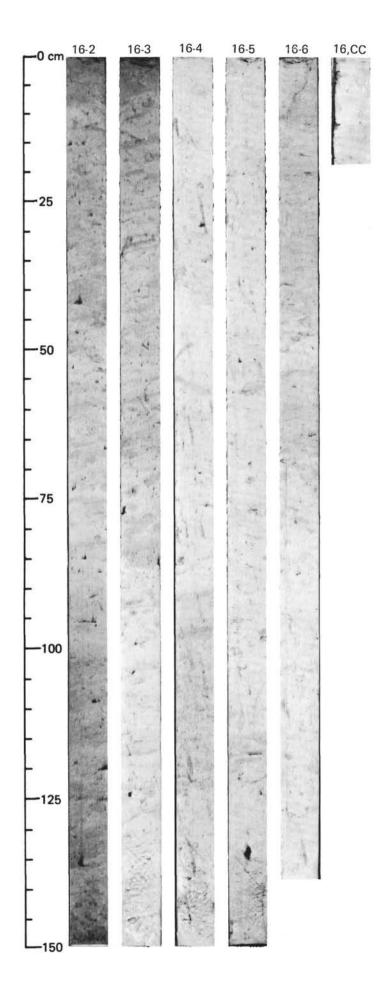

0 cm 18-3	18-4	18-5	18-6	19-1	19-2	19-3	19-4	19-5	19-6	20-1	20-2
		- 2				1					
-	15	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					Carl.		A CAR		T.
-25	4 - C.		See.					NA AN	100		12 1
-	A STATE	-					42				and a state
		1		Contraction of the second							
-50	and the second	4	L.E.	A ALL							
		8 	18,CC								-
-	124 Mar 128	1100-								1	
75	to be a set of the set								and the		
-	新ない								19,CC		
-	- And			N. A.							
		in de la companya de La companya de la comp		and the second						i i	
	to an										
- 74	and a										
-125	A STATE	1-3									A.
	14	1200									
											1

