7. SITE 611¹

Shipboard Scientific Party²

HOLE 611

Date occupied: 6 August 1983 Date departed: 7 August 1983 Time on hole: 23.6 hr. Position: 52°50.47'N; 30°18.58'W Water depth (sea level; corrected m, echo-sounding): 3203 Water depth (rig floor; corrected m, echo-sounding): 3212.8 Bottom felt (m, drill pipe): 3203.6 Penetration (m): 125.8 Number of cores: 14

Total length of cored section (m): 125.8

Total core recovered (m): 112.21

Core recovery (%): 89.2

Oldest sediment cored: Sub-bottom depth (m): 125.8 Nature: calcareous mud Age: late Pliocene (NN16) Measured velocity (km/s): 1.517

Basement: not reached

HOLE 611A

Date occupied: 7 August 1983

Date departed: 8 August 1983

Time on hole: 17.6 hr.

Position: 52°50.47'N; 30°18.58'W

Water depth (sea level; corrected m, echo-sounding): 3203 Water depth (rig floor; corrected m, echo-sounding): 3212 ^Q

Dept. of Geological Sciences, Columbia University, Palisades, NY 10964; Robert B. Kidd (Co-Chief Scientist), Institute of Oceanographic Sciences, Surrey GU8 5UB, United Kingdom (present address: Ocean Drilling Program, Texas A&M University, College Station, TX 77843-3469); Ellen Thomas (Science Representative), Deep Sea Drilling Project, Scripps Institution of Oceanography, La Jolla, CA (present address: Lamont-Doherty Geological Observatory, Dept. of Geological Sciences, Columbia University, Palisades, NY 10964); Jack G. Baldauf, Paleontology and Stratigraphy Branch, U.S. Geological Survey, Menlo Park, CA (present address: Ocean Drilling Program, Texas A&M University, College Station, TX 77843-3469); Bradford M. Clement, Lamont-Doherty Geological Observatory, Palisades, NY (present address: Ocean Drilling Program, Texas A&M University, College Station, TX 77843-3469); James F. Dolan, Dept. of Earth Sciences, University of California, Santa Cruz, Santa Cruz, CA 95060; Margaret R. Eggers, Dept. of Geology, University of South Carolina, Columbia, SC 29208; Philip R. Hill, Atlantic Geoscience Center, Geological Survey of Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia B2Y 4A2 Canada; Lloyd D. Keigwin, Jr., Dept. of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543; Margie Mitchell, Geological Research Div., Scripps Institution of Oceanography, La Jolla, CA 92093; Isabelle Philipps, Laboratoire de Géologie et Océanographie, Université de Bordeaux I, 33605 Talence Cedex France; Frank Robinson, Lamont-Doherty Geological Observatory, Palisades, NY 10964; Sassan A. Salehipour, Ocean Engineering No. 2, University of Rhode Island, Kingston, RI 02882; Toshiaki Takayama, Dept. of Geology, Kanazawa University, Kanazawa 920 Japan; Gerhard Unsold, Geologisch-Paläontologisches Institut, Universität Kiel, D-2300 Kiel, Federal Republic of Germany; Philip P. E. Weaver, Institute of Oceanographic Sciences, Surrey GU8 5UB, United Kingdom.

Bottom felt (m, drill pipe): 3203.6 Penetration (m): 132 Number of cores: 14 Total length of cored section (m): 132 Total core recovered (m): 99.4 Core recovery (%): 75.5 Oldest sediment cored:

Sub-bottom depth (m): 122.4 Nature: calcareous mud Age: late Pliocene (NN16)

Basement: not reached

HOLE 611B

Date occupied: 8 August 1983

Date departed: 8 August 1983

Time on hole: 2.5 hr.

Position: 52°50.15'N; 30°19.10'W

Water depth (sea level; corrected m, echo-sounding): 3228

Water depth (rig floor; corrected m, echo-sounding): 3245.8

Bottom felt (m, drill pipe): 3227.6

Penetration (m): 8.9

Number of cores: 1

Total length of cored section (m): 8.9

Total core recovered (m): 8.9

Core recovery (%): 100

Oldest sediment cored: Sub-bottom depth (m): 8.9 Nature: calcareous mud and foraminifer-nannofossil ooze Age: Quaternary (NN21) Measured velocity (km/s): 1.501

Basement: not reached

HOLE 611C

Date occupied: 8 August 1983 Date departed: 11 August 1983 Time on hole: 66.25 hr. (2.75 days) Position: 52°50.15'N; 30°19.10'W Water depth (sea level; corrected m, echo-sounding): 3230 Water depth (rig floor; corrected m, echo-sounding): 3245.8 Bottom felt (m, drill pipe): 3227.6 Penetration (m): 511.6 Number of cores: 47 Total length of cored section (m): 434.8 Total core recovered (m): 344.05

Core recovery (%): 79.1

Ruddiman, W. F., Kidd, R. B., Thomas, E., et al., *Init. Repts. DSDP*, 94: Washington (U.S. Govt. Printing Office).
 William F. Ruddiman (Co-Chief Scientist), Lamont-Doherty Geological Observatory, William F. Ruddiman (Co-Chief Scientist), Palicades, NY 10964; Robert B. Kidd

Oldest sediment cored: Sub-bottom depth (m): 511.6 Nature: marly nannofossil chalk Age: late Miocene (NN9) Measured velocity (km/s): 1.970

Basement: not reached

HOLE 611D

Date occupied: 11 August 1983

Date departed: 12 August 1983

Time on hole: 19.5 hr.

Position: 52°50.47'N; 30°18.58'W

Water depth (sea level; corrected m, echo-sounding): 3195

Water depth (rig floor; corrected m, echo-sounding): 3212.8

Bottom felt (m, drill pipe): 3199.5

Penetration (m): 244.1

Number of cores: 14

Total length of cored section (m): 124.8

Total core recovered (m): 122.3

Core recovery (%): 97.9

Oldest sediment cored: Sub-bottom depth (m): 244.1 Nature: nannofossil chalk Age: early Pliocene (NN15)

Basement: not reached

HOLE 611E

Date occupied: 12 August 1983

Date departed: 12 August 1983

Time on hole: 6.75 hr.

Position: 52°50.47'N; 30°18.58'W

Water depth (sea level; corrected m, echo-sounding): 3195

Water depth (rig floor; corrected m, echo-sounding): 3212.8

Bottom felt (m, drill pipe): 3199.5

Penetration (m): 25.7

Number of cores: 2

Total length of cored section (m): 19.2

Total core recovered (m): 19.2

Core recovery (%): 100

Oldest sediment cored: Sub-bottom depth (m): 25.7 Nature: calcareous mud and foraminifer-nannofossil ooze Age: Quaternary (NN19)

Basement: not reached

Principal results: Six holes were drilled on the lower southeastern flank of Gardar Ridge. Four holes were drilled on the broad crest of a sediment wave at 3203 m water depth (corrected). Two holes were located in an adjacent trough half a nautical mile to the southeast and in water 29 m deeper. No clear sediment wave migration was visible on crossing 3.5-kHz profiles, and most waves in the vicinity appear symmetrical. Air-gun records show faint indications of inclined reflectors below 0.2 s (two-way traveltime).

A continuous Quaternary through Miocene section was recovered with the variable length hydraulic piston corer (VLHPC) and the extended core barrel (XCB) in the trough—Hole 611C—and a complementary Quaternary through Pliocene, continuous VLHPC and XCB section was recovered on the wave crest in the combined Holes 611A and 611D. Coring in the overlapping crest Holes 611 and 611A provided an almost complete section for paleoclimatic studies spanning the last 2.47 Ma (to the Gauss). Three spot cores were taken at Holes 611D and 611E in attempts to fill perceived gaps in this record. Still the sequence appears to have one to, at most, three interruptions (Ruddiman et al., this volume).

Glacial-interglacial mud to ooze cycles extend to 91 m sub-bottom in the wave crest sequence and to 114 m in the trough. Below these levels, the sequence is made up of nannofossil oozes and chalks, which in the Pliocene become siliceous and/or marly.

No primary sedimentary structures that might be attributed to current sedimentation were observed. Some wave crest-to-trough differences in bed thickness were found. No hiatuses were detected, and sedimentation rates are high (around 58 m/m.y.) and generally linear. Some indications are present in the accumulation rate curves for the Pliocene and Quaternary of wave crest-to-trough differences that are best explained by large-scale wave migration in the Pliocene.

Good correlations of seismic reflectors with mid-drift lithologic changes can be made, but low penetration rates in Miocene sediments meant that the base of the drift at 1.0 s sub-bottom (twoway traveltime) was beyond the reach of the drilling in the time available at this site.

BACKGROUND AND OBJECTIVES

Site 611 is located on the southeastern edge of Gardar Ridge (Fig. 1), which is a thick sediment pile or drift that has accumulated along the eastern flank of the Reykjanes Ridge under the influence of deep overflow water from the Norwegian Sea (Johnson et al., 1971). McCave et al. (1980) considered that the axis of the major southwesterly Iceland-Scotland Overflow Water current lies between the steep northwest slope of Gardar Ridge and the crest of the Reykjanes Ridge. Spillover is thought to occur down the long, gentle slope of the Gardar Ridge. Site 611 lies in an area where the southernmost bottom water flow in the Iceland Basin is thought to pass westward into the Charlie Gibbs Fracture Zone, through which it reaches the western basin (Worthington and Volkmann, 1965; Garner, 1972).

Gardar Drift extends from the Icelandic margin to the Charlie Gibbs Fracture Zone, a distance of almost 1300 km. At its northern end its continuity is not obvious on published bathymetric maps (Fig. 1; Laughton and Monahan, 1978). It is mapped on seismic reflection profiles, however, as a continuous thick sediment pile, established on the lower eastern flanks of the Reykjanes Ridge (Johnson et al., 1971; Ruddiman, 1972). In the vicinity of Site 611, the water depth is around 3200 m, and the total thickness of sediment visible on seismic records (Fig. 2) is 1300 m (1.3 s). With a basement age of 35.5 Ma based on magnetic isochrons, the projected mean sedimentation rate for this sediment drift is about 37 m/ m.y. However, hiatuses are thought likely in the Oligocene and lower to middle Miocene based upon previous deep-sea drilling in the northern North Atlantic (Shor and Poore, 1979); thus the mean late Neogene deposition rate could be considerably higher. The upper Quaternary core (V27-116) taken at the location of Site 611 consisted of calcareous oozes and interbedded glacial marine muds with a mean rate of deposition of 40 m/ m.y.

The surface of Gardar Ridge in this area is ornamented with a field of longitudinal sediment waves. To the south of Site 611 long-range sidescan sonar (GLORIA)

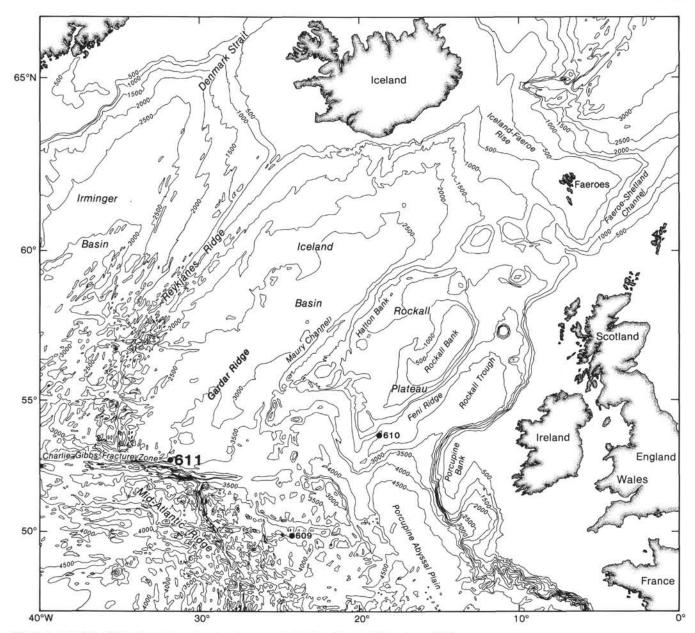


Figure 1. Location of Site 611; bathymetry given in meters (after Laughton and Monahan, 1978).

coverage allows the crests of these waves to be traced over 6 km (Fig. 3). At the site, individual waves appear traceable over a similar distance between the 3.5-kHz seismic survey tracks. The GLORIA and profiling records indicated that wave trends change in this area from WSW-ENE immediately east of Site 611, to NW-SE north of the Charlie Gibbs Fracture Zone. The 3.5-kHz profiles show that the waves have amplitudes of around 10 m and wave lengths of around 1.5 km. Most waves appear symmetrical, and evidence of migration is scant.

The principal objectives at Site 611 were paleoclimatic. Site 611 lies within the present circulation of the subpolar gyre. Upper Quaternary lithologies vary between moderately calcareous interglacial oozes and muddy glacial marine deposits. Sea-surface temperature (SST) variations in the late Quaternary were of high amplitude, but not so high as in cores just to the south, largely because these waters chilled to the freezing point during glacials and could cool no more. The rhythm of Quaternary SST change in this area is dominantly at the 100,000- and 41,000-yr. cycles, but a small 23,000-yr. rhythm persists (Ruddiman and McIntyre, 1984). The primary objective at Site 611 was to trace these rhythmic changes back into the Neogene, in particular to see what changes occurred before the onset of large-scale Northern Hemisphere glaciation. Ancillary paleoclimatic objectives included the attempt to delineate the history of ice rafting, the history of carbonate dissolution, and the definition of long stable-isotopic sequences.

Sedimentological objectives at Site 611 were aimed at complementing the sequence of bottom current deposits documented from the crest of Feni Ridge and looking for vertical and lateral sediment facies variation in another drift sequence. Again, we hoped to date mid-sedi-

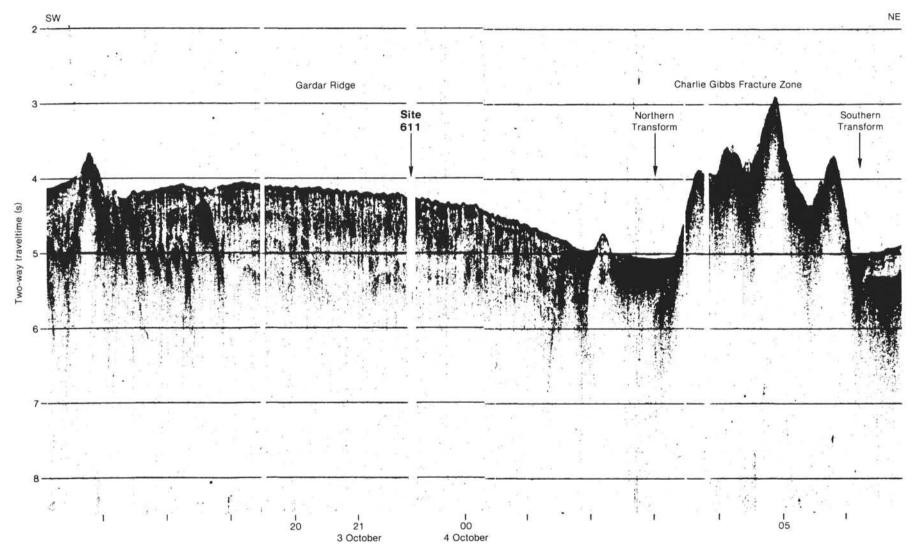


Figure 2. Single-channel air-gun profile across Gardar Ridge. The location of Site 611 is indicated.

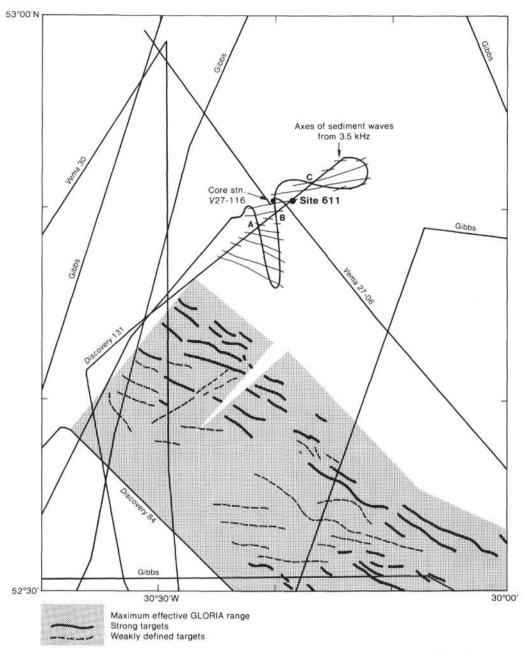


Figure 3. Site survey data and GLORIA coverage around Site 611. A, B, and C are positions of crossover points in the survey; wave axes are indicated (see also Figs. 17 and 18).

ment seismic reflectors and, through our high-resolution stratigraphy, to detect local as well as regional hiatuses that might be related to periods of accelerated bottom water flow.

OPERATIONS

Glomar Challenger approached Site 611 from the east on 6 August 1983 and took a southwesterly heading (230°) after a course change at 1115 hr.³. A further course adjustment at 1140 hr. to 238° brought the vessel on a track paralleling the *Discovery* 131 site survey line (Fig. 4). Sediment wave crests were detected at 0.5 to 1.0 km spacings as on the IOS (Institute of Oceanographic Sciences, Wormley, U.K.) and LDGO (Lamont-Doherty Geological Observatory) 3.5-kHz profiles; thus we were confident that we could identify a suitable wave-crest location close to the *Vema* 27-116 core site on which to drop the beacon. From the *Discovery* 131 profile, we selected a large sediment wave that we expected to cross north and east of the site location listed in the prospectus. A 16-kHz beacon was dropped over the feature at 1204 hr. in 3197 m of water (uncorrected depth). A satellite fix was obtained at 1211 hr., and we made a starboard turn at 1220 hr. to retrace our profile back over the beacon. Individual sediment wave crests were recog-

³ All times are local (ship's time).

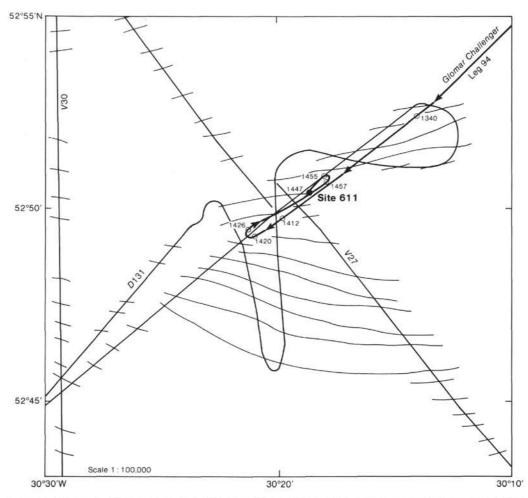


Figure 4. Glomar Challenger approach to Site 611 on Gardar Ridge. Axes of sediment waves drawn from presite survey lines of Discovery 131 and Vema 27 and 30. Times on the Glomar Challenger track are in Greenwich Mean Time (Zulu).

nized on the return track, and we passed over the beacon at 1247 hr. We then slowed to retrieve the seismic gear and after a port turn at 1251 hr., returned to the beacon.

We arrived at the beacon at 1345 hr. Troubleshooting the positioning system incurred a 25-min. delay. Averaging of satellite fixes later showed the location of this site to be $52^{\circ}50.47'$ N; $30^{\circ}18.58'$ W.

We began running in Hole 611 at 1430 hr. on 6 August. Spud-in was at 2115 hr., and the first VLHPC core came on deck at 2146 hr. (Table 1). We then cored continuously to 125.8 m, finishing with Core 611-14, which had to be washed over and came on board at 1330 hr., 7 August. Although many liners were fractured, core quality was generally good.

We pulled out of the hole at 1330 hr. and cleared the mudline at 1410 hr. We then decided to take advantage of calm seas and spudded in to Hole 611A (with no offset) at 1458 hr. in order to core the same Pliocene-Pleistocene sequence and obtain overlap through the section. Core 611A-1 came on deck at 1530 hr., and we finished the hole with Core 14 at 0701 hr. on 8 August, reaching a total depth of 132.0 m. Again, many liners fractured,

and Core 14 recovered only a glacial erratic rock. We pulled out of the hole at 0700 hr. and cleared the mudline by 0730 hr.

At this point we planned an offset into the adjacent wave trough for Hole 611B and, assuming the wave crests to be trending roughly east-northeast/west-southwest (Figs. 4, 5), we opted for a move northward (bearing 350°; 2000 ft. probable offset from the beacon). The expected 30- to 40-m increase in depth did not occur. Water depths detected by the echo sounder increased by only 8 m, even though the vessel slowly offset to the limits of positioning control on the beacon (3000 ft. or 0.5 n.mi.). Thinking that we had possibly obtained a wrong trend direction for the sediment wave axes, we began to offset southeastward (Fig. 5) and again found little change in water depth; the water became shallower by 4 m. We then decided to return to the beacon, expecting to parallel our initial profile into the beacon drop. Still no significant change in relief was observed (another 4-m shallowing). Our next move was to continue to offset along the direction of our initial profile, and on this southwesterly course we eventually began to find increased water depths. Still, only a 25-m increase was observed at

Table	1.	Coring	summary,	Site 611.

Core no.	(August, 1983)	Time		(m)		(m)	Length cored	Length recovered	Recover
Hole 611		(hr.)	Тор	Bottom	Тор	Bottom	(m)	(m)	(%)
fiore off									
1	6	2146	3202	6-3203.6	0.	0-1.0	1.0	0.82	82.0
2	6	2305	3203.	.6-3213.2	1.	0-10.6	9.6	9.52	99.1
3	7	0010		2-3222.8		6-20.2	9.6	8.87	92.4
4	7	0130		.8-3232.4		2-29.8	9.6	9.14	95.2
5	7	0233		4-3242.0		8-39.4	9.6	9.21	95.9
6 7	7 7	0345 0455		.0-3251.6		4-49.0	9.6	8.44 9.42	87.9 98.1
8	7	0600		.2-3270.8		0-58.6 6-68.2	9.6 9.6	8.55	89.1
9	7	0710		8-3280.4		2-77.8	9.6	9.08	94.6
10	7 7	0825		4-3290.0		8-87.4	9.6	9.11	94.9
11	7	0937		0-3299.6		4-97.0	9.6	6.80	70.8
12	7	1059		6-3309.2	97.	0-106.6	9.6	7.99	83.2
13	7	1216		2-3318.8		6-116.2	9.6	6.52	67.9
14	7	1330	3318	.8-3328.4	116.	2-125.8	9.6	8.74	91.1
							125.8	112.21	89.2
Hole 611A									
1	7	1530	3200	.9-3208.1	0.	0-7.2	7.2	7.19	99.9
2	7	1640		1-3217.7		2-16.8	9.6	8.14	84.8
3	7	1742		.7-3227.3		8-26.4	9.6	9.31	97.0
4	7	1847		3-3236.9		4-36.0	9.6	8.85	92.2
5	7	1950		.9-3246.5		0-45.6	9.6	9.05	94.3
6 7	777	2100		5-3256.1		6-55.2	9.6	8.55	89.0 71.9
8	7	2200 2310		.1-3265.7		2-64.8 8-74.4	9.6 9.6	6.90 8.10	85.0
9	8	0030	1.	.3-3284.9		4-84.0	9.6	1.07	11.1
10	8	0147		.9-3294.5		0-93.6	9.6	8.01	83.4
11	8	0257		.5-3304.1		6-103.2	9.6	7.72	80.4
12	8	0437		1-3313.7		2-112.8	9.6	7.99	83.2
13	8	0547	3313.	7-3323.3	112.	8-122.4	9.6	8.53	88.9
14	8	0701	3323	3-3332.9	122.	4-132.0	9.6	0.00	0.0
							132.0	99.4	75.3
Hole 611B									
1	8	1445	3227.	.7-3236.6	0.	0-8.9	8.9	8.9	100.00
Hole 611C									
1	8	1722		6-3230.0		0-2.4	2.4	2.4	100.0
2	8	1837		0-3235.0		4-7.4	5.0	4.91	98.2
3	8	1948		.0-3240.0		4-12.4	5.0	5.07	101.4
4	8 8	2111 2219		.0-3249.6		4-22.0	9.6 9.6	9.11 9.38	94.9 97.7
6	8	2324		2-3268.8		0-31.6 6-41.2	9.6	8.86	92.3
7	9	0039		8-3278.4		2-50.8	9.6	0.00	0.0
8	9	0147		4-3288.0		8-60.4	9.6	8.93	93.0
9	9	0304	3288.	0-3297.6	60.	4-70.0	9.6	9.59	99.9
10	9	0415		.6-3307.2		0-79.6	9.6	8.20	85.4
11	9	0525		2-3316.8		6-89.2	9.6	9.51	99.1
12	9	0650		8-3326.4		2-98.8	9.6	9.66	100.6
13 14	9	0752 0903		.4-3336.0 .0-3345.6		8-108.4 4-118.0	9.6 9.6	8.91 9.49	92.8 98.9
15	9	1026		6-3355.2		0-127.6	9.6	9.71	101.1
16	9	1128		2-3364.8		6-137.2	9.6	9.81	102.2
17	9	1248		8-3374.4		2-146.8	9.6	2.32	24.2
18	9	1356		4-3384.0		8-156.4	9.6	9.72	101.2
19	9	1510	3384.	0-3393.6	156.	4-166.0	9.6	4.83	50.3
20	9	1651		6-3404.2		0-175.6	9.6	2.91	30.3
21	9	1825		2-3412.8		6-185.2	9.6	1.39	14.5
22	9 9	1930		8-3422.4		2-194.8	9.6	9.79	101.9
23 24	9	2048 2205		.0-3422.4 .0-3441.6		8-204.4 4-214.0	9.6 9.6	2.70 8.26	28.1 86.04
	9	2205		.6-3451.2		4-214.0 0-223.6	9.6	0.00	0.0
		0028		2-3460.8		6-233.2	9.6	5.33	55.5
25	10								
25 26	10 10		3460	8-3470.4	233	2-242.8	9.0	9.80	102.1
25	10 10 10	0152 0310		.8-3470.4 .4-3480.0		2-242.8 8-252.4	9.6 9.6	9.80 9.68	102.1 100.8
25 26 27	10	0152	3470.		242.				
25 26 27 28	10 10	0152 0310	3470. 3480. 3489.	4-3480.0	242. 252. 262.	8-252.4	9.6	9.68	100.8

Table 1 (continued).

Core	Date (August,	Time		oth from ll floor (m)		th below afloor (m)	Length cored	Length	Recover
no.	(August, 1983)	(hr.)	Тор	Bottom	Тор	Bottom	(m)	(m)	(%)
Hole 611C	(Cont.)								
33	10	0851	3518.	4-3528.0	290.	8-300.4	9.6	9.71	101.1
34	10	1001	3528.	0-3537.6	300.	4-310.0	9.6	0.00	0.0
35	10	1118	3537.	6-3547.2	310.	0-319.6	9.6	3.92	40.8
36	10	1248	3547.	2-3556.8	319.	6-329.2	9.6	9.54	99.4
37	10	1357	3556.	8-3566.4	329.	2-338.8	9.6	5.72	59.6
38	10	1510	3566.	4-3576.0	338.	8-348.4	9.6	9.60	100.0
39	10	1631	3576.	0-3585.6	348.	4-358.0	9.6	9.95	103.7
40	10	1751	3585.	6-3595.2	358.	0-367.6	9.6	2.61	27.2
41	10	1905	3595.	2-3604.8	367.	6-377.2	9.6	9.91	103.2
42	10	2027	3604.	8-3614.4	377.	2-386.8	9.6	9.65	100.5
43	10	2150	3614.	4-3624.0	386.	8-396.4	9.6	8.83	92.0
Wash	10		3624.	0-3662.4	396.	4-434.8			
44	11	0120	3662.	4-3672.0	434.	8-444.4	9.6	9.47	98.6
45	11	0255	3672.	0-3681.6	444.	4-454.0	9.6	8.56	89.2
Wash	11		3681.	6-3720.0	454.	0-492.4			
46	11	0711	3720.	0-3729.6	492.	4-502.2	9.6	9.31	97.0
47	11	0902	3729.	6-3739.2	502.	2-511.6	9.6	8.09	84.3
							434.8	344.05	79.1 ^a
Hole 611D									
Wash	11		3199.	5-3205.0	0.	0-5.5			
1	11	1357	3205.	0-3214.6	5.	5-15.1	9.6	9.24	96.3
Wash	11		3214.	6-3328.4	15.	1-128.9			
2	11	1635	3328.	4-3338.0	128.	9-138.5	9.6	9.82	102.3
3	11	1740	3338.	0-3347.6	138.	5-148.1	9.6	9.61	100.1
4	11	1855	3347.	6-3357.2	148.	1-157.7	9.6	9.89	103.0
5	11	2005	3357.	2-3366.8	157.	7-167.3	9.6	9.59	99.9
6	11	2116	3366.	8-3371.8	167.	3-172.3	5.0	5.19	103.8
7	11	2218	3371.	8-3376.4	172.	3-176.9	4.6	7.19	163.7
8	11	2329	3376.	4-3386.0	176.	9-186.5	9.6	9.82	102.3
9	12	0052	3386.	0-3395.6	186.	5-196.1	9.6	9.64	100.4
10	12	0200	3395.	6-3405.2	196.	1 - 205.7	9.6	9.81	102.2
11	12	0307	3405.	2 - 3414.8	205.	7-215.3	9.6	9.58	99.8
12	12	0414	3414.	8-3424.4	215.	3-224.9	9.6	8.23	85.7
13	12	0522	3424.	4-3434.0	224.	9-234.5	9.6	9.56	99.6
14	12	0636	3434.	0-3443.6	234.	5-244.1	9.6	5.12	53.3
							124.8	122.3	97.9 ^a
Hole 611E									
Wash	12		3199.	5-3206.0		0-6.5			
1	12	906	3206.	0-3215.6	6.	5-16.1	9.6	9.56	99.6
-	12	1006	3215	6-3225.2	16	1-25.7	9.6	9.65	100.5
2	12	1000	J	0-3223.2	10.	1 400.1	210		

^a Excluding washed intervals.

the maximum range of the positioning system. Our only recourse was a move directly southward, and this proved to be successful (a further 8-m depth increase). Hole 611B was eventually occupied near the southwestern limit of our permissible offset range at 3227 m water depth (uncorrected). This is 33 m deeper than the wave-crest Holes 610 and 610A. In all, six hours were devoted to this offset (Fig. 5). Averaging of satellite fixes later showed the location of this offset hole to be 52°50.15'N; 30°19.10'W.

We spudded into Hole 611B in the sediment wave trough at 1345 hr. on 8 August. One 8.9-m VLHPC core was retrieved at 1445 hr., but on the attempt for a second core, the barrel broke off at a pin at the top sub and was lost. Rather than use up time fishing for the broken piece, we ended Hole 611B by pulling out at 1550 hr. on 8 August.

We then spudded in at Hole 611C (no offset) at 1615 hr. on 8 August and retrieved a first core at 1722 hr. The first three cores were taken with a 5-m barrel while a second VLHPC barrel was being rigged. We cored continuously with the VLHPC through Core 611C-14 taken at 0903 hr, on 9 August at a sub-bottom depth of 118.0 m, and then cored continuously with the XCB through Core 611C-43 to a depth of 396.4 m, reached at 2150 hr. on 10 August. We then washed down 38.4 m, took Cores 44 and 45 at 434.8-454.0 m sub-bottom, washed down another 38.4 m, and finished Hole 611C with Cores 46 and 47 at 492.4-511.6 m. Recovery was erratic, with numerous short cores, some caused by glacial debris drop-

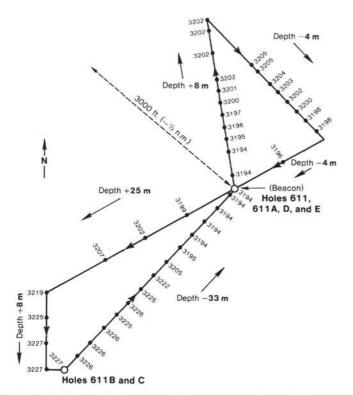


Figure 5. Glomar Challenger track between crest and trough holes at Site 611 (8 August, 1983, 11 August, 1983). Numbers are water depths in meters. Numbers adjacent to arrows indicate water-depth differences along tracks.

ping down the hole. Core 611C-47 came on deck at 0902 hr. on 11 August, and we began to pull out of the hole, clearing the mudline at 1030 hr.

We then decided that our best use of the remaining day or less of on-site time would be to return to the beacon and extend downward the upper section cored in Holes 611 and 611A.

During our return move to the beacon (Figs. 5, 6), it became clear that a southward initial offset crest-to-trough would have saved us considerable time: only 1.5 hr. were necessary for this move back to the beacon.

We spudded into Hole 611D at 1200 hr. on 11 August, washed down to 5.5 m, and took one VLHPC core to fill in a gap detected by analysis of core photographs from Holes 611 and 611A. This core came on board at 1357 hr. We then washed down to 128.9 m and began continuous XCB coring with Core 611D-2, retrieved at 1635 hr. on 11 August. We cored continuously until bringing Core 611D-14 on board at 0636 hr. on 12 August, having reached a depth of 244.1 m sub-bottom.

We began pulling out of the hole at 0636 hr. and cleared the mudline at 0730 hr. We spudded into Hole 611E at 0745 hr. to take two last VLHPC cores in the uppermost sediments that had been disturbed on previous attempts. We began pulling out of the hole after Core 611E-2 arrived on deck at 1006 hr. We finished pulling pipe at 2115 hr., spending extra time in order to Magnaflux the drill collar joints of the bottom-hole assembly and to check the power sub for cracks.

A postsite survey was planned before leaving Site 611. The vessel was underway by 2146 hr. on a course of 190°, and a track was run on this heading while streaming the seismic gear (Fig. 6). A port turn was made at 2205 hr; a satellite fix was received at 2206 hr. We passed over the beacon on a 350° course at 2232 hr. in an attempt to learn more of the shape of the drill site sediment wave for comparison with our offset maneuvers after Hole 611B (Fig. 5). It became clear that the wave is a broad double-crested feature that extends over 0.5 n.mi. in a south-to-north direction, and that our initial assumptions of its axis trend were generally correct. It would have been impossible to offset far enough northward while maintaining the beacon signal, and still reach the trough in that direction. Our offset maneuvers to the north and northwest had all been around this broad sediment wave crest.

At 2246 hr. we made a starboard turn and ran a southeasterly course, turning again at 2302 hr. to 229° to parallel our first track into the beacon. A course adjustment was made at 2315 hr. to pass over the beacon again (at 2318 hr.) so that we could then try to take a suitable course change to pass over Hole 611C. In fact, we eventually passed abeam of Hole 611C at 2323 hr. and continued our survey away from Site 611 on a heading of 218°. The survey was completed at 2330 hr., and we departed for St. John's, Newfoundland.

We then ordered up the first full gale of the cruise, but took care to select following winds so that it could blow us into port a day early.

SEDIMENT LITHOLOGY

At Site 611, sediments vary from pure terrigenous muds to nearly pure pelagic oozes and chalks. Two lithologic units were recognized (Figs. 7, 8).

Unit I comprises 0 to 138.5 m in the sediment wave crest hole (611D), and 0.0 to 149 m in the trough hole (611C). All sediments recovered from Holes 611A, 611B, and 611E on the crest belong to Unit I.

Unit I consists of slightly marly nannofossil oozes, foraminiferal-nannofossil oozes (10-30% detrital material) or marly oozes (30-70% detrital material), alternating with calcareous muds or muds containing 70 to 100% detrital material. These terrigenous muds are relatively thicker and more common in the trough hole (611C). Smear-slide composition indicates calcareous and siliceous organisms, clay, volcanic glass, feldspar, quartz and heavy minerals, rare mica, and often a relatively important component of clay-sized terrigenous particles.

Except for some shades of brown in the upper few meters of Unit I, colors range from very light gray or greenish gray to dark gray or greenish gray, and generally vary according to the amount of terrigenous material. Some of the darker calcareous mud intervals appear to be somewhat silty. Changes in color and in lithology are gradational, sometimes showing transitions over 0.5 to 1.0 m. No sharp contacts were observed. Green and rare gray laminations are present throughout Unit I. Their thickness varies from 1 mm to 1 cm, and they are generally diffuse. Pyritic mottles are very rare. Several dark

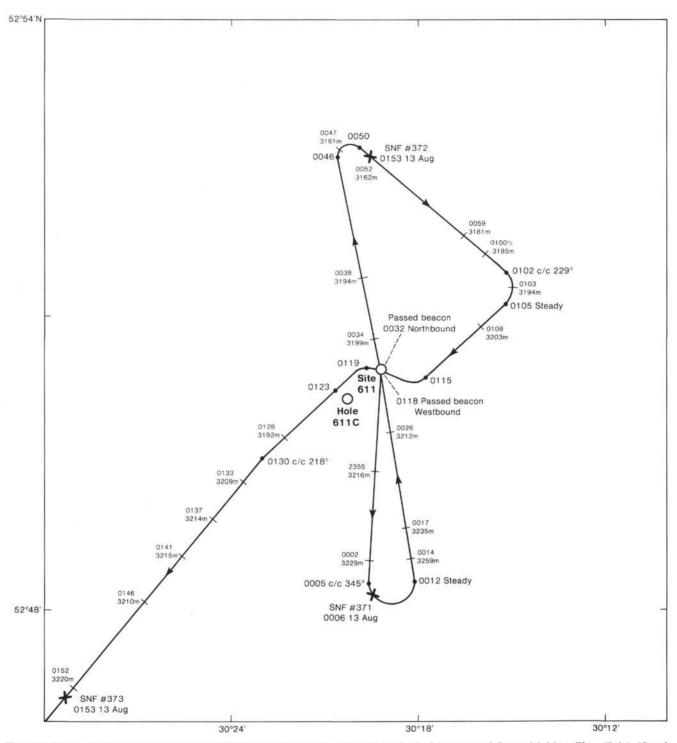


Figure 6. Glomar Challenger track on leaving Site 611 (postsite survey). Indicated are depths in meters and Greenwich Mean Time (Zulu), 12 and 13 August 1983. Arrows indicate direction of ship. SNF = Satellite Navigation Fix.

gray intervals rich in volcanic glass (5–15%) and/or tuff fragments occur in Unit I. In Hole 611, around 81.75 m, there is a thin (3 cm), sandy (50% sand-sized grains) ash layer containing 50% volcanic glass. No clear correlations between ash layers in different holes could be made. Scattered ash is very rare.

Siliceous organisms, mostly diatoms and sponge spicules, are present in varying amounts throughout Unit I. Siliceous foraminiferal nannofossil oozes (10–20% silica) were recognized at 0 to 15 m, 28.0 to 59.5 m, and 91 to 178 m in the crest holes, and between 114 and 167 m in the trough hole, with a maximum (20%) between 118 and 140 m. Siliceous organisms were not observed in the calcareous muds. Based on the siliceous content, Unit I can be divided into two subunits: Subunit IA, which contains calcareous terrigenous sediments (0–91 m in the

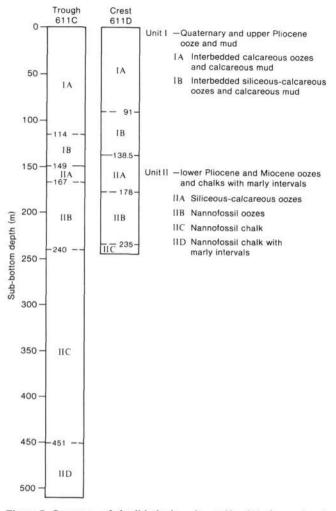


Figure 7. Summary of the lithologic units at Site 611, in crest and trough holes.

crest holes, 0-114 m on the trough hole); and Subunit IB, composed of siliceous-calcareous terrigenous sediments (91.0-138.5 m in the crest holes; 114-149 m in the trough hole).

Bioturbation is generally common in Unit I. Rare but distinctive Zoophycos burrows are present below 90 to 100 m in the crest holes and beginning at 72 m in the trough hole.

Dropstones are common, especially between 10 and 100 m. In over 450 m of sediment recovered within this depth interval, 89 dropstones larger than 1 cm were found. The composition of the dropstones is shown in Figure 9.