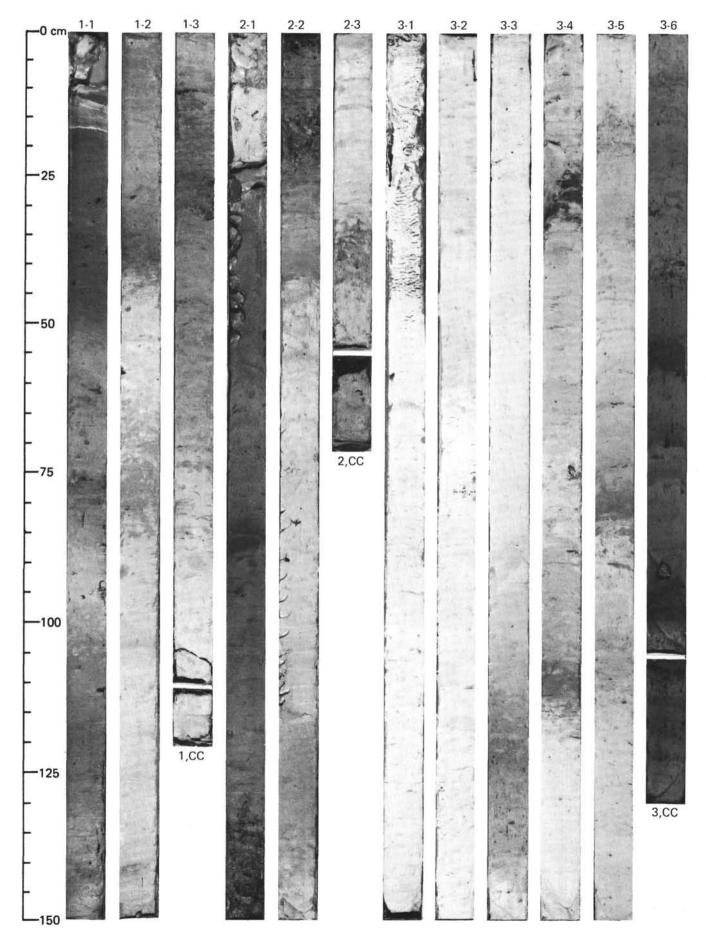


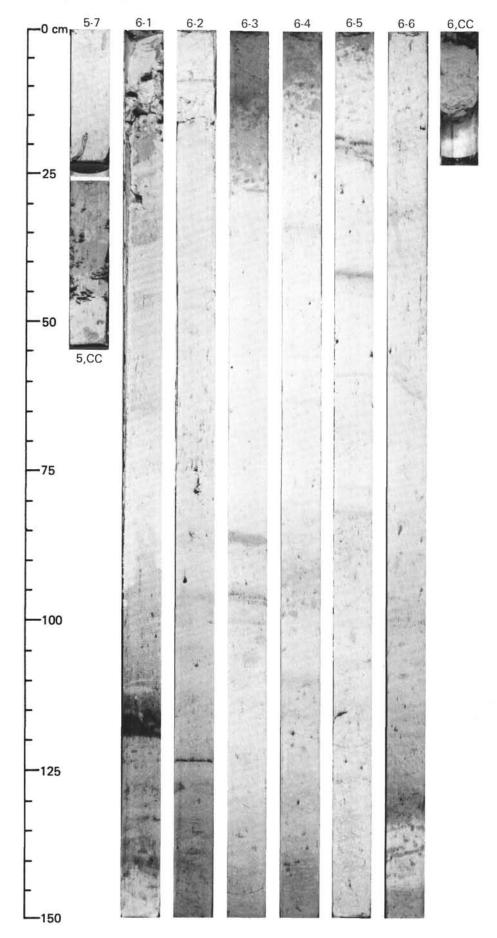


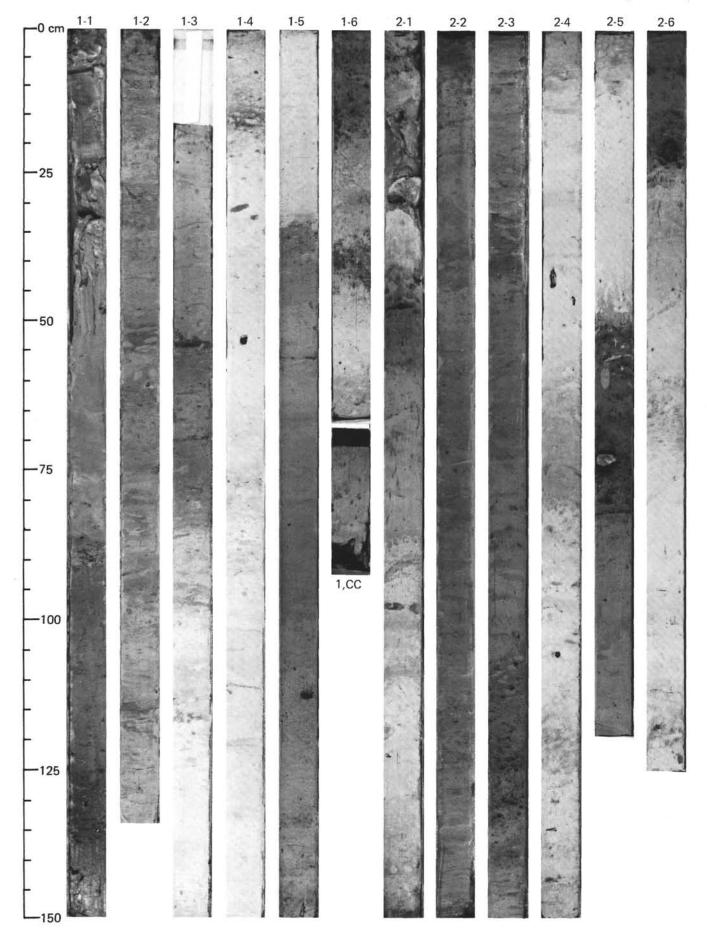