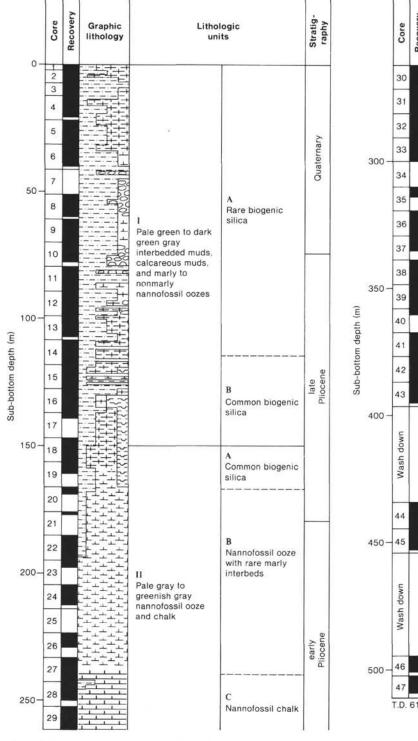
Unit I sediments are not altogether typical of deepwater pelagic deposits. They were deposited at high sedimentation rates (see Sedimentation Rate section) and contain reworked Cretaceous nannofossils. However, no sediment structures indicative of strong bottom-current transport and deposition were observed, nor were turbidite features found.

Unit II (149-511 m in the trough hole, Hole 611C; 138.5 m to bottom in the crest hole, Hole 611D) consists of sediments of early Pliocene and Miocene age, dominantly almost pure pelagic oozes and chalks that alternate with thinner marly intervals. The frequency of color changes is reduced relative to Unit I; colors range from light (greenish) gray to (greenish) gray.

Four sub-units can be distinguished: Subunit IIA, siliceous nannofossil oozes, containing about 10% silica (149–167 m in the trough holes; 138.5–178 m in the crest hole); Subunit IIB, nannofossil oozes (167–240 m in the trough hole; 178–235 m in the crest hole); Subunit IIC, calcareous chalk (240–451 m in the trough hole; 235 m to bottom—244 m—in the crest hole); and Subunit IID (below 451 m), nannofossil chalk with marly intervals.

Throughout Subunits IIA and B, bioturbation is generally common, as indicated by gray and olive gray mottles. Diffuse green layers are common and vary from very thin laminae (<1 mm) to thin beds (2-3 cm). Pyritic mottling is occasionally present. The first chalky intervals appear around 233 m; below this level, the number of hard intervals increases progressively. Subunit IIC displays very common gray and light brown burrow mottling. Diffuse green patches occur frequently, tending to elongate into a form of lamination, but distinct laminations are very rare. Some green, wispy laminations have been observed, mostly in the marly intervals. Between 323.3 and 324.2 m, most mottles appear flattened and tilted (15°); at 323.7 m, a fragment of the core has been broken by a microfault with slickensides. Below 325.6 m, the general bedding inclination increases to 35 to 45°. Green laminations are often crosscut by very thin, dark microfissures. Between 331 and 334 m, laminations and mottles are rare, but are tilted at 80°. A fault with slickensides is present; the sediment colors are slightly different on either side, but have similar bedding inclination. Below 334 m, the general bedding appears horizontal again; some faults with slickensides are present at 390 to 395 m and between 494 and 500 m.

PHYSICAL PROPERTIES


The physical properties measured on samples from Holes 611 and 611C are shown in Figures 10 and 11, respectively. Gravimetric tests were done on sediments from the entire length of Hole 611, 0 to 125 m sub-bottom depth, and the middle part of Hole 611C, 120 to 250 m sub-bottom.

The values of dry water content are scattered between 70 and 140% in the first 100 m (Hole 611, Fig. 10A). The dry water content starts to decrease roughly linearly from 135% at 120 m to 55% at 240 m sub-bottom (Hole 611C, Fig. 11A). Wet water content values are less scattered than dry values. Wet water contents vary between 40 and 60% over the upper 100 m (Fig. 10B). They then decrease linearly from 55% at 120 m to 35% at 250 m sub-bottom (Fig. 11B).

Values of porosity stay around 75% for the upper 120 m (Fig. 10C), then decrease from 75% at 120 m to 60% at approximately 250 m sub-bottom depth (Fig. 11C).

Void ratio values are scattered in the first 130 m (Fig. 10D), varying between 1.5 to 4.5. Void ratio decreases from 3.5 at 120 m to 1.5 at 250 m sub-bottom depth at a roughly linear rate (Fig. 11D).

Grain density varies between 2.5 and 3.0 g/cm³. This variation is more than at the other sites and could be

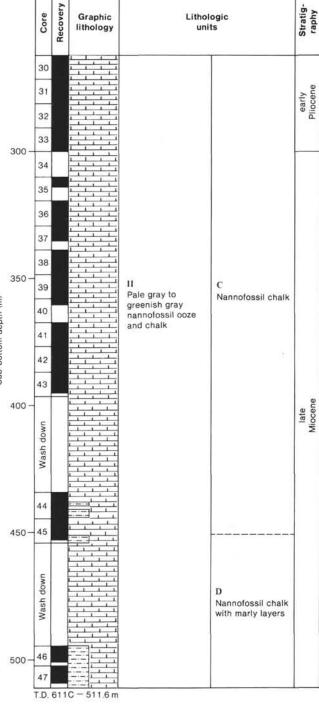


Figure 8. Recovery and lithologic units at Site 611 (Hole 611C).

caused by somewhat greater lithologic variation (Figs. 10E and 11E).

Most values of wet-bulk density fall between 1.4 and 1.5 g/cm³ over the upper 120 m (Fig. 10F). Wet-bulk density increases from about 1.4 g/cm³ at 120 m to approximately 1.7 g/cm³ at 250 m sub-bottom (Fig. 11F). Values for bulk density derived from continuous GRAPE

and 2-minute GRAPE measurements confirm this gravimetric data (Fig. 11G).

Sonic velocity measurements at this site show values of 1.53 km/s over the upper 280 m (Figs. 10G and 11H). Sonic velocity increases linearly with depth from 1.54 km/s at 280 m to 2 km/s at 500 m sub-bottom depth (Fig. 11H).

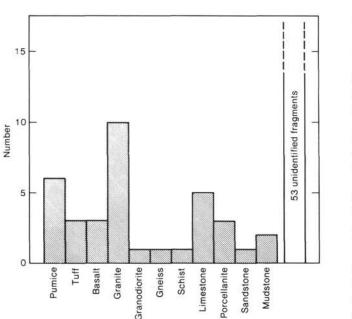


Figure 9. Composition of glacial erratics (dropstones) at Site 611. (Number = 36.)

Shear strength increases with depth from values around 75 g/cm² at the surface to about 600 g/cm² at 120 m sub-bottom (Fig. 10H).

SEISMIC STRATIGRAPHY

The Glomar Challenger air-gun records obtained on our run in to Site 611 could be matched quite well with those recorded by *Discovery* during the site survey (see also Jacobs, this volume). Because the reflectors are much more clearly defined on the latter records (Fig. 12A), we will use them to discuss the acoustic units at this site. Selected acoustic units are outlined alongside the Leg 94 profile in Figure 12B.

Acoustic basement is defined by an irregular, probably faulted reflector that varies between 1.2 and 2.0 s sub-bottom (two-way traveltime) in the vicinity of the site (acoustic Unit F). At Site 611, it is relatively shallow: 1.3 s. A deep flat-lying reflector occurs at around 1.0 s sub-bottom and defines the top of a sequence that apparently fills the basement relief. Around Site 611 this sequence, acoustic Unit E, is in places almost 0.4 s thick.

Above the 1.0-s regional reflector is the Gardar sediment drift section. Between 0.5 and 1.0 s sub-bottom the *Discovery* profiles (Fig. 12A) show an interval of reverberant returns in which there is some suggestion of inclined reflectors (acoustic Unit D). The *Challenger* profile over this interval (Fig. 12B) is generally transparent in the lower part, passing upward into a more reflective zone above 0.7 s. Between 0.5 and 0.2 s on the *Discovery* profile, a zone of strong reflectivity occurs that is matched on the *Challenger* record by an interval between 0.4 and 0.5 s that is only generally reflective but passes into a stronger reflectivity interval between 0.4 and 0.2 s. We have split the 0.2- to 0.5-s interval at 0.4 s on Figure 12B into two acoustic units (B and C) based upon this difference in the profiles, because a relationship is evident with the lithologies drilled at Site 610. Acoustic Unit B on the *Challenger* profile shows faint returns that may again represent inclined reflectors.

Both sets of records show a marked change at 0.2 s sub-bottom below a wavey stratified upper sequence, the surface relief of which is the sediment-wave ornamentation of the drift.

Correlations with the lithologies drilled are defined in Figure 12B. Calculated two-way traveltimes for specific cored intervals are shown in Table 2, derived from seismic velocities measured on the recovered sediments.

Lithologic Unit I, which extends to 149 m sub-bottom in Hole 611C, represents about 0.2 s of two-way traveltime (Table 2) and contains the glacial-interglacial carbonate cycles. As at other Leg 94 sites, this correlates with the uppermost acoustic Unit A.

Acoustic Units B and C are represented by lithologic Subunits IIA and IIB, and IIC, respectively. The reflectivity change defining the base of acoustic Unit C corresponds in Hole 611C to a change (calculated at 0.5 s sub-bottom in Table 2) to more marly nannofossil chalks at 451 m sub-bottom within lithologic Subunit IID. Calculations show that the reflectivity increase in the *Challenger* records passing upward through 0.4 s sub-bottom probably represents the boundary between lithologic Subunits IIB and IIC at 240 m in Hole 611C.

We have little information below 0.5 s (451 m) subbottom. Cores 611C-46 and -47, which extend to 511.6 m total depth, show that the thick acoustic Unit D is, at least in its upper parts, made up of nannofossil chalks with marly intervals (lithologic Subunit IID).

BIOSTRATIGRAPHY

Six holes were drilled on the southeastern flank of the Gardar Ridge, resulting in the recovery of a continuous upper Miocene through Quaternary sedimentary sequence. Although the preservation and abundance of microfossils vary among samples, nannofossils are generally moderately to well preserved with moderate to high diversity. Similarly, foraminifers are generally abundant and well preserved, with the exception of some upper Miocene samples in which planktonic foraminifers are rare or flattened. In addition, samples generally contain few to common moderately preserved diatoms.

Holes 611, 611A, 611D, and 611E were drilled on the crest of a sediment wave, whereas Holes 611B and 611C were drilled in the trough. Holes 611 and 611A recovered 125.8 and 132.0 m, respectively, of upper Pliocene through Quaternary sediments. The Pliocene/Pleistocene boundary is placed within Core 8 of Holes 611 and 611A, Core 10 of Hole 611C based on paleomagnetic and paleontological datums (see Fig. 13 and sedimentation rate curves, Figs. 14A and 14B) (for an updated version, see Baldauf et al., this volume).

Fourteen cores were recovered from Hole 611D. Except for a VLHPC core taken from 5.5 to 15.1 m (Core 611D-1), the upper 128.9 m of sediments were washed. Coring continued to a sub-bottom depth of 244.1 m. With the exception of Core 611D-1, which is Quaternary in age, all sediments recovered are Pliocene in age (2.6-3.9 Ma). The Gilbert/Gauss boundary, which cor-

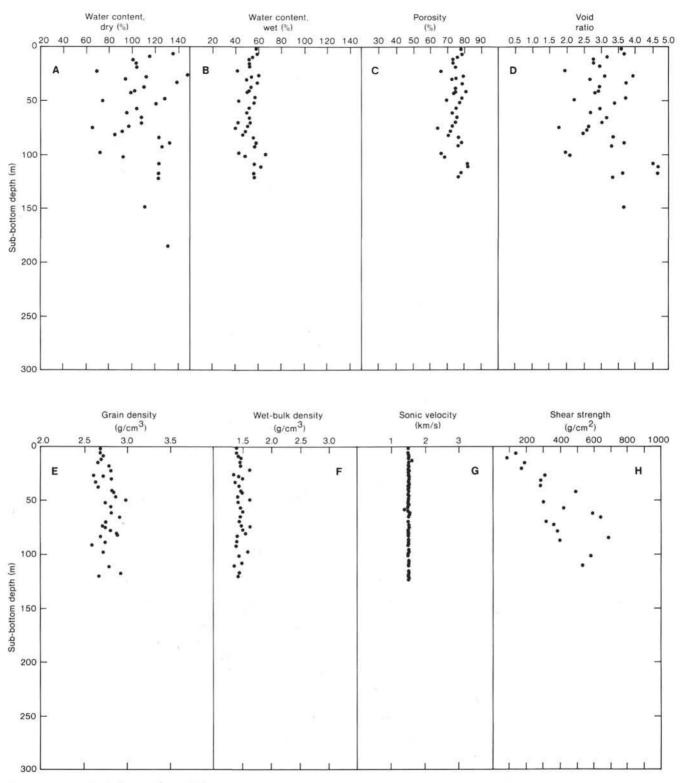


Figure 10. A-H. Physical properties at Hole 611.

responds to the early Pliocene/late Pliocene boundary (3.40 Ma), is placed in Core 611D-10 at a depth of 200 m.

The two cores recovered from Hole 611E are middle to late Quaternary in age, based on paleomagnetic and paleontological datums. Hole 611C, drilled within the trough, was continuously cored to a depth of 396.4 m. Below this depth, 50 m of sediments were washed. This was followed by 19.2 m (two cores) of coring. This washdown and coring sequence was repeated a second time resulting in a total depth of 511.6 m. Age control is based on 33 datums in-

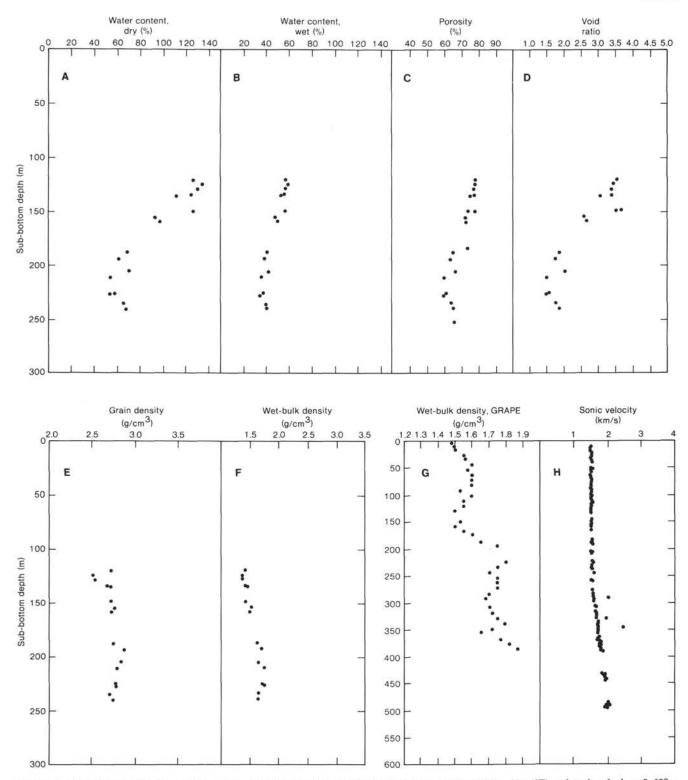


Figure 11. Physical properties, Hole 611C. A-F. 0-300 m sub-bottom. G, H. Wet-bulk density (derived from GRAPE) and sonic velocity-0-600 m sub-bottom.

dicating a late middle Miocene to Quaternary age for sediments recovered from Hole 611C. The Miocene/Pliocene boundary (5.3 Ma) is placed below Core 611C-33 at an approximate depth of 300 m. The Pliocene/Quaternary boundary is placed in the lower portion of Core 611C-10 (77 m). The lower/upper Pliocene boundary occurs in Core 611C-21 at 180 m. The one core recovered from Hole 611B, which was begun in the trough and quickly abandoned, is of Quaternary age.

Calcareous Nannofossils

Core-catcher material examined contains middle Miocene to Holocene calcareous nannofossils. The state of

486

Figure 12. A. Single-channel air-gun record from *Discovery* site survey; the position of Site 611 is indicated. B. Air-gun record from the *Glomar Challenger*, showing the same area as is depicted in Figure 12A, and correlation of acoustic units with lithologic units at Site 611.

Table 2. Hole 611C: seismic velocity calculations.

Cored interval (m)	Mean seismic velocity (m/s)	Equivalent seconds (two-way traveltime)	Cumulative seconds (two-way traveltime		
0-166	760	0.218	0.0-0.218		
166-282	775	0.150	0.218-0.368		
282-321	800	0.050	0.368-0.418		
321-338	825	0.021	0.418-0.439		
338-396	882	0.023	0.439-0.462		
396-454	968	0.060	0.499-0.522		

preservation is moderate to poor and the species diversity is low to moderate.

Holes 611 and 611A

Samples 611-1.CC contains abundant coccoliths. Emiliania huxleyi, gephyrocapsids, Calcidiscus leptoporus, and Helicosphaera carteri are dominant, and a few species, such as Discolithina multipora, Ceratolithus cristatus, Gephyrocapsa aperta and Discolithina japonica, occur rarely. This sample may thus represent the late Pleistocene to Holocene Emiliania huxleyi Zone (NN21). Samples 611-2,CC 611A-1,CC and 611A-2,CC contain Cretaceous reworked specimens such as Watznaueria barnesae, Arkhangelskiella cymbiformis, and Eiffellithus turriseiffeli. The occurrence of Pseudoemiliania lacunosa and the absence of discoasters suggest that Samples 611-2,CC through 611-8,CC and 611A-1,CC through 611A-10,CC can be correlated with early Pleistocene Pseudoemiliania lacunosa Zone (NN19). Discoasters are extremely rare, and therefore it is hard to detect the last appearance datum (LAD) of Discoaster brouweri. The Pliocene/Pleistocene boundary may be placed between Samples 611-8,CC and 611-9,CC and 611A-10,CC and 611A-11,CC. Samples 611-9,CC through 611-12,CC and 611A-11,CC are characterized by the occurrence of Discoaster brouweri and belong to the uppermost Pliocene Discoaster brouweri Zone (NN18). Among these samples, 611-10,CC contains a few Gephyrocapsa oceanica and G. caribbeanica. They probably represent downhole contamination, but occurrences of these species in upper Pliocene formations have been reported by several investigators (for example Takayama, 1977). Sample 611A-12,CC contains Discoaster pentaradiatus together with D. brouweri and is placed in the Discoaster pentaradiatus Zone (NN17). The remaining samples of these holes are considered to belong to the Discoaster surculus Zone (NN16), based on the occurrence of Discoaster surculus.

Hole 611C

Abundant occurrences of *Emiliania huxleyi* suggest that Samples 611C-1,CC and 611-2,CC can be correlated with the late Pleistocene to Holocene *Emiliania huxleyi* Zone (NN21). A few specimens of *Eiffellithus turriseiffeli* and *Watznaueria barnesae* in Sample 611C-2,CC are considered to be reworked from Cretaceous outcrops. Sample 611C-3,CC belongs to the *Gephyrocapsa oceanica* Zone (NN20), according to the absence of *Emiliania huxleyi* and *Pseudoemiliania lacunosa*. The seven samples below this (Samples 611C-4,CC through 611-9,CC) contain abundant *Pseudoemiliania lacunosa*, and all are placed in the lower Pleistocene *Pseudoemiliania lacunosa* Zone (NN19). Several reworked Cretaceous specimens are found in this zone (in Sample 611C-5,CC). Calcareous nannofossils are almost absent in Sample 611C-10,CC. As in previous holes, discoasters are missing or extremely rare in the upper Pliocene sediments. As a result, the Pliocene/Pleistocene boundary is not precisely detected. However, Sample 611C-11,CC does contain *Discoaster brouweri* and *D. triradiatus* and the Pliocene/ Pleistocene boundary is placed between Samples 611C-9,CC and 611C-11,CC (see Takayama and Sato, this volume).

Samples 611C-11,CC through 611C-13,CC are assigned to the *Discoaster brouweri* Zone (NN18). Judging by the coexistence of *Discoaster pentaradiatus* and *D. surculus*, Sample 611C-14,CC is placed in the NN16 *Discoaster surculus* Zone. Below this, discoasterid assemblages gradually change with an increase in the number of species and the number of specimens. *Reticulofenestra pseudoumbilica* is comparatively dominant. The abundance of *Reticulofenestra pseudoumbilica*, however, increases in Sample 611C-22,CC; this species may thus become extinct in Core 22, with occurrences above this sample representing reworking. Consequently, the boundary between the *Discoaster surculus* Zone (NN16) and *Reticulofenestra pseudoumbilica* Zone (NN15) is placed between Samples 611C-21,CC and 611C-22,CC.

Because amauroliths occur in Samples 611C-27,CC through 611-29, CC, the Reticulofenestra pseudoumbilica Zone (NN15)/Discoaster asymmetricus Zone (NN14) boundary is placed in Core 27. Below this boundary, Discoaster asymmetricus and ceratoliths are missing or extremely rare. Thus the distinction between the Discoaster asymmetricus Zone (NN14), the Ceratolithus rugosus Zone (NN13), and the Amaurolithus tricorniculatus Zone (NN12) is uncertain. Below the NN15/NN14 boundary, rare to common Discoaster guingueramus are found; however the abundant occurrence of this species is first recognized in Sample 611-31, CC. Thus the Amaurolithus tricorniculatus Zone (NN12)/Discoaster quinqueramus Zone (NN11) boundary is placed in Core 611C-31. Occurrences of Discoaster quinqueramus above this boundary are attributed to reworking.

Samples 611C-44,CC and -45,CC contain no Discoaster quinqueramus specimens and may belong to the NN10 Discoaster calcaris Zone. In Sample 611C-46,CC, obtained from the bottom of this hole, a few specimens of Discoaster hamatus are found. If these are not reworked specimens, this sample can be assigned to the middle to upper Miocene Discoaster hamatus Zone (NN9), and the absolute age of the bottom sediments of Hole 611C is slightly older than 11 Ma. In the lower half of this hole, comparatively abundant Oligocene-Eocene reworked specimens are recognized.

Hole 611D

Sample 611D-1,CC, which was obtained after washing down to 5.5 m sub-bottom, contains abundant Gephyrocapsa caribbeanica, Helicosphaera carteri, Calcidiscus leptoporus together with Gephyrocapsa oceanica

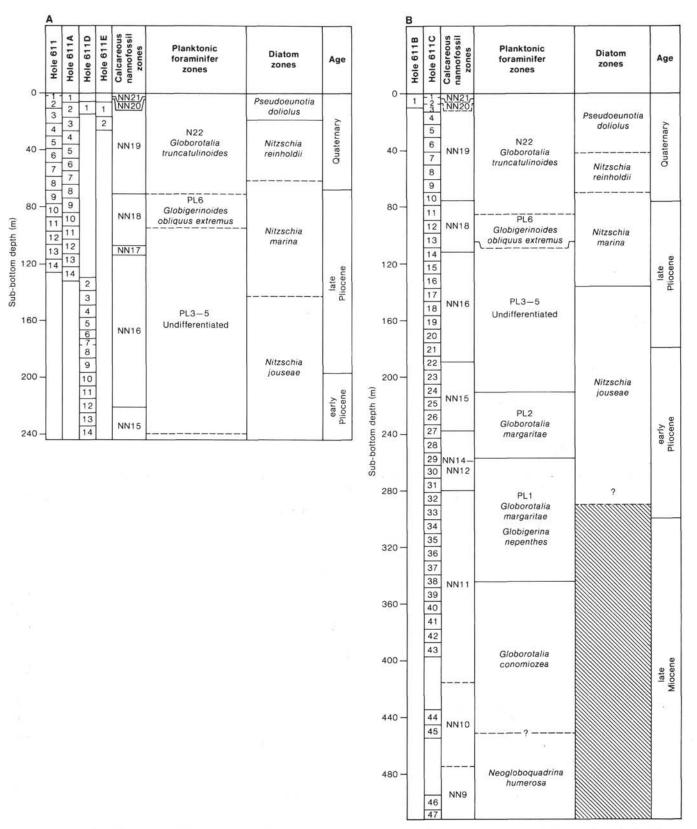


Figure 13. Biostratigraphic summary, Site 611. A. Crest holes—611, 611A, 611D, 611E. B. Trough holes—611B, 611C. Hachured area in the Diatom column indicates that samples are barren or contain rare non-age-diagnostic fragments. For an updated version, see Baldauf et al., this volume.

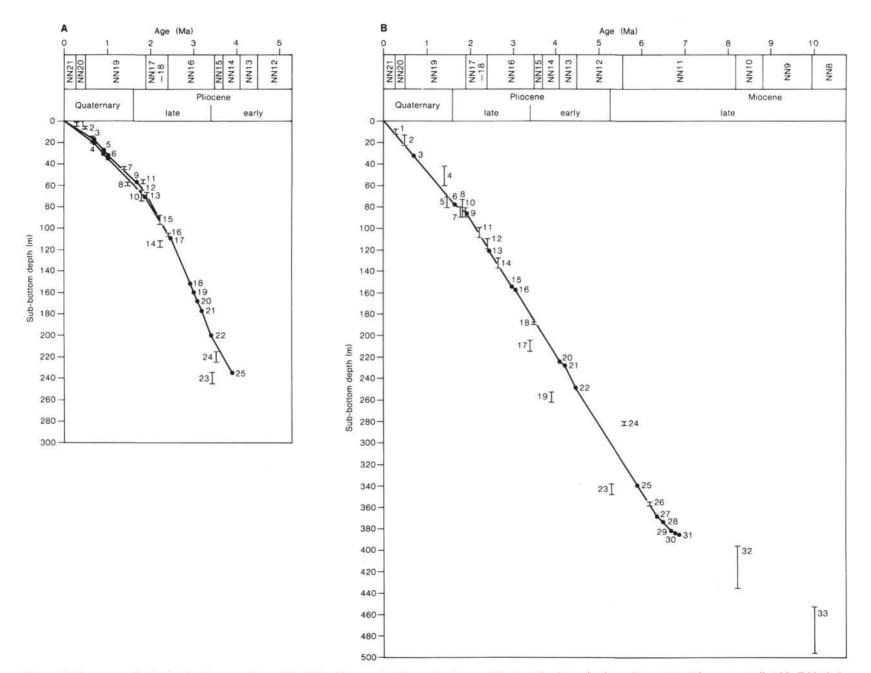


Figure 14. Time versus depth plots for the cores taken at Site 611, with nannofossil zonation shown at the top. The datum levels used to construct the curves are listed in Table 6. A. Crest holes—611, 611A, 611D. B. Trough holes—611B, 611C.

and Pseudoemiliania lacunosa. This sample is referred to the lower Pleistocene Pseudoemiliania lacunosa Zone (NN19). Samples 611D-2, CC through -11, CC, which were continuously cored after washing down to 128.9 m subbottom, contain Pseudoemiliania lacunosa, Helicosphaera sellii, and Calcidiscus macintyrei together with Discoaster brouweri, D. pentaradiatus, D. surculus, and D. asymmetricus and D. tamalis. These samples belong to the upper Pliocene Discoaster surculus Zone (NN16). Throughout this zone, specimens of Reticulofenestra pseudoumbilica are found, but the number of specimens is not as abundant as in Hole 611C. Therefore the NN16/ NN15 boundary is comparatively clearly marked in Core 611D-12. Samples 611D-12,CC on down to the bottom of the hole are assigned to the Reticulofenestra pseudoumbilica Zone (NN15), based on the abundant occurrence of Reticulofenestra pseudoumbilica.

Hole 611E

Hole 611E, the last hole drilled during Leg 94, was washed down to 6.5 m sub-bottom, and two cores were obtained. These cores contain abundant gephyrocapsids and *Pseudoemiliania lacunosa* together with *Helicosphaera carteri*, *Calcidiscus leptoporus*, *Syracosphaera* sp., and *Discolithina multipora*, and are placed in the lower Pleistocene *Pseudoemiliania lacunosa* Zone (NN19).

Planktonic Foraminifers

The fauna of Site 611 is generally abundant and well preserved, although a few samples from the upper Miocene show reduced numbers and in some cases only moderate preservation. At the base of Hole 611C (near the middle/upper Miocene boundary), there are numerous flattened specimens; broken specimens also occur at some levels, particularly in the midpart of the Pliocene. Faunas are generally of cool-temperate type, similar to those at Site 610, with neogloboquadrinids dominating most samples. Some warmer influences can be seen in the lower part of the upper Miocene.

Holes 611, 611A, 611D, 611E

These holes were all drilled on the crest of a mudwave and represent a continuous sequence to 244 m. As at previous sites, it has been much easier to apply a simplified version of Berggren's (1977) subtropical temperate zonation than Poore and Berggren's (1975) temperate zonation (see also Weaver; and Weaver and Clement, this volume). Globorotalia truncatulinoides is very rare at this site and occurs in the warmer-water samples only. Its usefulness as a stratigraphic marker is therefore limited and, as at Site 610, the first occurrence of Neogloboquadrina pachyderma (sinistral, s, encrusted form) has been found to provide a better marker for the base of the G. truncatulinoides Zone. N. pachyderma (s) first appears in Cores 611-9, 611A-8, and in the washed interval between Cores 611D-1 and 611D-2. The fauna of this zone contains abundant Globigerina bulloides, G. quinqueloba, N. pachyderma (dextral, d), Globorotalia scitula, and G. inflata during warm intervals, and is dominated by N. pachyderma (s) during cold intervals.

As at previous sites, the absence of *Globorotalia miocenica* prevents an easy definition Zone PL6. At Site 607, the base of this zone was close to the transition from *Globorotalia puncticulata* to *G. inflata*, and this is used here to approximate the base of Zone PL6. The transition occurs in Core 611-11; between 611A-9,CC and 611A-11,CC (because no specimens of either species occur in 611A-10,CC); and in the washed interval of Hole 611D. The fauna of this zone is similar to that of the Ouaternary but without *N. pachyderma* (s).

Distinction cannot be made between Zones PL3-5, and they are treated as one interval. The base of this interval is marked by the disappearance of *G. margaritae*, which occurs in Core 611D-14. The fauna of this interval contains abundant *Neogloboquadrina atlantica*, *N. pachyderma*, *Globigerina bulloides*, and *Globorotalia puncticulata*. *N. atlantica* (d) disappears near the top of this zone, and specimens of *Globorotalia* of *G. pliozea* can be found near the base. Zone PL2 contains a similar fauna with the addition of *Globorotalia margaritae*.

Hole 611C

This hole was drilled in the trough of mudwave. It provides an almost complete section to 512 m (upper Miocene), with two short washed intervals in the upper Miocene. Faunas from the upper part of the hole are comparable to the other holes at this site, with the boundaries of the zones occurring at the following levels: the base of the *Globorotalia truncatulinoides* Zone lies in Core 611C-11, based on the first occurrence of *Neogloboquadrina pachyderma* (s). Zone PL6 begins in Core 611C-13 based on the transition from *Globorotalia puncticulata* to *G. inflata*. Zones PL3-5 begin in Core 611C-24 at the last appearance of *Globorotalia margaritae*. Close agreement is found in the ages of these datums between the crest and trough holes when they are calculated from the sedimentation rate curves.

Zone PL2 extends to Core 611C-29, with the base being taken at the extinction of *Globigerina nepenthes*. The fauna of this zone is slightly more diverse than the zones above, with rare occurrences of warmer-water species such as *Globigerinoides obliquus* and *G. trilobus*. The fauna is nevertheless still dominated by neogloboquadrinids. The first occurrence of *Globorotalia puncticulata* lies close to the top of this zone.

Zone PL1 extends from the first occurrence of *Globorotalia margaritae* in Core 611C-38 to the extinction of *Globigerina nepenthes* in Core 611C-29. The fauna of this interval is similar to Zone PL2, with *G. nepenthes* being very rare, and lower occurrences of *G. margaritae* being atypical forms. The base of this zone is in any case taken to be at the base of the range of *G. margaritae* and not at the last occurrence of *Globoquadrina dehiscens*, as defined by Berggren (1977). This zone therefore crosses the Miocene/Pliocene boundary.

Globorotalia conomiozea occurs in Cores 611C-38 and -39, and forms attributable to this species occur down to Core 611C-45. The position of the base of the *G. conomiozea* Zone is therefore not certain, but it may lie in Core 611C-45. Below this, specimens of neogloboquad-

rinids occur to the base of the section, suggesting that these cores belong in the *N. humerosa* Zone. A few specimens of *G.* cf. *miozea* have, however, been found that might indicate a middle Miocene age for Core 611C-47, which is not in agreement with a nannofossil age of NN9 (late Miocene).

Benthic Foraminifers

Benthic foraminifers constitute less than 1% of the total foraminiferal fauna in the 63- μ m fraction in almost all samples studied (list of samples given in Table 3). Only in Sample 611-14,CC is the planktonic-benthic ratio unusually low (P/B = 0.18). This number is valid only if whole specimens of planktonic foraminifers are counted; many unrecognizable fragments are present in this sample. Almost all samples studied contained sufficient specimens for counts of 200 individuals. Sample 611A-3,CC contained only 20 specimens, and data from this sample are not included in the discussion.

Samples below 611C-35,CC were dried at about 110°C for at least one hour, then soaked in kerosene. Subsequently the kerosene was poured off, water was added, and the samples were heated for at least 30 min. This treatment cleaned the fauna well in all samples.

Preservation is excellent to good above 300 m. The aragonitic species *Hoeglundina elegans* is preserved in Samples 611-1-1, 0-2 cm, -7,CC, -11,CC, and -13,CC. Below 300 m the preservation varies from good to moderate. In Samples 611C-45,CC and -47,CC, some specimens are crushed and/or recrystallized.

The diversity is generally moderate (30–40 species) to high (40–50 species), but low in Sample 611-14,CC (21 species). In most samples above 611-17,CC the diversity is moderate, and in most samples below that level the diversity is high. The lowest diversity was found in very dark gray sediments, but there is no obvious correlation with lithology, because other dark gray sediments contain a high-diversity fauna. The low-diversity fauna in Sample 611-14,CC contains abundant *Epistominella exigua*; a similar fauna was observed in a sample at Site 609 in a very dark layer just below the contact with white ooze. Because plankton is rare in Sample 611-14,CC, this sample might represent a meltwater-spike.

At Site 611, the relative abundances show strong fluctuation. The mudline sample contain an *E. exigua* fauna, as expected at this depth and latitude for a recent fauna (Streeter, 1973). The most obvious important changes in the benthic fauna occur between Samples 611C-17,CCand -21,CC, that is, between about 2.8 and 3.5 Ma.

Table 3. Samples used in the study of benthic foraminifers.

Hole-core-section, interval in cm											
611-1-1, 0-2	611-14,CC	611C-21,CC	611C-37,CC								
611-1,CC	611A-3,CC	611C-23,CC	611C-39,CC								
611-5,CC	611A-4,CC	611C-27,CC	611C-41,CC								
611-7,CC	611C-4,CC	611C-31,CC	611C-43,CC								
611-9,CC	611C-5,CC	611C-33,CC	611C-45,CC								
611-11,CC	611C-17.CC	611C-35,CC	611C-47,CC								
611-13.CC	611C-19,CC	21	27								

Above this interval, Cassidulina crassa and, in some samples, Cassidulina teretis are common, as are Eponides pusillus and Astrononion pusillum. The "biserial group" (Bolivina spp., Stainforthia complanata, Francesita advena, Fursenkoina spp.) shows larger fluctuations and is somewhat more common above this same level, whereas Globocassidulina subglobosa is more common lower in the section. Nuttallides umbonifera, which at other sites was more common before the onset of glaciation, has a spotty occurrence at Site 611. Uvigerina spp. shows several peaks in abundance in the upper 40 m, but is consistently present from Sample 611C-17,CC down. This pattern of changes in the benthic fauna suggests that bottom waters in the early Pliocene at this location were less oxygenated than today, and that a change in bottom-water circulation occurred during the late Pliocene, between about 3.5 and 2.8 Ma.

Uvigerina spp. shows a large peak in relative abundance (28.5%) in Sample 611C-39,CC. Its abundance is much lower is some samples from Cores 611C-38 and -39 that were not counted, but just inspected. This peak probably can be correlated with the peak in Uvigerina abundance that has been observed just above the wide-spread shift in ¹³C at 6.2 Ma (e.g., Vincent et al., 1980).

Diatoms

Diatoms are generally present within the six holes drilled at Site 611. Although the diatom flora present is dominated by the cosmopolitan species *Coscinodiscus* marginatus, Thalassiothrix longissima, Thalassionema nitzschioides, Thalassiosira leptopus, Thalassiosira eccentrica, Nitzschia reinholdii, and Actinocyclus divisus, the warm-temperate species *Pseudoeunotia doliolus*, Nitzschia jouseae, and Thalassiosira convexa are also observed. In addition, an influx of the cold-temperate species Denticulopsis seminae, D. seminae var. fossilis, Rhizosolenia barboi, R. curvirostris, and Thalassiosira nidulus approximates the Jaramillo Subchron. Samples 611-1,CC through 611-3-3, 25-30 cm, and 611A-1,CC are placed into the Pseudoeunotia doliolus Zone of Burckle (1977).

The first occurrence of *P. doliolus* in Samples 611-7-5, 43-45 cm and 611A-8, CC allows placement of Samples 611-7-5, 43-45 cm through 611-3-3, 45-50 cm and 611A-8, CC through 611A-4, CC in the *Nitzschia reinholdii* Zone of Burckle (1977). Within this interval, the influx of the cold temperate species occurs in Samples 611-5-6, 43-45 cm to 611-3, CC. The remaining portion of Holes 611 and 611A is placed into the *Nitzschia marina* Zone of Baldauf (1985).

A continuous upper Miocene through Quaternary sequence was recovered from Hole 611C. Diatoms are generally present within the upper 40 cores recovered. Below this interval, samples examined are barren or contain rare diatoms fragments.

Sample 611C-1,CC through 611C-4,CC are assigned to the *P. doliolus* Zone of Burckle (1977), based on the presence of *P. doliolus* stratigraphically above the last occurrence of *N. reinholdii*.

The first occurrence of *Pseudoeunotia doliolus* occurs in Sample 611C-9, CC. Therefore Cores 611C-6 through -9 are placed in the *Pseudoeunotia doliolus* Zone of Burckle (1977). The last occurrence of *Nitzschia jous-eae*, which defines the boundary between the *N. jouseae* Zone and the *N. marina* Zone, occurs in Sample 611C-16,CC. Therefore, Cores 611C-9 through -15 are assigned to the *Nitzschia marina* Zone of Baldauf (1985). Sample 611C-16,CC is assigned to the *Nitzschia jouseae* Zone of Baldauf (1985). Owing to poor preservation and lack of age-diagnostic forms, the base of the *N. jouseae* Zone was not observed.

With the exception of Samples 611D-1,CC -5,CC, and 611E-1,CC, no age-diagnostic specimens were observed in samples examined from Holes 611D and 611E. Samples 611D-1,CC and 611E-1,CC are both assigned to the Quaternary *P. doliolus* Zone of Burckle (1977), based on the occurrence of *P. doliolus*. Samples 611D-3,CC through 611D-14,CC are placed in the *N. jouseae* Zone of Baldauf (1985), based on the presence of *N. jouseae*.

Radiolarians

Radiolarians are well preserved, but generally not very abundant in some of the samples examined from Site 611 (Table 4). To date, only core catchers from Holes 611 and 611C have been examined. In Hole 611, core catchers of Cores 611-2, -5, -6, and -7 are barren or contain only occasional specimens. Very sparse assemblages were found in Cores 611-8, -12, and -14; Cores 611-1, -3, -4, -11, and -13 have assemblages made up of species that are long ranged, and most of which are believed to live deep in the water column.

In Pliocene to upper Miocene sediments below Core 611C-15, radiolarians are very rare or absent, with the

Table 4. Preservation and abundance of radiolarians in Holes 611 and 611C.

	Hole 611			Hole 6110	2
Sample	Abundance	Preservation	Sample	Abundance	Preservation
1,CC	R	G	15,CC	VR	м
2,CC	VR	P	16,CC	R	M
3,CC	F	G	17,CC	VR	M
4,CC	F	G	18,CC	F	M
5,CC	в		19,CC	VR	M
6,CC	VR	M	20,CC	F	M
7,CC	в		21,CC	VR	M
8,CC	VR	M	22,CC	VR	M
9,CC	в		23.CC	VR	M
10,CC	в		24,CC	VR	м
11,CC	F	P	25,CC	VR	м
12,CC	VR	M	27.CC	F	G
13,CC	F	G	28,CC	R	G
14,CC	R	G	29,CC	в	
			30,CC	VR	P
			31,CC	в	
			32,CC	VR	P
			33.CC	в	
			36,CC	VR	M
			37,CC	в	
			38,CC	в	
			40.CC	VR	M
			41,CC	VR	P
			42,CC	в	
			43.CC	в	
			44,CC	в	
			45,CC	В	
			46,CC	в	
			47,CC	B	

Note: C = 5000-10,000 specimen/slide; F = 1000-5000; R = <1000; VR = <200. B = barren. G = good; M = moderate; P = poor.

exception of Cores 611C-18, -20, and -27, which contain assemblages similar to the ones described above.