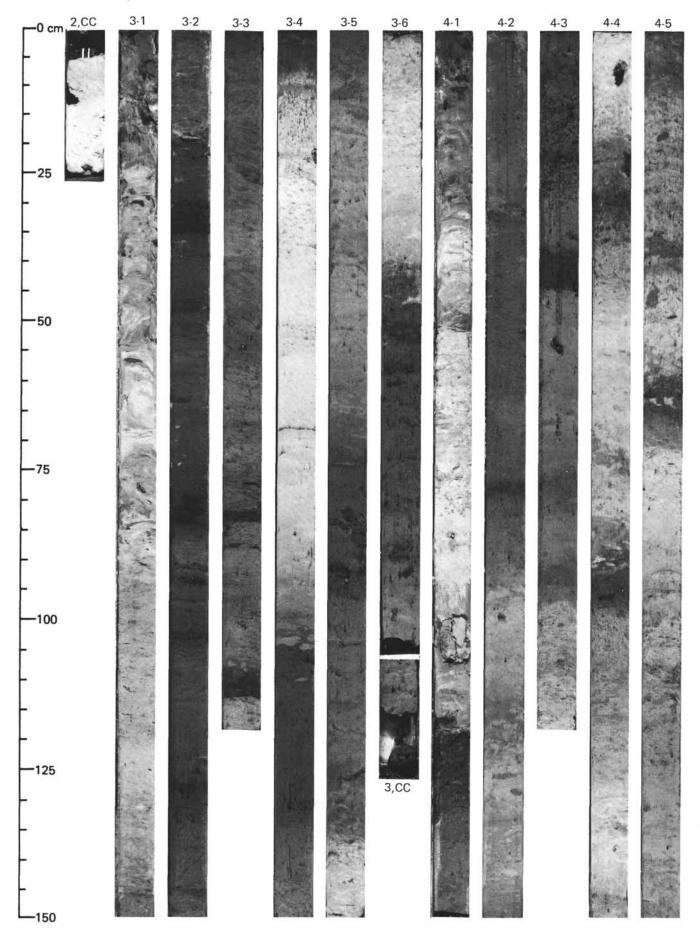






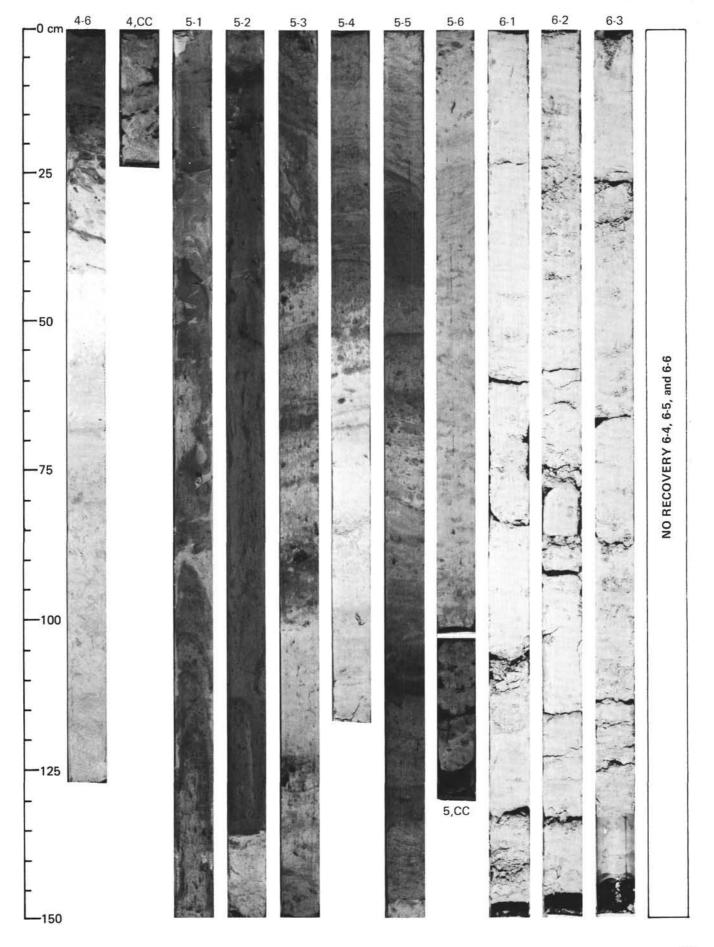

SITE 610 (HOLE 610C)