PALEOMAGNETICS

Paleomagnetic samples were taken at an interval of one per section (every 1.5 m) from the sediment obtained from the six holes cored at Site 611. The same procedures used at the five previous sites on Leg 94 were employed at this site. Pilot samples selected throughout the intervals studied were subjected to progressive alternating field (AF) demagnetization studies. In this case, a normal overprint is apparent and is readily removed by treatment at a peak field of 10 mT. A stable, singlecomponent magnetization is indicated by the trajectory, which decays linearly toward the origin. Based on these results, the remaining samples were partially demagnetized using a peak alternating field of 10 mT.

The resulting inclination records obtained after AF treatment at 10 mT are discussed in detail by Clement and Robinson (this volume) for each of the holes cored at this site, with the exception of Hole 611B. Only one core was taken from Hole 611B, and the samples measured from that core were all of normal polarity. This, and the biostratigraphy, suggests that this core falls completely within the Brunhes Chronozone. The depths of the polarity boundaries are given in Table 5.

The high remanent magnetization intensities (up to 1.5×10^{-4} emu/cm³) of the samples measured at these holes, combined with the high sedimentation rates (up to 80 m/m.y.), allowed high-resolution records of the polarity sequences to be obtained. In Holes 611 and 611A, detailed polarity records for the last 2.5 m.y. were obtained. The correlation of the observed chronozones to the magnetic polarity time scale (MPTS) was straightforward. In both of these holes, a notable change in the sedimentation rate occurs below the Brunhes Chronozone. This change in sedimentation rate was only observed in the holes cored on the crest of the sediment wave.

At Hole 611C, a nearly complete record of the polarity reversal sequence for the last 7 m.y. was obtained. Problems with core recovery and drilling disturbance, however, resulted in a number of gaps in the data. Although a number of subchronozones were not observed because of these gaps (e.g., the Jaramillo Subchronozone), the major chronozones were readily identifiable (Table 5). From a depth of 240 to 340 m, severe drilling disturbance resulted in very poor coverage. The high sedimentation rates allowed identification of the subchronozones, but the depths of the majority of the polarity reversals could not be determined because of the recovery problems. From a sub-bottom depth of 340 to 398 m, the sediment was consolidated enough to allow recovery of less deformed cores. The results obtained from this interval made it possible to identify chronozones that correlate to Chrons 6 and 7.

Samples were also taken from the two cores obtained after washing down to 434 m. Although the intensities were notably lower in this interval (0.2×10^{-6} emu/ cm³), the magnetizations were normal in polarity throughout this interval. These two cores fall within NN10, which

Table 5. Depths of reversal boundaries, Site 611.

Rever	sal	Age (Ma)	Sample (core-section, cm level)	Sub-bottom depth ^a (m)
Hole 611		8 50	18	
Brunhes		0.73	3-6, 97/4-1, 97	19.08/21.18
Jaramillo	(top)	0.91	4-6, 97/5-1, 97	28.68/30.78
	(bottom)	0.98	5-3, 97/5-4, 97	33.78/35.28
Cobb Mtn.	(top)	1.1	5-6, 97/6-1, 105	38.28/40.46
102275	(bottom)	100202	6-1, 105/6-2, 97	40.46/41.88
Olduvai	(top)	1.66	7-6, 97/8-1, 97	57.48/59.58
23 1	(bottom)	1.88	8-6, 80/9-1, 97	66.91/69.18
Reunion	(top)		9-2, 97/9-3, 97	70.68/72.18
	(bottom)		9-3, 97/9-4, 97	72.18/73.68
Matuyama/0	Gauss	2.47	13-3, 97/13-4, 97	110.58/112.0
Hole 611A				
Brunhes		0.73	3-3, 97/3-4, 97	20.78/22.28
Jaramillo	(top)	0.91	4-3, 98/4-4, 98	30.39/31.89
	(bottom)	0.98	4-6, 98/5-1, 120	34.89/37.21
Olduvai	(bottom)	1.88	8-4, 98/8-5, 110	70.29/71.91
Matuyama/0	Gauss	2.47	12-5, 127/13-1, 100	110.48/113.8
Hole 611D				
Kaena	(top)	2.92	4-4, 97/4-5, 97	153.58/155.08
	(bottom)	2.99	5-2, 97/5-3, 97	160.18/161.6
Mammoth	(top)	3.08	6-1, 97/6-2, 97	168.28/169.7
	(bottom)	3.18	8-1, 104/8-2, 97	177.95/179.3
Gauss/Gilbe		3.40	10-3, 100/10-4, 100	200.11/201.6
Cochiti	(top)	3.88	14-1, 140/14-2, 97	235.91/236.9
Hole 611E				
Brunhes		0.73	2-5, 97/2-6, 97	23.08/24.58
Jaramillo	(top)	0.91	2-6, 97/2-7, 10	24.58/25.21
Hole 611C				
Brunhes		0.73	6-1, 100/6-2, 98	32.61/34.09
Olduvai	(top)	1.66	10-6, 50/11-1, 98	78.01/80.59
	(bottom)	1.88	11-5, 98/11-6, 98	86.59/88.09
Reunion	(top)		12-5, 80/12-6, 97	96.01/97.68
	(bottom)		12-6, 97/13-1, 97	97.68/99.78
Matuyama/	Gauss	2.47	15-2, 103/15-3, 97	120.54/121.9
Kaena	(bottom)	2.99	18-4, 97/18-5, 97	152.28/153.7
Mammoth	(top)	3.08	18-6, 97/19-1, 100	155.28/157.4
Nunivak	(top)	4.10	26-1, 95/26-2, 65	224.56/225.7
	(bottom)	4.24	26-3, 95/27-1, 97	227.56/234.1
C1	(bottom)	4.47	28-2, 15/28-5, 135	244.46/250.1
Chron 5	(bottom)	5.89	38-1, 63/38-2, 22	339.44/340.5
Chron 6	(top)	6.37	41-1, 140/41-3, 59	369.01/371.2
	(bottom)	6.50	41-5, 51/41-6, 54	374.12/375.6
Chron 7	(top)	6.70	42-3, 120/42-4, 122	381.41/382.9
	(bottom)	6.78	42-4, 122/42-5, 114	382.93/384.3
	(top)	6.85	42-5, 114/42-6, 71	384.35/385.4

^a Midpoint depths of samples in third column.

argues for a correlation of this normal Chronozone to Chron 9. Unless there was a dramatic change in sedimentation rate, it is difficult to correlate a normal chronozone this long to any other normal chron in the allowable biostratigraphic range.

Results were obtained from two cores taken after a subsequent washdown to 493 m; the polarity sequence in this interval consists of a short reversed zone bounded above and below by normal polarity zones. Biostratigraphic data suggest that Core 46 is in NN10 and that Core 47 is possibly in NN9, although the presence of reworked specimens makes this assignment difficult. The preferred correlation to the magnetic polarity time scale is that the reversed zone is the first reversed interval below Chron 9. Hole 611D was an extension of the crest holes. Again, a high-resolution polarity record was obtained starting at 132 m. The correlation of the observed chronozones to the magnetic polarity time scale is straightforward (Table 5). The record obtained at this hole extends from near the top of the Gauss to the top of the Cochiti Subchronozone.

The results from Hole 611E are shown plotted in Table 5. One reversed polarity sample was measured in Section 611E-2-6, suggesting that the base of the Brunhes had been detected. A normal polarity sample from Section 611E-2-7, however, complicated this interpretation. This second normal polarity sample may be the top of the Jaramillo, but such a correlation would imply dramatic sedimentation rate changes between this hole and Holes 611 and 611A. Unfortunately, a longer sequence is needed to clarify this correlation.

SEDIMENTATION RATES

Sedimentation rates at Site 610 were generally linear and no major hiatuses were identified. In the first deep hole drilled at the trough location, 611C, the age-depth relationship is well-controlled by biostratigraphic and paleomagnetic datums and extends to the late Miocene (almost 7 Ma) as a straight line (Fig. 14B, Table 6). The mean sedimentation rate is 58 m/m.y. A rate of 45 m/ m.y. is calculated for the interval 0 to 85 m sub-bottom. Below about 385 m sub-bottom, no curve has been drawn because of uncertainties as to the placing of paleomagnetic boundaries combined with a suspicion of unreliable biostratigraphic datums caused by reworking (see also Baldauf et al., this volume).

Figure 14A shows the curve of the sedimentation rate constructed from the datums obtained from Holes 611, 611A, and 611D drilled on the sediment wave crest (Table 6). The curve begins with low glacial-interglacial rates around 29 m/m.y. in the latest Quaternary (Brunhes) and 36.5 m/m.y. in the early Quaternary (to the top of the Olduvai). It then steepens markedly with very high rates of around 80 m/m.y. in the more siliceous sediments of the Pliocene (to the top of the Cochiti Subchron).

It became clear during the drilling at Hole 611D that the above variations in Pliocene-Quaternary sedimentation rates might hold a record of large-scale sediment wave migration at the site. Because of this, the sequence drilled in Holes 611 and 611A to only about 130 m was extended by a return to the wave crest for Hole 611D and the completion of the curve shown in Figure 14A to 244.1 m sub-bottom. Despite the uncertainties noted at the base of this hole, we are able to show that overall sediment wave migration is likely; by noting differences in the Pliocene-Quaternary accumulation rate curves, we hypothesize that migration occurred mainly in the Pliocene (see Summary and Conclusions section; see also Kidd and Hill, this volume).

GEOCHEMISTRY

Carbonate Bomb

Results of the carbonate bomb analyses carried out at Site 611 should be viewed with caution, because sam-

Table 6. Datum levels used to construct Figure 14.

Number	Datum level	Age (Ma)
Hole 6110	C (trough hole)	
1	Top Emiliana huxleyi	0.28
2	Top of Pseudoemiliania lacunosa	0.47
3	Matuyama/Brunhes	0.73
4	Top of Helicosphaera sellii	1.37
5 6	Top of Calcidiscus macintyrei	1.45
	Top of Olduvai	1.66
7	Top of Neogloboquadrina pachyderma (s) (see text)	1.78
8	Bottom of Pseudoeunotia doliolus	1.80
9	Bottom of Olduvai	1.88
10	Top of discoasters	1.90
11	Bottom of Globorotalia inflata (PL6)	2.20
12	Top of Discoaster pentaradiatus	2.40
13	Top of Gauss	2.47
14	Top of Nitzschia jouseae	2.65
15	Bottom of Kaena	2.99
16	Top of Mammoth	3.08
17	Top of Globorotalia margaritae	3.40
18	Top of Reticulofenestra umbilica	3.50
19	Top of Globigerina nepenthes	3.90
20	Top of Nunivak	4.10
21	Bottom of Nunivak	4.24
22	Bottom of C1	4.47
23	Bottom of Globorotalia margaritae	5.30
24	Top of Discoaster quinqueramus	5.60
25	Bottom of Chron 5,N2	5.89
26	Acme of Uvigerina spp.	6.20
27	Top of Chron 6,N1	6.37
28	Bottom of Chron 6,N1	6.50
29	Top of Chron 7,N1	6.70
30	Bottom of Chron 7,N1	6.78
31	Top of Chron 7,N2	6.85
32	Top of Discoaster quinqueramus	8.20
33	Top of Discoaster hamatus	10.00
Hole 611	(crest hole)	
1	Top of Emiliania huxleyi	0.28
2	The of Devidence it is to	0 45

Ho	le 61	11 (crest	ho	le)

24

25

1	Top of Emiliania huxleyi	0.28
23	Top of Pseudoemiliania lacunosa	0.47
3	Top of Nitzschia reinholdii	0.65
4	Matuyama/Brunhes	0.65
5	Top of Jaramillo	0.91
6 7	Bottom of Jaramillo	0.98
7	Top of Helicosphaera sellii	1.37
8	Top of Calcidiscus macintyrei	1.45
9	Top of Olduvai	1.66
10	Top of Neogloboquadrina pachyderma (s) (see text)	1.78
11	Bottom of Pseudoeunotia doliolus	1.80
12	Bottom of Olduvai	1.88
13	Top of discoasters	1.90
14	Top of Thalassiosira convexa	2.20
15	Bottom of Globorotalia inflata (PL6)	2.20
16	Top of Discoaster pentaradiatus	2.40
Hole 61	1D (crest of hole)	
17	Top of Gauss	2.47
18	Top of Kaena	2.92
19	Bottom of Kaena	2.99
20	Top of Mammoth	3.08
21	Bottom of Mammoth	3.18
22	Gilbert/Gauss	3.40
23	Top of Globorotalia margaritae	3.40

ple weighing was carried out in heavy weather during the run in to St. John's. In addition, the plot shown in Figure 15 includes data from both crest (611) and trough (611C) holes. The CaCO3 curve shows greater than usual variability particularly in the lower part of the hole (Fig. 15). Within the glacial cycles of the top 150 m, carbonate values range from 2 to 67%. Below this depth,

Top of Reticulofenestra pseudoumbilica

Top of Cochiti

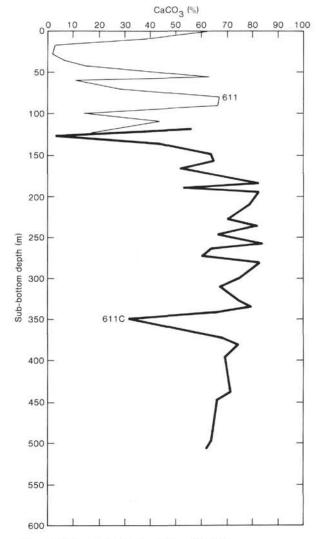


Figure 15. Carbonate bomb analyses, Site 611.

the variability decreases but ranges from 53 to 84% with a single anomalously low value of 32% at 350.31 m. The low value is explained by the sample having come from a large pyritized burrow. Below 350 m, the carbonate curve shows a gradual decrease from 70 to 60%. Despite the questionable quality of the data, the variability shown between 150 and 350 m is thought to be genuine. This is supported by smear-slide data (see section on Lithostratigraphy).

Interstitial Water

3.50

3.88

Samples for interstitial water analysis were taken from the top 90 m of crest Hole 611 and from below 150 m in trough Hole 611C (Fig. 16). Samples at 154 and 509 m from Hole 611C were not taken immediately upon recovery, but were removed from the working half several hours later.

The pH and alkalinity plots show slight variability in samples from the shallow Hole 611A (Fig. 16), whereas salinity gradually decreases from 34 to 32‰. In Hole 611C, the pH increases significantly below 350 m, whereas the alkalinity shows a corresponding decrease to values

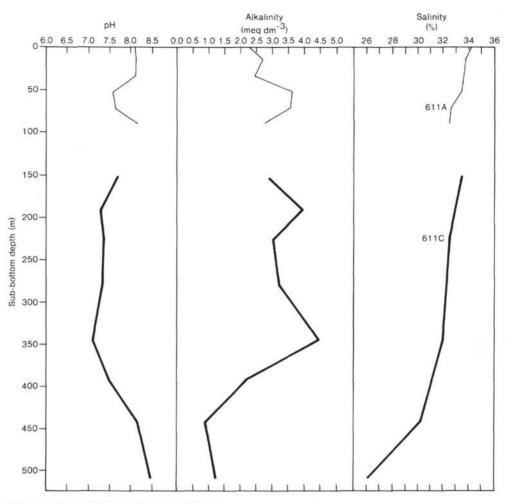


Figure 16. Interstitial water analyses, Site 611.

close to 1.0 meq dm⁻³. Salinity in Hole 611C decreases gradually from 33.5‰ at 150 m sub-bottom to 30.2‰ at 440 m. The rather low salinity of 26.2‰ at 509 m is suspect and may be caused by contamination between the time of recovery and sampling.

SUMMARY AND CONCLUSIONS

At Site 611 on the southern flank of Gardar Ridge we drilled six holes. Four holes (611, 611A, 611D, and 611E) were cored on the crest of a sediment wave, and two (611B and 611C) were in an adjacent trough about 0.5 n.mi to the southeast and in water 33 m (uncorrected) deeper than the crest. Holes 611 and 611A were overlapping VLHPC holes drilled to 125.8 and 132 m sub-bottom, respectively. Primarily these were chosen to investigate the Pliocene-Quaternary paleoclimatic record. Holes 611C and 611B were offset holes drilled in the trough to look for wave crest-to-trough sediment faces and accumulation rate variation. In Hole 611B, a VLHPC core barrel was lost when only one core had been taken, but in Hole 611C a section was recovered with continuous VLHPC and XCB coring to 396.4 m sub-bottom and then extended to 511.6 m with washed intervals at 396.4 to 434.8 m and 454.0 to 492.4 m sub-bottom. The con-

tinuous VLHPC recovery was taken for comparison with Holes 611 and 611A, whereas the deeper drilling was an attempt to identify seismic reflectors within the sequence and establish the overall history of drift sedimentation. Low penetration rates in 611C eventually led us to abandon our deep reflector objectives, and we moved back to the wave crest to investigate an intriguing possibility that wave migration might be recognized if we examined the sedimentation rate curve to depths below those cored at Holes 611 and 611A. Hole 611D was washed to 5.5 m sub-bottom, and a VLHPC core was taken to fill a gap in the recovery from previous crest holes. Then a further major wash down was made to 128.9 m, from which level we continuously XCB cored Hole 611D to 244.1 m sub-bottom. Hole 611E was a brief attempt to fill other core recovery gaps in the VLHPC section on the crest with two cores in the interval from 6.5 to 25.7 m subbottom.

Glacial-Interglacial Climate Cycles

Our principal objective at Site 611 was paleoclimatic: an investigation of late Neogene and Quaternary sea surface temperature (SST) change at the northern end of the Leg 94 transect. The glacial-interglacial carbonate cycles make up lithologic Unit I, which extends to 138.5 m sub-bottom in the wave crest hole and to 149 m in the trough (Fig. 8).

Continuity of the upper Pliocene and Pleistocene sequences at Site 611 was harder to test than at the previous four sites because of incomplete recovery, disturbance of the recovered sediment, and the relatively muted color and textural contrasts in the glacial carbonate cycles. Given the uncertainty imposed by these factors, the sequence appears to have one, to at most three, interruptions in continuity during the last 2.4 Ma (Ruddiman et al., this volume). The most likely gap occurs at 5 to 8 m sub-bottom, beginning about 250,000 years ago, and extends for an unknown span of time back into the Brunhes (roughly 10,000-100,000 yr.). Other possible short gaps (10,000 yr.) occur at roughly 1.6 and 2.0 Ma. Another problem with correlations at this site is the anomalous addition of sediment units in one core (or, alternatively, losses in another). This suggests a somewhat more episodically disturbed sedimentation regime than we have detected at the other sites of Leg 94 by simple visual lithologic correlations (see Ruddiman et al., this volume).

Drift Sedimentation

As at Feni Ridge, our sedimentological objectives on this flank of Gardar Ridge, at about 3200 m water depth, were to characterize the deposits accumulating on major sediment drifts. But here we were in a lower flank setting, as opposed to the near ridge crest location of Site 610. Again the lithologies are pelagic in type, although they are generally more terrigenous than on Feni Ridge. In the upper part of the Gardar Ridge sequence, the coarser terrigenous component is largely due to the icerafted sediment input.

Within lithologic Unit I, detrital mud intervals occur that generally are thicker and more frequent in the wave trough than at the sediment-wave crest. Dark gray layers rich in volcanic ash are present in lithologic Unit I as at the Feni Ridge, but no hole-to-hole correlation is apparent at this site.

Below the glacial-interglacial cycles of Unit I, the sequence is made up entirely of oozes and chalks. These vary only when their content of biogenic silica increases, as in lithologic Subunit IIA, or where they contain marly intervals. The latter are probably indicative of intermittent detrital input.

Although there is no dramatic evidence of a sudden increase in detrital muds from Icelandic sources at 3.4 to 3.1 Ma, as hypothesized after drilling at Site 609, there is a progressive tendency toward lower CaCO₃ values above the last high CaCO₃ value at 170 m (3.5 Ma). The higher detrital content throughout Site 611 may have partly masked the increase that was obvious at Site 609. Mean sedimentation rates are high, 58 cm/m.y., but as with Feni Ridge, they are exceeded by rates in the "pelagic" Site 609. A systematic fluctuation in the Pliocene-Quaternary accumulation rate curves is discussed later. No hiatuses were observed despite high-resolution biostratigraphic and paleomagnetic control. No primary structures that might relate to bottomcurrent sedimentation were identified, neither were any sharp bedding contacts observed. We awaited X-radiography of the cores to confirm this lack of current structures (see Hill, this volume). Some thickening and thinning of the carbonate cycles between crest and trough was observed as noted earlier, but it is not clear at present whether this is related to core disturbance or due to local slumping or other crest-to-trough sediment redistribution.