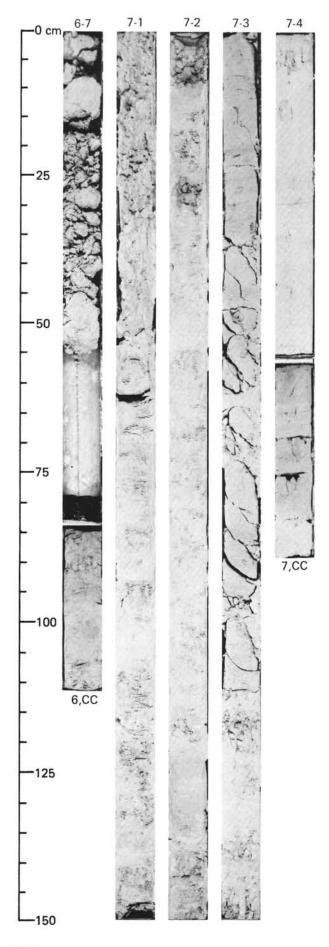
-0 cm	4-1	4-2	4-3	4-4	4-5	4-6	5-1	5-2	5-3	5-4	5-5	5-6
F		a.	and the second	and the second s					1		-	
Ļ			and the second	「「「	and the			-			al and	
F			and the second s	and a			1 1		1997 - 19 19 - 19 - 19		1	
L		1 - 1	Care -		ala		Na l	AT I		hand		SARAHANA COLUMNA
-25	The second second	1	- British	14.78°		di pi	N Low	1				And A
25			2 the second		and the		- and		4			3
[1	and the second second	1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Con In	1		-	4	Contraction of the	
Γ	liete		P C	- And	1-3-1	and the	- E.	15. 3	gries.		2 - Ar	
F	1997	in the		and war		1.1		1. A.	C. Start			
F			- The -	1 1	1	20 - 1						
-50		200	1 the		illen - L	124	2				12-40	
F			200	-		1						
F		1-1	Start -			1 A. 200	11		1.1			
-					-	1	1	al free a		. Section		
F			A A		-	1000		1			and a	
-75	CHER.	The second						1	Service .			12-72
-		- 0	and the second		- China	1 - 11		1	-00	L. Martin	1	Care I.
L		and a second s								1.		and the second second
L			1			L+1 - 14		1 - J.		1	1.1.1.1	- Carlos
L	E Total							A	and the second		1.24	
100	the all							-	The second	× 4		
-100				-					- A ing	che e la		
F		1.5		. New	150	*		aler a	11-1 1-1 1-1		1	$\in \mathcal{A}^{(1)}$
F			arter a	Man Ca	Clearly a	ase :		-16 - 1 - 1 - 1 - 1	River.	1	à -	
F							12	1.00		the set		
F				Part Part		4,CC	a Carl	in si	.0.2	hind	1	1
-125				it-model	The second			1	AT		2-2-2-	N.M.
F	1• (g)	4.5 - 5	Constant Sec	ALL AND					de al	A	1	1
+	and a second		A start				2 - St.	1.53			42	1 A
-	1			1 Star	Pieter .		phis -		inte		in the second	f.
-			WE I		the second		1 4	14.1	VER L		1 min	2
L_150	1 1			Sec.	Send S					1.0	MI	-