No obvious grain-size differences were detected between the crest and trough holes, but again shore-based analyses are required to confirm our preliminary impressions (see Kidd and Hill, this volume). Reworking of fine nannofossil material was recognized throughout the section drilled. In the upper section, most reworked specimens are Cretaceous in age, whereas in the lower part, Eocene to Oligocene specimens are most common. Softsediment deformation features were noted from 323.3 to 324.2 m in Hole 611C, with flattening of burrow mottles and tilting of laminae. Isolated microfaults occur, and inclined bedding at 35° to 45° (apparent dips) is found below 325.6 m sub-bottom, in some cases crosscut by Zoophycos burrows. Cross-bedding apparently becomes horizontal again below 334 m, but isolated microfaults still occur. An explanation of this combination of features might be that localized slumping and sliding of sediment has occurred.

Sediment Wave Morphology and Stratigraphy

High-resolution 3.5-kHz seismic profiles around Site 611 show the morphology and acoustic sub-bottom characteristics of the sediment waves. Figures 17 and 18 show selected profiles of the waves in the vicinity of the drill site from the Discovery-131 site survey. The waves in this area are characteristically irregular in shape and amplitude, varying from 10 to 40 m in height. Some have broad summits, as evidenced by our on-site maneuvering over the one that we drilled (Figs. 5, 6). On the other hand, it appears from track-to-track correlation that wave crests are spaced fairly regularly at 1- to 2-km intervals and are subparallel to the regional bathymetric contours (Fig. 5). No clear wave migration is evident from the 3.5-kHz profiles, although thickening and thinning of sub-bottom returns does occur. The air-gun records (Fig. 12B) provide some suggestion of inclined bedding, such as within acoustic Unit B (see previous section). In a few cases, the returns below sediment waves might be interpreted as migrating. The overall impression, however, is one of drape; some large waves at the surface are clearly located over high points in the basement relief.

Pliocene-Quaternary Sedimentation Rates and Possible Large-Scale Sediment-Wave Migration

Although there is little evidence in seismic profiles to indicate sediment-wave migration, it is still necessary to account for the regular trends and spacing in the sediment-wave field. Initial comparisons of the sedimentation-rate curves at Holes 611 and 611C (crest and trough, respectively) suggested that there were significant differ-

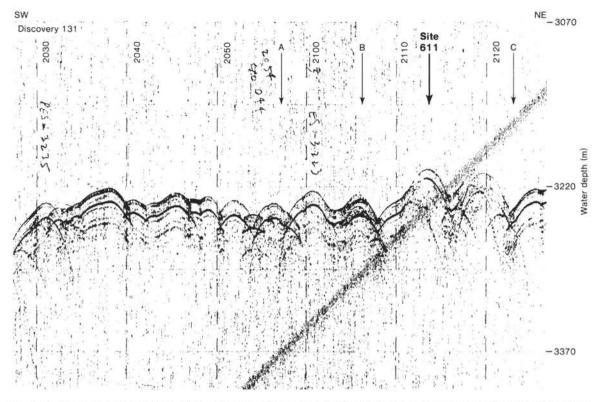


Figure 17. Southwest-northeast part of the Discovery-131 presite 3.5-kHz profile. Hour time marks (Greenwich Mean Time) are noted along the track. A, B, and C are positions of crossover points in the survey; see Figure 3 for location of tracks.

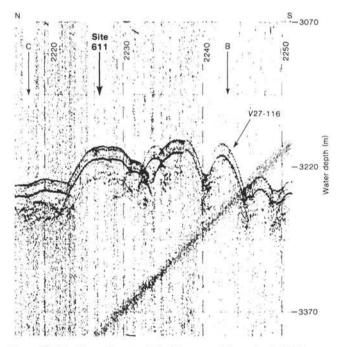


Figure 18. North-south part of the *Discovery*-131 presite 3.5-kHz profiling cruise. (Notations as in Fig. 17. Note position of Lamont-Doherty Geological Observatory sediment core V27-116. See Fig. 3 for location of tracks.)

ences between the sites during the Quaternary and that, by drilling deeper at the crest site, it might be possible to account for the sediment-wave topography. Sedimentwave migration should be characterized by differences in

498

sedimentation rate between the crest and the trough. Thus the offset back to the beacon from Hole 611C was made, and Hole 611D was drilled below 110 m sub-bottom in the sediment-wave crest.

The sedimentation rates in the top 240 m of the crest and trough holes are compared in Figure 19, using a reference datum of 3200 m below sea level. The two locations presently differ in elevation by about 30 m, but temporal changes in the relative elevation are shown by the convergence and crossover of the two sedimentationrate curves. Prior to 3.8 Ma, the position of crest and trough appears to have been reversed, and the presentday crest (Hole 611C) has been constructed since that time. Interval sedimentation rates (Fig. 20) reached as high as 98 m/m.y. in Hole 611D (crest site) and 75 m./ m.y. in Hole 611C (trough site) during the late Pliocene, then decreased at both sites during the Quaternary.

These data are compatible with Pliocene sedimentwave migration. Figure 21 was constructed by plotting sub-bottom elevations for 0.5-m.y. time intervals and attempting to fit a sediment-wave profile of proportions similar to present-day waves at the site. The profiles serve an illustrative purpose only, but they demonstrate how Pliocene sediment-wave migration could account for the sedimentation-rate curves at Site 611. Figure 21 further suggests that high sedimentation rates during the Pliocene were accompanied by lateral migration of the sediment waves; this migration either slowed during the Quaternary or was replaced by processes that resulted in pelagic drape (see Kidd and Hill, this volume).

It is possible that, in looking for wave migration in the 3.5-kHz profiles with a penetration of only 30 to

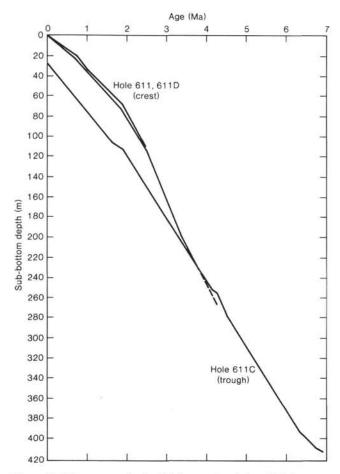


Figure 19. Time versus depth plot for crest and trough holes combined, with adjustment for difference in water depth. The curves are the same ones as plotted in Figure 14A and B.

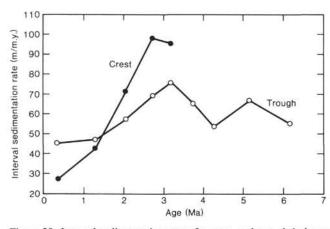


Figure 20. Interval sedimentation rates for crest and trough holes at Site 611.

40 m, we were missing a larger-scale migration within the drift sequence. The paucity of identifiable reflector migration on the air-gun profiles might result from a general lack of lithologic change in the preglacial sediments.

At this time, the preceding explanations of large-scale sedimentation-rate changes in terms of sediment-wave

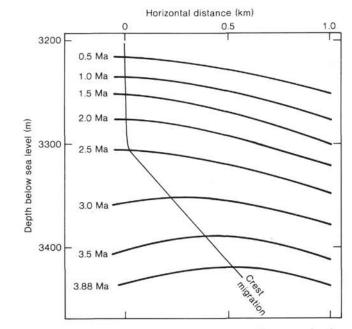


Figure 21. Profiles of the sediment wave drilled at Site 611 at time intervals of 0.5 m.y. The shape of the wave is kept constant.

migration should be regarded as a working hypothesis that has been tested once and seen to be compatible with the available stratigraphic data. More detailed work is required to establish that the changes in sedimentation between crest and trough are the result of autochthonous sedimentary processes rather than the influx (or removal) of allochthonous sediment.

REFERENCES

- Baldauf, J. G., 1985. Cenozoic diatom biostratigraphy and paleoceanography of the Rockall Plateau Region, North Atlantic, DSDP Leg 81. In Roberts, D. G., Schnitker, D., et al., Init. Repts. DSDP, 81: Washington (U.S. Govt. Printing Office), 439–477.
- Berggren, W. A., 1977. Late Neogene planktonic foraminiferal biostratigraphy of the Rio Grande Rise (South Atlantic). Mar. Micropaleontol., 2:251-265.
- Berggren, W. A., Kent, D. V., and Van Couvering, J. A., in press. Neogene geochronology and chronobiostratigraphy. *In Snelling*, N. J. (Ed.), *Geochronology and the Geological Record*. J. Geol. Soc. London Mem.
- Burckle, L. H., 1977. Pliocene and Pleistocene diatom datum levels from the equatorial Pacific. *Quat. Geol.*, 7:330-340.
- Garner, D. M., 1972. Flow through the Charlie Gibbs Fracture Zone, Mid-Atlantic Ridge. Can. J. Earth. Sci. 9:116-121.
- Johnson, G. L., Vogt, P. R., and Schneider, E. D., 1971. Morphology of the Northeastern Atlantic and Labrador Sea. *Deutsche Hydrographische Zeitschrift*, 24:49-73.
- Laughton, A. S., and Monahan, D., 1978. General bathymetric chart of the oceans (GEBCO), sheet 5.04. Canadian Hydrographic Service, Ottawa.
- McCave, I. N., Lonsdale, P. F., Hollister, C. D., and Garner, W. D., 1980. Sediment transport over the Hatton and Gardar contourite drifts. J. Sed. Petrol., 50:1049–1062.
- Poore, R. Z., and Berggren, W. A., 1975. Late Cenozoic planktonic foraminiferal biostratigraphy and paleoclimatology of the Hatton-Rockall Basin. J. Foraminif. Res., 5:270-293.
- Ruddiman, W. F., 1972. Sediment redistribution on the Reykjanes Ridge: seismic evidence Bull. Geol. Soc. Am., 93:1039-2062.
- Ruddiman, W. F., and McIntyre, A., 1984. Ice-age thermal response and climatic role of the surface Atlantic Ocean, 40°N-55°N, Bull. Geol. Soc. Am., 83:2039-2062.

- Shor, A. N., and Poore, R. Z., 1979. Bottom currents and ice rafting in the North Atlantic: interpretation of Neogene depositional environments of Leg 49 cores. *In* Luyendyk, B. P., Cann, J. R., et al., *Init. Repts. DSDP*, 49: Washington (U.S. Govt. Printing Office), 859–872.
- Streeter, S. S., 1973. Bottom water and benthonic foraminifera in the North Atlantic. Glacial-interglacial contrasts. Quat. Res., 3:131– 141.
- Takayama, T., 1977. Some remarks on Pliocene-Pleistocene calcareous nannofossils from le Castella and Santa Maria di Cantazaro, southern Italy. Giornale di Geologia, 41:115-122.
- Vincent, E., Killingley, J. S., and Berger, W. H., 1980. The magnetic Epoch-6 carbon shift: a change in the ocean's 13C/12C ratio 6.2 million years ago. *Mar. Micropaleontol.*, 5:185-203.
- Worthington, L. V., and Volkmann, G. H., 1965. The volume of transport of Norwegian Sea overflow water in the North Atlantic. *Deep-Sea Res.*, 12:667–676.

	APHIC	3		RAC		1									
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-battom depth	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOG	IC DESC	RIPTION
				RG	FМ	0,72	1 CC	0.5		00		•	10YR 5/3 10YR 5/2 10YR 5/2 10YR 4/2). 2.5Y 5/2 5Y 4/2 Lower part of Cor	lark gravi e Catcher JOZE, oli	RAL NANNOFOSSIL ah brown (10YR 5/3 to MARLY FORAMINIFERAL ve gray (5Y 4/2), containing ion.
		Gioborotalia truncatulinoides	Emiliaria huxleyi Zone		Pseudoeunatür daliakus Zane									s at 0.60	
		N22	NN21		Panto								Composition Quarts Feldspar Mica Heavy minerals Qay Volcanic glass Faraminifers Caic, namefossils Diatoms Radiolarians Spongi spicules Silicol Seguitation	10 - 1 4 5 TR 15 51 2 1 10 1	26 2 5 10
												ļ	ORGANIC CARB Organic carbon Carbonate	ON AND 1, 20-	CARBONATE (%) 21

	Ę		F	oss	IL	-				Γ			L 1.0-10.6 n					
ç	APF		-	-	TER	8		1.12										
UNIT UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-bettom depth	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SEDIMENTARY	SAMPLES		LITHOLOGIC DESCRIPTION				
						1.0		1		1			10YR 5/3					
						1		0.5					N7	Alternating: FORAMINIFERA	LNANN	OFOSSI	L OOZE, light griky	
			1					0.5						(N7), very light gri	IY (10YE			
							1	1						gray (5GY 7/1 or 6 MABLY EORAMI	5/10; NIEER2		OFOSSIL OOZE,	
	1		1					1.0				*	5Y 5/2	gray (N6), light ye	llowish t	rown (10	OYR 6/4) or light	
			Emiliania huxieyi Zone					1.5						gray to olive gray			nd gray (5Y 6/1 to 5/2)	
			112			1.0					L			or dark gray (5Y 4		to onve	gray (51 6/1 to 5/2)	
			uxle		one	2.5							5Y 6/1				00000	
			ala A		Us 2			1				2.8	5Y 5/1	Three DROPSTON	IES: 2 pi	umices an	d 1 tuff.	
			silla		olio			- 0 <u>1</u>						SMEAR SLIDE SU				
			En		Pseudoeunoria doliolus Zone		2			1			5Y 6/1		1, 106 D	3,82	4, 115	
			51		nuo				+	3	Г		-	Compositon:	U.			
			NN21		doe			1					5Y 5/3	Quartz	52	5	~	
					Pseu					1	-1-			Feldspar Heavy minerals	1	1 2	1	
			Zone			4.0				1	1		5Y 6/1	Clay	20	35	8	
			Gephyrocapsa oceanica			1.0				1	F 7			Volcanic glass Carbonate unspec.	4	1		
			ocea											Foraminiters	3	16	10	
			050										10YR 6/4	Calc. nannofossils	2	38	78	
		cles	roca				3						10YH 6/4	Diatoms Sponge spicules	TR	2	2 TR	
		(NOI)	yhy								1							
		Globorotalia truncatulinoides	Ge						+		T:		10YR 8/2	ORGANIC CARBO	ON AND	CARBO	NATE (%)	
		run	NN20				_				카		10YR 6/4 10YR 8/1	Organic carbon	6, 39-	40		
	1	Nia	NN		AM	5.5		- 2			L -		1011.0/1	Carbonate	41			
		prot.			AM													
		(lob						124					5GY 6/1					
		101					4	- 3	+++++++++++++++++++++++++++++++++++++++				DGY 0/1					
		N22						- 27	++++++	1								
		_						-	+++++				5G 5/1					
								- 7	+++++		==		5G 5/1					
						2.0			+++++++++++++++++++++++++++++++++++++++		Ι.		5GY 6/1					
						~		- 3			4							
					AG			1.2			10		5GY 6/1					
			Zone	1.1	1			1		1			and					
			2 8				5	1.2					5GY 7/1					
			cinos	11				14										
			190					1		1								
			Pseudoemiliania lacunosa					1		1	1							
			emil			10.00		-					N7					
			000								1							
			Pse					1			15	1						
			9					-	E	1	1		5Y 4/1					
			0LNN				6				Fii-		N7					
								1 -			F.		5Y 4/1					
											[]		NG					
						10.0		-		1	-t+	1	5Y 6/1					
				1		10.29	7	1	france to the top		1		5Y 7/1 5Y 5/2					
	1			L	RP	0	cc	-		1	1	-	No					

SITE 611 HO	LE	cc	RE	3 CORED	INTERV	AL 10.6–20.2 m	SITE	_	Н	DLE	_	C	RE	4 CORED	INTERV	L 20.2-29.8 m	
TIME – ROCK UNIT BIOSTRATIGRAPHIC ZONE FORAMINIFERS	OSSIL RACTER DIATOMS DIATOMS	Seb-bottom depth SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	LITHOLOGIC DESCRIPTION	TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE		FOSS SNUTHERIDINE	DIATOMS Sub-bottom	depth SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES		LITHOLOGIC DESCRIPTION
DY NZZ Globorotelia tuncotulinoldes NZZ Globorotelia tuncotulinoldes NNI9 Residentialitanta decurata Zone		200196 181 166 151 136 121 106 200196 181 201196 121 106				SY 5/1 CALCAREOUS MUD to MUD, tight to dark gray 10YR 6/3 IGY 7/2 to 4/10 or gale brown to yellowith brown SY 7/1 IOYR 6/3 to 5/6 or generinis pay (SGY 5/1 to 25 yr 6/2 SY 7/1 10.50 m. 10YR 6/4 MARLY FORAMINIFERAL NANNOFOSSLE DOZE intervals: 10YR 6/4 Intervals: 10YR 6/4 IS.55 to 11.20 m: pate brown (10YR 6/3) and light gray (57 71); and 10YR 6/4 FORAMINIFERAL NANNOFOSSLE OOZE Intervals: 50 5/1 20 to 20 m (CC): light gray (N7) to greenlish gray (SGY 6/1). S0 5/1 Greenlish LAMINATIONS between 16.3 to 15.5 m. SY 5/2 Dropstones. N7 SMEAR SLIDE SUMMARY (%) 3 133 4, 75 5, 19 M SY 5/2 Sitt 35 5 SY 5/2 Sitt 35 5 SY 5/2 Sitt 35 5 SY 5/1 Cabonte ton 5 10 - </td <td></td> <td></td> <td>D N32 Globocralit truncatuliholdes</td> <td>NVI'S FERNORINIANA ASUN</td> <td>Nitzzhia recholdi Zone</td> <td>292 277 362 247 232 217 303 RL 4 9 4 8 8 1 1 303</td> <td>0.5</td> <td></td> <td></td> <td>N7 2.5Y 5/2 2 N7 2.5Y 5/2 2 N7 2.5Y 5/2 2 N7 5 SBG 5/1 5 SF 6/2 5 SF 6/2 5 SF 6/2 5 SF 6/2 5 SF 6/2 5 SF 7/1 5 SF 5/1 5 SF 6/1 5 SF 6</td> <td>Nernating: MAILY FORMINIFERAL NANNOFOSSIL 002E, fray (NJ to NB), prayihitorom (2,5Y 5/2) or blaish ray (58 0/1); and ALCAREQUS MUD, greenish gray (5G 5/1 or 586 5/1), ui gibt browning gray (2,5Y 6/2), this last color appears o be more silty. 45/5 to 27.2 m: layer of dark greenish gray (5GY 4/1) SSH BEARING MUD (10% volcanic gitas). 45/5 to 27.2 m: layer of dark greenish gray (5G 4/1) ANIMATIONS. 32 are greenish gray (5G 5/1 or 6/1) or gray (N4) ANIMATIONS. 33 are PYRITIC HALOS. 34 animetric silty of the second seco</td>			D N32 Globocralit truncatuliholdes	NVI'S FERNORINIANA ASUN	Nitzzhia recholdi Zone	292 277 362 247 232 217 303 RL 4 9 4 8 8 1 1 303	0.5			N7 2.5Y 5/2 2 N7 2.5Y 5/2 2 N7 2.5Y 5/2 2 N7 5 SBG 5/1 5 SF 6/2 5 SF 6/2 5 SF 6/2 5 SF 6/2 5 SF 6/2 5 SF 7/1 5 SF 5/1 5 SF 6/1 5 SF 6	Nernating: MAILY FORMINIFERAL NANNOFOSSIL 002E, fray (NJ to NB), prayihitorom (2,5Y 5/2) or blaish ray (58 0/1); and ALCAREQUS MUD, greenish gray (5G 5/1 or 586 5/1), ui gibt browning gray (2,5Y 6/2), this last color appears o be more silty. 45/5 to 27.2 m: layer of dark greenish gray (5GY 4/1) SSH BEARING MUD (10% volcanic gitas). 45/5 to 27.2 m: layer of dark greenish gray (5G 4/1) ANIMATIONS. 32 are greenish gray (5G 5/1 or 6/1) or gray (N4) ANIMATIONS. 33 are PYRITIC HALOS. 34 animetric silty of the second seco

SITE 611

	611	- 1	101	-		-		DRE	5 CORED	TT	T	L 29.8-39.4 m			
2	HH		F CHA	OSS	TER	1									
TINU	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Seb-hattom depth	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	STRUCTURES SAMPLES		LITHOLOG	IIC DESC	RIPTION
	81051	orotalia truncatulinoides	NN19 Perudomitiania (acunota Zont	RADIOL	NOTADI EW anot itolodinizativ	37,3 36,8 34,3 32,8 31,3 29,8 See 31,3 29,8 See 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3 3 4 5	0.5				N5 5G 5/1 N7 5G 7/1 5G 7/1 5G 7/1 2.5Y 6/2 5G 5/1 5GY 5/1 2.5Y 6/2 5G 5/1 2.5Y 6/2 N6 2.5Y 6/2 5G 4/1 5GY 5/1 2.5Y 6/2 5G 4/1 5GY 5/1 5GY 5/1 5GY 5/1 5GY 5/1 5GY 5/1 5GY 5/1 5GY 5/1 5G 5/2 5G 5/2	gray (N7 or N8) or detrital; and CALCAREOUS MI (5GY 6/1 or 5/1), this last color appe Some greenish gray	greenish UD, gray or light b ars to be (GG 5/1) L SAND ; ONES. MMARY 2, 145 - - - 15 1 3 200 - 14 3 5 5 TR 1 TR	(%) 6, 120 15 55 50 62 1 - - - - - - - - - - - - - - - - - -
						8	6	and and mark		1.1		5G 5/1 5G 5/2 5GY 5/1			
						38	7	-	Void			and and a state of the state of			
							-	-							
- 1		AG	AG	8	RP		CC	1				5GY 4/1			

BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	CHA	-	TEF	1								
BIOSTRATIGR	FORAMINIFERS	05SILS	1 22										
		NANNOFOSSII	RADIOLARIANS	DIATOMS	Seb-bottom depth	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	STRUCTURES SAMPLES		LITHOLOGIC	C DESCR	IPTION
	N22 Globorotatia truncstulinoides	NN19 Peeudoemitiania facunosa Zone NANNOF	RADIOLA	Nitzschla reintoldi/ Zene 🕆	45.4 42.4 40.9 42.4 40.9 dayth	1 2 3 4 5	9 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0			2.5Y 6/2 N6 5Y 5/1 2.5Y 6/2 5GY 6/1 2.5Y 5/2 5GY 6/1 5G 5/1 2.5Y 5/2 5GY 6/1 5G 5/2 5GY 6/1 5G 6/1 5G 6/1	Alternating: MARLY FORAMIN gray (N6) or greenis CALCAREOUS MU greenish gray (5GY brown (2.5Y 6/2 to more sillty. Rare greenish (5G 5 between 43.4 to 43	UIFERAL h gray (5 5/1), or 1 5/2); th (2) or bil (5 m and ash and MMARY 2, 67 D 15 5 6 0 2 3 3 0 2 5 6 6 - - -	pyrite clast at 41.15 m. (%) 5,120 D - - - - - - - - - - - - -
					46.9	6		-	= , H-	5G 5/2 5G 6/1 5GY 5/1			
					47.85					NG			

SITE 611

SITE 611 HOLE

RAPHIC TIME - ROCK UNIT BIOSTRATIGRAPH ZONE FOSSIL CHARACTER

FORAMINIFERS

49.0

50.5

Vitzschia reinh

53.5

55.0 AG

58

7

CC

FM

outes inosa Zone

stalia truncatu Gioborotalia truncat Pseudoemiliania lacun

N22 NN19

2

CORE 7

0.5

1.0 11

GRAPHIC

+++ 齳

╂╂╂╂╂╂ ╂╂╂╂╂╂

-F

5G 6/2 58 5/1 5GY 6/1

5G 6/2

5GY 6/1

5G 4/2

5GY 5/1 5GY 8/1 5GY 4/1 5GY 5/1

=

1

12 ---

	T									HIC		Į
									Š	API	-	C
SRAPHIC THOLOGY	DISTURBANCE	SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGI	C DESC	RIPTION		TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	
	-11			5Y 6/1								Г
$H \rightarrow$	1-1-			N7	Alternating:				1			L
+- +-	3		1	40000		IFERA	L NANNOFOSSIL OOZE,					L
臣士	Ŧ.	-		5B 6/1	greenish gray (5GY CALCAREOUS MU	D, gray	to dark gray (5Y 5/1 to 4/1),					
1-1-1-	+	5					4/1); some intervals seem					
1	+			5GY 6/1	to be more silty: 51	,10 to 5	1.30 m and 53.88 to 54.40 m.					
	H	+ +		5GY 5/1 5Y 5/1			ossil ooze intervals are					
	H I			DY D/1	thicker than calcare	ous mud	t intervals.					
+	4			5GY 5/1			2) or bluish (5B 5/1 or 6/1)				11	L
H							27 OF BIBIBIT 135 3/1 OF 6/11					L
1-	-	1		5Y 6/1	gray LAMINATION	15.						
	4			Columbia -	DROPSTONES.							L
	-14				DRUFATOREA			CL.				L
+	4	1.0	1.1	5G 6/1	SMEAR SLIDE SU	MMARY	(5)					L
+	1	18	0.1	56 6/1	Sincent server of	1, 30	4,75					
++	- E	-		5G 5/2		D	D					
++++	<u>t</u>	111		0.4000000	Texture:							L
1	4			5G 6/1	Sand	-	5					
1	+			55 0.1	Silt	2	30				11	L
	+				Clay	-	65					L
	7			1000 A/A	Composition:							t.
	=			5GY 4/1	Quartz		53				1.1	Ĺ
	-				Feldspar	-	TR		1.1		1.1	t.
	- F		1	5Y 4/1	Heavy minerals	TR	1		1	1	2	L
	-			a	Clay	30	30				Globarotalia truncatulinoides	
	=				Volcanic glass	-	3				fins	
	el .	-			Carbonate unspec.	****	1				20	
+-+-	1	1.	L	5GY 6/1	Foraminifers	12	4				N N	Ľ
+	3			2001 001	Calc. nannofossils	53	8				5	E
++-	- E				Diatoms	4	~				alla	Ľ
+++	5				Radiolarians	TR					201	Í.
	4				Sporigi spicules	1	-				9	
	-				Silicoflagellates	TR					Gle	1
	-				ORGANIC CARBO		CAPRONATE (S)					1
	-		•	5Y 5/1	UNUANIC CANEL	5.40-					N22	ĺ.,
	-	E		1000 (1723 W	Organic carbon	0, 402	5.5.50		1	1	-	ſ
	1	1			Carbonate	63						Ľ
	-	1		1	AND DESCRIPTION OF				1	1	r	4

	PHIC	12		OSS										
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS		Sub-bottem depth	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOG	IC DESC	RIPTION
					в		1	0.5	-131-		5GY 5/1 5GY 6/1	ifers and nannofoss relatively coarse gra	of: nud (75% ils); light iined mu	6 clay); ~ 40% CaCO ₃ (foramin- greenish gray (5GY 6/1); and d (40% sitt, 45% clay); poorer
								1.0		*	5GY 5/1	seem "rougher" (m 62.50 m; and 65.6 m	ore silty)	ray (5GY 5/1). Some intervals 1: 59.9 to 60.35 m; 62.05 to n
							-				5G 5/2	Rare greenish (5G 5	i/2 to 4/	2) LAMINATIONS.
					в							62.76 and 62.82 m.		IIFERAL SAND between
							2	1				DROPSTONES		
										•	5GY 6/1	SMEAR SLIDE SU		(%) 2,120
												Texture: Sand Silt Clay Composition:	15 40 45	5 20 75
		Globorotalia truncatulinoides	unose Zone				3				5GY 5/1	Quartz Feldspar Heavy minerals Clay Volcanic glass	52 1 3 20 2	29
		trun	w fac									Micronodules	÷8 –	TR
		orotali	milian		ine Zor						5GY 6/1 5Y 5/2	Carbonate unspec. Foraminifers Calc. nannofossils	8 12 2	14
		13.1	Pseudoemiliania lacunose		Nitzschia macina Zone						5GY 5/1	ORGANIC CARBO	N AND	CARBONATE (%)
		N22	BUNN NN18		Nitree		4		1		5G 4/2 N4 5GY 6/1	Organic carbon Carbonate	1, 117- - 11	-118
									11		561 6/1			
											5GY 5/1			
								1	H		5GY 6/1			
							5				5G 5/2			
											5GY 5/1			
									1		5GY 6/1			
							6				n per entralita unte es			
											5GY 5/1			
_		CG	AG	VRM	FM									

UNIT BIOSTRATIGRAPHIC ZONE		CF	AR	ACT										
BIOSTE	EAB AMMIECOC	-	-	RIANS		Sab-bottom depth	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOG	IC DESCRIPTION
3018	0.12 Christennich AMDenin arteinine Boliz Christennich	ujonororaria opriquus ex rimnus NN19 Pseudoemilianie			Nitzehia maina Zona 🐺	757 727 71.2 69.7 68.2 449 449	1 2 3 3 4 4 5	0.5		1003 국구·구·	ANYS +	N7 5GY 5/1 5GY 6/1 5GY 6/1 5GY 6/1 5G 5/2 5G	or gray to dak gray fromce sity) interv 70.28 to 70.58 m; MARLY FORAMINI gray to dark gray (Some grayith greer Small FORAMINI 73.88 to RAMINI 73.88 to RAMINI 74.80 to RAMINI 74.80 to RAMINI 74.80 to RAMINI 74.80 to RAMINI 75.80 to RAMIN	UD, greenish grav (SGY 6/1 to 4/1), v (SY 6/1 to 4/1); some "roogher" site: 68 4 to 68.7 m; 69 88 to 68.91 m; 71.8 to 72.08 m; and 72.70 to 73.0 m, NFFRAL NANDFOSSIL OOZE, light N7 to N4) or greenish grav (SG 6/1), to 6G 5/21 LAMINATIONS. FERAL SAND patches between MMARY (%) 3, 130 D 5 15 80 32 17 18 3 20 17 17 18 20 21 17 18 20 21 17 18 20 21 21 21 21 21 21 21 21 21 21
						76.03	6	in transferra		4-1		5Y 6/1 5Y 5/1 N7 10 N4		

	611 일	—	HOL	oss	11.		cc		10 CORED	TT	Т					
	Hay		CHA	RAC	TEF	1										
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-bettam depth	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	STRUCTURES		LITHOLOGI	IC DESCF	IPTION	S.
			Ĩ		СМ	77.8		3	F	11E		5Y 4/1	0-19 cm: washed	down gra	cel,	
					CM		1	0.5				5Y 5/1	Alternating: CALCAREOUS M	UD, gray	to dark g	ray (5Y 5/1 to 4/1);
								1.0			1.	5GY 4/1	FORAMINIFERA			OOZE, light gray ly slightly mottled
						79.3	_			121		5Y 4/1	78.85 to 79.10 m: gray (5GY 4/1),	layer of A	ASH-BEA	RING MUD; dark
										-		5G 4/2 5Y 5/1	81,75 to 81,78 m: (50% volcanic glass			
							2			1		5G 4/2 5Y 6/1	Gravish green (5G somatimes slightly			NATIONS,
		5/76								ŧ		5G 5/2 5Y 6/1	79.1 to 79.3 m: CF			BURROWS.
		Glaboratalia obliguus extremus	one			80.8	-	-		1			SMEAR SLIDE SU	MMARY 1, 120 M	(%) 2,128 D	3, 87 M
		iquu	Discosster brouwer! Zone									- PUTTO	Texture:			
		obl	Mun					1.5				5Y 5/1 5GY 5/1	Sand Silt	20 50	-	50 35
		alla	pre-				3	- 5				5Y 5/1	Clay	30		15
		Drot	ster							F	*	N4	Composition:			
		labic	KC03					-	E			5Y 4/2	Quartz	45	15	35
		6	Dis						E	4			Feldspar	7	5	8
						12		-	-+++	1		5G 4/2	Mica Heavy minerals	TR TR	5	2
		PL6	NN18			82		-				12990033	Clay	15	5	3
			z		CG							5Y 5/1	Volcanic glass	15	-	50
					100					1			Glauconite	-	-	t
								1					Carbonate unspec.	10	5	3
							4	- 2		1	È	5Y 4/1	Foramintiers	-	10	-
							1	1		T	-	5Y 5/1	Cale, nannofossils	8	49	1
								-	++	H			Diatoms	-	4	-
								1.12	TI	H			Radiolariana	140	2	-00
												5Y 4/1	Sponge spicules		5	-
					3	83.8		-					ORGANIC CARBO	IN AND	ADBOL	ATE PUL
					20	~		- 6		1			GAGMING GARBO	2, 128-		(m) = 1/01
					rina			1.1		F		Investigation of the second se	Organic carbon	-		
					marina Zone			-		1 1 1		5Y 5/1	Carbonate	67		
					Nitzschia		5				-	5G 4/2 5Y 8/1				
					<			-				5Y 4/1				
						3				1						
						85.										
					FG					1	-	5Y 5/1				
					1			-				to 5Y 6/1				
										1 1		1220025				
							6	-		1 1						
							1		1	1 17		5Y 4/1				
									+	F	1	5GY 4/1				
						1			+	P	-	5Y 4/1				
						86.7					1	5GY 4/1				
		CG	CG		RP		cc			1 1		FO HILL FOULT				
	L 1	100	00	1.0	1 mg	1	100	1			1	5G 4/1 to 5GY 4/1				

SITE 611

	PHIC			OSSI	TER											
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-bottom depth	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	STRUCTURES SAMPLES		LITHOLOGI	C DESCI	RIPTION	
						87.4		0.5		-		5Y 4/1 5GY 5/1	Alternating: CALCAREOUS MU 4(1); and	JD, gray	to dark g	ray (5Y 5/1 to
							1	1.0				5Y 4/1	MARLY FORAMI greenish gray (5GY FORAMINIFERAL light greenish gray 1	5/1), be NANN	coming N OFOSSIL	ARLY SILICEOUS OOZE at 90.6 m;
						88.9		1				5GY 5/1 5G 4/1	Rare gray (N4) or g CALCAREOUS MU	JD.		
							2					5G 5/2	Common green (BC siliceous ooze, Common MOTTLI gray or olive,			
		ted										-	SMEAR SLIDE SU	MMAR) 2, 25	(%) 3,80	4, 130
	1.0	undifferentiated				80.4	-	-	1	1 .	2	5Y 4/1 N4		M	D	D
		fer.			AM			1.1			1	10 Mar	Composition:	5	15	15
		1 dif			AM			1.2	1++6	4 -	511-	5Y5/1	Quartz Feldspar	9	10	2
		3	20					-			5	5G 5/2 N4	Mica	TR	_	5
		-	N				3		1-1+-+6			5G 5/2	Heavy minerals	2	5	3
		PL3-5	104				3		+-+-+	1		5GY 7/1	Clav	20	6	2
		ñ.	wito.					1.2			-	5GT //1	Volcanic glass	-	-	TR
			Discouster brouwer! Zone					-		4 L	1	5Y 4/1	Foraminiters	15	10	10
			1925							- I.	•	C C C C C C C	Calc. nannofossils	55	42	40
			COM		1.0	0		-		1	6		Diatoms	2	4	3
			Dis		and a	61.6						5Y 5/1	Rediotarians	5.	2	2
					12			1	1Fi	HĿ	2	5Y 4/1	Sponge spicules	3	15	15
			NN18		arts			-		- 1	-		Silicoflageilates	-	2	TR
			ź		1.0			1.1	1++++		8	5GY 5/1	ORGANIC CARBO	N AND	CARBO	NATE (%)
	19				Nitzschla marina Zone		4		1	1	2		And and a china	3, 80		
					litz2			1	1- +-+-	ЯI	12		Organic carbon	-		
					15			-		4	1		Carbonate	66		
								1.13	+-+-	I k	(
											2	5GY 6/1				
						8	-	1	the t	r -	1	EN 4/2				
					1	1.0	1.00	1 3	1B	ΗI	1	5Y 4/1				
	1			l		88		1	+	A I	4	t l				
		1	102	12	12.	EB	cc	-		A I	e l	201207				
	1	AG	AG	18	CM	1	Lec	1				5Y 4/1			_	

	611 ≌			OSSI				RE	Goneo	TT	Ť	L 97.0-106.6			
	APH		-	RAC	TEF	1									
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-bottom depth	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	STRUCTURES		LITHOLOGI	C DESC	RIPTION
						87.0	1	0.5		i li		5Y 4/1 5Y 5/1 5Y 4/1	olive gray (5Y 3/2)	; and	gray (6Y 4/1) to dark. IL OOZE, gray (6Y 5/1 or 6/1).
								1.0				5GY 4/1 with 5Y 4/1 and 5Y 5/1	Generally common Rare green LAMIN		
						98.5				11		-	ZOOPHYCOS burr	ow at 10	0.8 m.
											-	5Y 4/1	104,91 to 104,97 m	n: Indura	ited green interval.
							2			1		5G 4/2	SMEAR SLIDE SU	2,91	3,98
										1	•	5Y 3/2	Texture: Sand	0 20	D
						100.0	-						Silt Cley Composition:	50 30	5
		bet									-	5Y 4/1	Quartz Mica Heavy minerals	30 5 1	18 2
		undifferentiated	broweri Zone				3		타고라	1			Clay Carbonate unspec. Foraminiters	34	- 5 TR
		1.1	ter brow			LO.				1		5Y 5/1 to 5Y 6/1	Cale: nannofussils Diatoms Radiolarians	22 2 2	58 2 3
		PL3-5	Discoatter			101							Sponge spicules	1	7
			81NN					1			-	5Y 5/1	ORGANIC CARBO	2, 93-	
			N				4		구구가	-	-	5Y 5/1	Carbonate	14	
												to 5Y 6/1			
						103.0	\vdash			1		5Y 4/1			
									1			5Y 3/2 5Y 3/1 5Y 3/2			
							5			+	-	o ki bre i l			
						5		1000				5Y 6/1			
			2			97 104	-				-	5Y 5/1 to			
		AG	AG	VRM	RP		6					5GY 5/1 5GY 4/1			

506

SITE 611

	PHIC		F	OSS											
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS		Sub-bettom depth	SECTION	GRAPHIC LITHOLOGY	DRILLING	SEDIMENTARY	SAMPLES		LITHOLOGI	IC DESC	RIPTION
			Discouster pentaradiatus Zone		в	106.6	1	0.5	-	1		5Y 4/1 5GY 5/1 5Y 4/1 5GY 6/1	(greenish gray 5GY IFERAL NANNOF 5GY 6/1), Very gra sediment type and	5/1) and OSSIL C atlational the othe	L NANNOFOSSIL OOZE 3 SILICECUS FORAMIN JOZE (fight generich gray contacts between one r. 2) and olive gray (5Y 6/1)
			NN17 Discos		AG	108.	2		+++++++++++++++++++++++++++++++++++++++			5GY 5/1	CALCAREOUS MI 111.4 to 112.2 m, 1 5Y 5/1) diffuse lay	UD interv with gree ers. RROWS a	2, 130
		otisted				109.6	3		++++++++			5GY 5/1	Composition: Quartz Mica Heavy minerals Clay Foraminifers Culc. nanofossils	10 5 2 3 10 57	D 20 1R 5 25 10 33
		5 undifferentiated			Zone	CUI			****	222727		5GY 6/1	Diatoms Radiolarians Sponge spicules Silicoflagellates	3 1 10 TR	2 TR 6 TR
		PL3-5	Discoaster surculus Zone		Nitzschia marina Zo		4		T . H . 	2-1		5GY 5/1 5Y 4/1	DRGANIC CARBO Organic carbon Carbonate	2, 130 - 44	
			NN16 Discoaster		IN	5 112.6	12.0		ITTIT			5GY 5/1			
		AG	AG	FG	AG	112.95	5 CC		11	1		5GY 5/1			