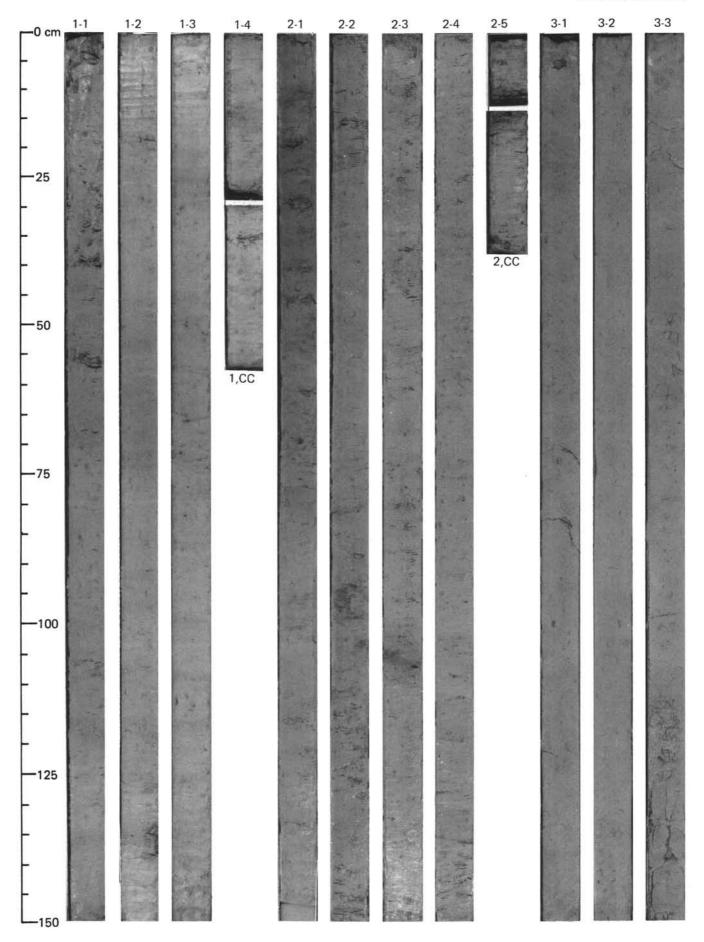


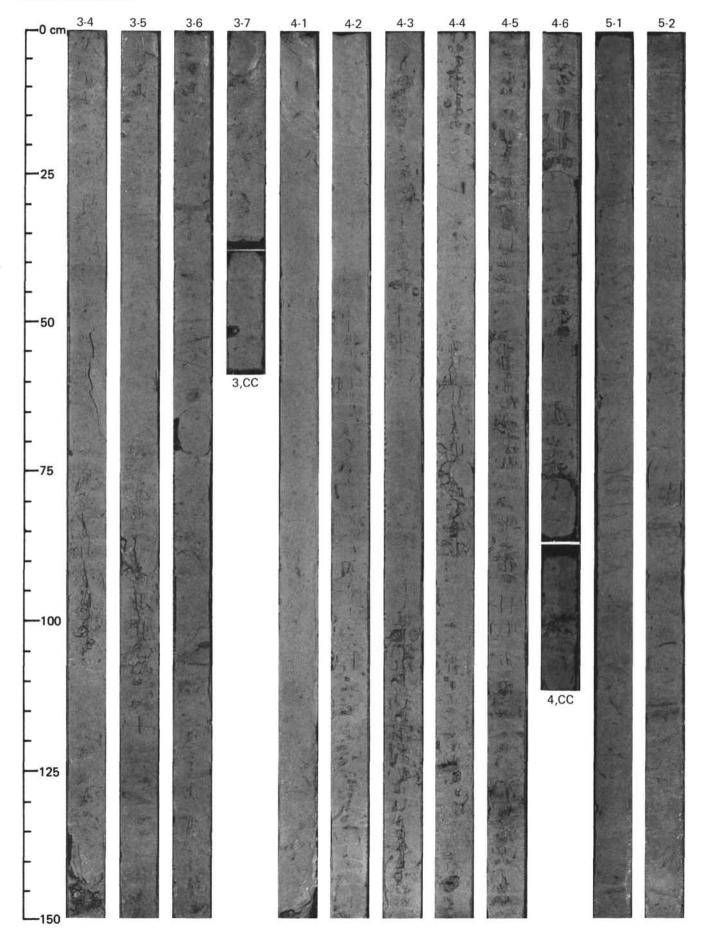
462

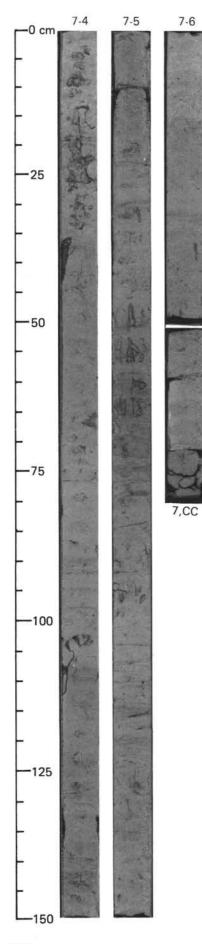
SITE 610 (HOLE 610D)




SITE 610 (HOLE 610D)


464


SITE 610 (HOLE 610D)


SITE 610 (HOLE 610E)

SITE 610 (HOLE 610E)

-0 cm 5-3	5-4	5-5	5-6	5-7	6-1	6-2	6-3	6-4	7-1	7-2	7-3
-	7	1			123						-1-1
-		To	T	. A	1.	1.20					
-	1 5			No. 42 Y					100 mg		
-	10	-	1				T	100	A.		
-25	1		A AN			10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -		1 to	2	-	and a
-				102-20							
-		Les .									and the second
		A THE S	1.0					- {			1
-50						C. S. S.				And Co	
- 50		19.3					-				
-	THE REAL		CTION OF				-		200		The A
-		Carlo and	S. Car	5,CC						and and a	-
-		Level 1						1		2210	
-75	13	A								-	1
-	Ta a	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				Q.				1.50	
- Andrews		ALC: N	2.50					15			
-		(95						10-		N. N	AL AL
-	201	A	32					-	and the	24	Inst
-100	1.H		1		1000						
Bar			12					mi i	A.L.		1 Alter
- 1		1						1015			-
		1 State						41.00	18.	Bhr.	the state
-125	Frent	A.						and a			8
-	1-I	动力	IL.								1
-	I	7.9						20			ine of the second
- Charles			4 -								1
		19	m					6,CC	Contraction of the second		
L_150	- Alter	5.5	100 P 100		Long IS gale.	104.05	and the second		10 million		Friday State