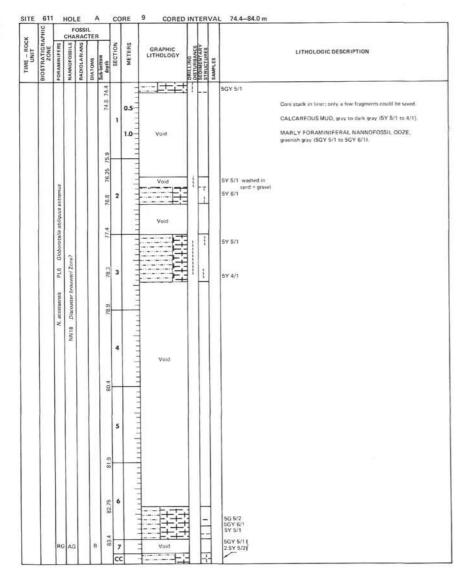
,	PHIC	1		OSS	TER									
UNIT UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-botton depth	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC DESCRIPTION	
		PL3-5 undifferentiated	NN15 Disconstrer surrivutz Zone	AG	Nitzschia marina Zone	123.7 122.2 120.7 118.2 118.2 116.2	1 2 3 4 5	0.5				5Y 4/1 5Y 5/1 5Y 5/1 5Y 6/1 5Y 6/1 5Y 6/1 5Y 3/1 5Y 3/1	CALCAREOUS MUD (dark gray 5Y 4/1 to 3/ MARLY SILICEOUS NAMNOFOSSIL 00265 SY 6/1 to 6/1) with very additional contacts between one type and the other. 122,9 to 123 mr. SANDY VOLCANIC LAYER rich in Ulf fragments. Green (5G 4/2) and brown MOTTLING. 200PHYCOS BURROWS: 122,7 to 123,1 mr 124,3 to 124,4 m. PLANOLITES (?) BURROWS: 124,03 to 124. SMEAR SLIDE SUMMARY (%) 0 M Texture: 2 40 Sitt 2 40 Sitt 2 40 Sitt 2 40 Sitt 2 40 Sitt 2 40 Sitt 3 5 Clay 30 25 Composition: 0 M Sand 2 40 Sitt 5 2 45 Feldbar - 15 Glazonoite: TR - Calconoite: TR - Pyrite: TR - Calconoite: TR -	igray
						124.74	6	11111				5Y 5/1 5Y 4/1		
		RG	FG	RG	FM	-	cc	-				5Y 4/1		

Open with the second		PHIC			OSS	TER	8									
Image: specific spectrum	UNIT UNIT	BIOSTRATIGRA ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-bottom depth	SECTION	METERS		DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC	DESCRIPT	FION
5 10YR 7/1		8	Globorotalia truncatulihoides	Pseudoemiliania lacunosa Zonis	PH		4,5 3 1,5 0	2			n n n n n n n n n n n n n n n n n n n		10YR 5/3 2.5Y 5/3 2.5Y 7/2 2.5Y 4/3 10YR 6/4 10YR 7/2 25Y 7/2 2.5Y 7/2 10YR 6/3 10YR 6/1	OZZE (0.00 to 5.30) 6(1) or grayish brown CALCAREOUS MUD Common MOTTLINC Rare gray (N5) and gr TIONS. SMEAR SLIDE SUM Composition: Quartz Felshoar Heavy minimals Clay Volcanic gras Foraminfen Calz, namofosils Diatoms	m), light gra (2.5Y 7/2), gray to di 3, cenish gray MARY (%) 3,80 D 18 18 10 60 2	iv to gray (10YR 7/1 to to 4/3), wk gray (5Y 5/1 to 4/1), (5GY 7/1) LAMINA- 5, 78 D 42 5 5 5 30 3 3 10 5 5 5
						ď				- E - E - E			accuses.			

	PHIC		F CHA	OSS		4							
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-hottom depth	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	STRUCTURES SAMPLES		LITHOLOGIC DESCRIPTION
						8.7 7.2	1	0.5			-		First section very disturbed: mixed calcareous mud and foraminiferal nunnofossil ooze. Alternating: CALCAREOUS MUD, grav to dark grav (ISY 5/1 to 4/1), gravish bown. (10YB 5/2) to dark gravish brown. (2.5Y 3/2); and FORAMINIFERAL NANNOFOSSIL OOZE. light grav to grav (N7 or N6).
							2	and and		-		5Y 5/1	Slight MOTTLING. Bara green (5G 4/2) PATCHES and green (5G 4/2) LAMINATIONS. Bare PY RITIC (N3) LAMINATIONS. PLANDLITES BURROWS between 11.91 and 11.94 m.
		fet	Zane			10.2		Titi Titi				N7	2
		Gioborotalia truncatulmoidet	Pseudoemiliania lacunosa Zone			7	3	TITLE IN T			11	5Y 4/1 N7 SY 5/1 to 5Y 5/1 10Y R 5/2	
		N22 Giobor	NN19 Pseud			11	4	realized of			al - da	N3 N6 5Y 4/1 to 5Y 5/1 5G 4/2	
						13.2		and and a		- 11-	1	2.5Y 5/2	
							5	The second se			1	2.5Y 4/2	
						14.7	6	111		-		1W 2.5Y 3/2 5Y 4/1	
		AG	CG		8	15.2	cc	-			1	2.5Y 5/1 2.5Y 5/2	

augusta augusta augusta augusta augusta augusta built	rk gray (5Y 5/1 to 4/1); aL NANNOFOSSIL or 2.5Y 7/1) symt of: SIL ODZE; and NNOFOSSIL OOZE,
80 0.5 1 10<	rk gray (5Y 5/1 to 4/1); aL NANNOFOSSIL or 2.5Y 7/1) symt of: SIL ODZE; and NNOFOSSIL OOZE,
0.5 0.5 <th>AL NANNOFOSSIL or 2.5Y 7/1). avers of: SIL OOZE; and NNOFOSSIL OOZE,</th>	AL NANNOFOSSIL or 2.5Y 7/1). avers of: SIL OOZE; and NNOFOSSIL OOZE,
a a b	PE BURROWS
4,39 to D D SY 4/1 Composition: Outro: Composition: Compo	
Big Big <td>111 30 20 10</td>	111 30 20 10
ST 4	10 40 20 30
5 5 5 5 5 5 5 5 5 5 5 5 5 5	
6 5 5/1 5/2 5/2 6	
8G FM B SC	

×	PHIC			OSS	IL TER								
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINEFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-bottom depth	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY	SAMPLES		LITHOLOGIC DESCRIPTION
						27.9 26.4	1	0.5				5Y 5/1 10 5Y 4/1 5G 4/1 5Y 4/1	Alternating: CALCAREOUS MUD, gray to dark gray (5Y 5/1 to 4/1) or dark grayish brown (2.5Y 4/2); otten silty, mainly homogeneous; bases of larest often motiled; and MARLY SILICEOUS FORAMINIFERAL NANNOFOSSIL OOZE, gray (5Y 6/1) or greating fary (5G/5/1); probably marky foraminiferal nannofossil oose in the upper part of the core, gradually becoming silicnous; motiled. Rare green or gray LAMINATIONS.
								1111		赤土		5Y 5/2 5Y 5/1	Gray (N7) PYRITIC HALO at 33.30 m.
						4	2	111111		=		5¥ 6/1	SMEAR SLIDE SUMMARY (%) 5, 100 D Composition: Quartz 25 Mica TB
ĺ						28,		11111		+		5Y 4/1	Heavy minerals TR Foraminiters 7 Calc. namotostils 58 Diatoms 1 Radiolarians 2
		ulinoides	cunosa Zone		i Zone		3	11111		1		5Y 5/1 5Y 5/2	Sponge spicules 7
		Globorotalia truncatulinoides	Pseudoemiliania facunosa Zone		Nitzschia reinholdii Zone	30.9		1111				5Y 6/1 5Y 4/1 5GY 4/1 2.5Y 4/2	
		N22 Globori	NN19 Pseud		Nitzsc		4	11111		111		5Y 5/1 5GY 5/1 5Y 6/1	
		Z	2			32.4		1111				5GY 4/1 5Y 5/1 5G 4/2	
							5	multi		***		2.5Y 4/2 5Y 5/1 2.5Y 4/2	
						6		ultur			•	5GY 5/1 5Y 4/1 5G 6/2 - IW	
						33.9		tint		1 1 1		5Y 4/1 5GY 4/1	
					CM	35.1	6	11111		4-		2.5Y 4/2 5Y 5/1 to 5Y 5/1	


÷			2	
٩,	،	۲	ł	
-	-		٠	
5			2	

	611 일	Г	-	E	-		L_	RE	5 CORED	T [*]			Ī	n		
	APH		CHA	RAC		-							(
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-bettern depth	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURIANCE	SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC	DESCRIPT	rion
						36.0			Void					Alternating layers of:		to dark gray (5Y 5/2 to
						æ	1	0.5		00			5Y 4/1 5Y 8/1	4/1) or dark greenish MARLY SILICEOUS 00ZE to SILICEOUS	gray (5GY FORAMIN S FORAMIN	
						s.							5Y 4/1	Faint MOTTLING, et nannofossil coze.	specially on	foraminiferal
						37.		-					5GY 2/1	Greenish (5G 6/2 to / LAMINATIONS	4/2) or gray	(N3 to N5)
								1.E			+	1	3377331151		mmon mot	tling and diffuse lamina-
							2	1						tions.		
								1					5GY 4/1	Dropstones.		
	6			1				1 8			1		551 411	SMEAR SLIDE SUM	MARY (%) 2,38	5, 42
						39.0	-	-		1	· .				M	D
						Ř		1						Texture: Sand	15	2
								1			1		5Y 5/1	Silt	60	
			and a					-			27		5Y 4/1	Clay Composition	25	-
		victes	a Z				3			1	Ξ		5G 5/2 N3 5G 5/2	Quartz	40	15
		lino	sour								1		5G 5/2	Feldspar Mica	10	2
		catu	lace					-			1		5Y 5/1	Heavy minerals	10	2
		run	ania					1			1		and an addition of the	Clay	20	-
	1	lia 1	milli			40.50		-		1				Foraminifers Calc. nannofossits	12	10 59
		Globorotalia truncatulinoides	Pseudoemiliania lacunosa Zone			17		1			1		5G 5/2 5G 5/2	Diatoms	13	2
		lobe	Pseu					1			1		5Y 4/1	Sponge spicules Tuff classs	20	8
		0						1			1					
		N22	NN19				4		F				200 - Carl			
		z	Z				100	3		1	1.201		5Y 4/2			
				1.2				1.1	- H-FK	1	+it					
								1			1		5G 6/2			
						42.0			+		1		5G 4/2			
						4		1		1	T		5GY 5/1			
								1			1		CONTROL OF C			
								1			+		NG			
							5	1	tor and a barriaght							
								- 2					5Y 5/2			
							1	-		1						
						1		1 - 2	+							
						43.5	-		+		3					
						4		1	Frant		-11					
									-+-+	1						
								-		1			N5 5Y 6/1			
							6	1 8		1	3		5G 5/2			
								1.4			1		5G 5/2			
		FG	FP		в	44.80					2		5Y 5/1			
						4		5	1-1-4	1	14		5Y 4/1			

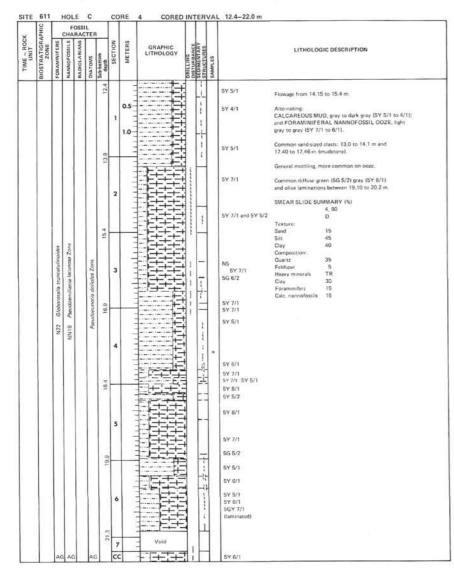
TE	611	_	HOL			A	CO	RE	6 CORED	INTE	RV/		45.6-55.2 m		
e	PHIC			RAC	TEF	3				11					
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-bottom depth	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE DISTURBANCE SEDIMENTARY	STRUCTURES	OHMAL LCO		LITHOLOGIC	DESCRIPTION
						45,6	1	0.5			*	•	5Y 4/2 5GY 5/1 5Y 4/1	SILICEOUS CALCAF greenish gray (5GY 4/ MARLY SILICEOUS OOZE, gray (N7) or li 5GY 6/1). Some calcareous mud	FORAMINIFERAL NANNOFOSSIL ight greenish gray (5Y 6/1 to I intervals seem more silty: 16 to 47.2 m; 47.65 to 48.75 m;
						6 47.	2	and see to be the			1 1 2 1 1		N7 5Y 4/1 5Y 5/1 5Y 4/1	52.0 to 53,35 m. VOLCANIC ASH RIC 49.50 m and 51.49 to	IINATIONS, particularly 8 m.
		truncatulimoides	Pseudoemiliania facunosa Zone			1 48	3			T _ tr	1 L		5GY 4/1 5Y 5/1 5GY 4/1 5GY 4/1 5Y 5/1 to	Texture: Send Silt Clay Composition: Ouartz Mica Heavy minerals Foraminiters	60 D 5 45 50 58 1 1 2
		N22 Gioboratalia tri	NN19 Pseudocmilian			6 50.	4	the second second second					5Y 4/1 5Y 6/1 5GY 6/1 5Y 4/1 5Y 4/1 5Y 3/1	Calc. namofossils Diatoms Radiolarians Sponge spicules Silicoffagellates	28 1 3 8 TR
						61)	5	the set of the set					5GY 4/1 5Y 5/1 5Y 6/1		
		AG	AG		FM	53.92 53.1	6				the second se		5GY 4/1 5Y 5/1 to 5Y 4/1 5Y 4/1		

	DHIG		F	RAG		1								
UNIT UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sob-battani depth	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC DESCRIPTION
						55.2	1	0.5		000			5Y 6/1	MARLY SILICEOUS FORAMINIFERAL NANNOFOSSIL OOZE (gray 57 6/11) to MARLY FORAMINIFERAL NANNOFOSSIL OOZE (gray 57 5/1 to 6/11) amount of siliceous organisms decreating probably progressively, becoming <10% around 59.6 m.
						56.7		1.0			5		5¥ 4/1	Interval between 58.34 to 59.56 is varicolored, predom- inantly gray, 55 f/1 or 6/1), with common green, olive, and gray LAMINATIONS, and common MOTTLING; 59 D1 to 56.07 m: common CHONDRITE-TYPE BURROWS.
										1	n		5¥ 6/1	Two layers of CALCAREOUS MUD; dark gray (5Y 4/1): 55.6 to 56.72 m and 57,75 to 58,24 m.
		sabidas	anoz ese				2	1.1.1			21-		5G 4/2 5Y 5/1	Generally common mottling. 61.73 to 61.90 m: common sandsize grained clasts with sharp contacts, gravish green (5G 4/2).
		uncatulu	ania lacur			58.2	-	-			***		5Y 4/1	SMEAR SLIDE SUMMARY (%) 4, 70 Composition:
		Gioborotalia rruncatulianidas	 Pseudoemiliania lacunosa Zone 				3	le rel re					5¥ 6/1	Quartz 25 Feldspar 5 Moca TR Havy minerats 5 Clay 5 Foraminiters 10
		N22	BLNN			59.7							5Y 6/1 and 5Y 5/1	Cale, namofossils. 43 Diatoms 2 Radiolarians TR Sponge spicul 5 Silicoftagettan TR
							4	the second second			101 11 1		5Y 5/1	one of the second s
						61.2							5Y 6/1	
		AG	СМ		в	62 10	5	- the		-	1		5Y 5/1	

÷	APHIC				TER								L 64.8–74.4 m			
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-bottem depth	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SEDIMENTARY	SAMPLES		LITHOLOGIC	DESCRIPT	ION
	18	PL6 Głobovotalia obliguus extremus	NN18 Discoaster brouwer/ Zone?		Nizschia minholdii Zone Di	72.8 71.3 69.8 66.3 54.8 ⁸⁶	3	0.5				-	5Y 5/1 5Y 5/1 6Y 4/1 + N7 5G 5/2 5Y 5/1 N6 5Y 5/1 5Y 5/1 5Y 5/1 5Y 5/1 5Y 6/1 5Y 5/1 5Y 6/1 5Y 5/2 5Y 6/1 5Y 5/2 5Y 6/1 5Y 5/2 5Y 6/2 5Y 5/2 5Y 6/2 5Y 5/2 5Y 5/2 5	Alternating: CALCAREOUS MUD and MARLY FORAMINI gray (No or 5Y 6/1), 73.3 to 73.45 m: laye Green (5G 5/2) LAM thick, (2 of 5 cm), Green (5G 5/2) PATC 72.46 m. DROPSTONES. SMEAR SLIDE SUM Texture: Sand Sitt Cay Composition: Cay Composition: Cay Composition: Cay Composition: Cay Composition: Cay Composition: Cay Composition: Cay Composition: Cay Composition: Cay Composition: Cay Composition: Cay Composition: Cay Composition: Cale cannofesition: Cale cannofesition:	FERAL NAI ir of olive (5 INATIONS, CHES betwee	Y 5/3) MUD. sometimes relatively
		AG	AG		FM		6 CC	1			1		5Y 5/1 5G 5/2 5G 5/2 5Y 6/1 5G 5/2 5Y 6/1			

	APHIC		F	OSSI				RE		T	Π		L 84.0-93.6 m			
UNIT	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-bottom depth	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGI	C DESCRIPT	ION
			NN18 Discoatter brouwer? Zone?		Nitzachia maviwa Zone	915 900 885 87.0 855 84.0	3	0.5	Veid			*	58 5/1 5Y 5/1 + 6/1 5Y 5/1 + 6/1 5Y 5/1 (flowed) 5G 5/2 5G 5/2 (flowed) 5Y 6/1 5G 5/2 5G 5/2	CALCAREOUS MUI greening vay (SGV co contain ~3% volcari Bluich (58 5/1 or 6/1 LAMINATIONS, son (3 to 5 cm). 00 5 to 911 m: inter LAMINATIONS and Dropstones. SMEAR SLIDE SUM Texture: Sand Sit Cary Composition: Quartz Feature: Sand Sit Cary Composition: Quartz Feature: Sand Sit Cary Composition: Quartz Feature: Sand Sit Cary Composition: Quartz Feature: Sand Sit Cary Composition: Caronale ungo: Caronale ungo:	3/1 or 5/1); g ic glass. 1) or greenish metimes relat rval with com 200PHYCC	reener intervals (8G 6/1 to 5/2) ively thick imon green
							6			20			5Y 4/1			
		AG	AG		FM		cc	1		1	1		5Y 4/1			

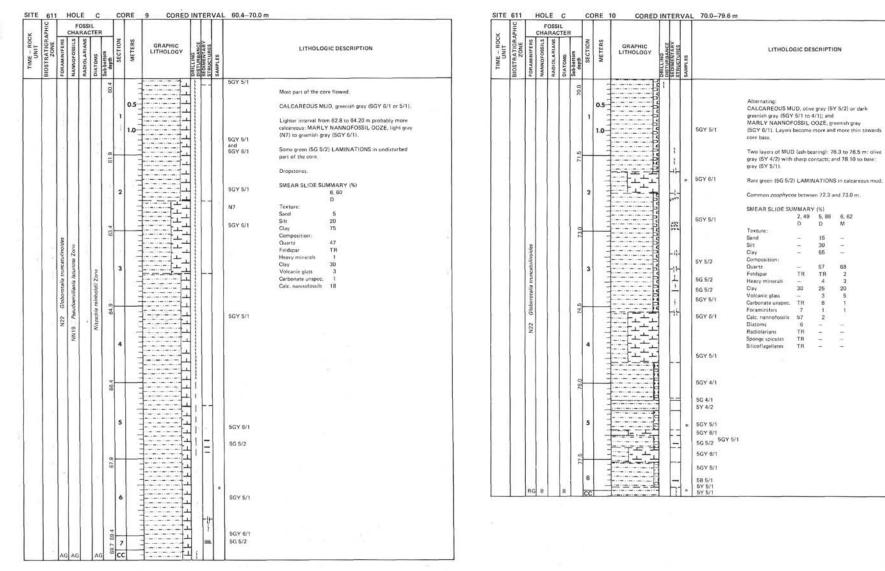
	PHIC		F	OSS		4									
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS		Sub-bottem depth	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SEDIMENTARY	SAMPLES	LITHOL	OGIC DESCRIP	TION
	88	PL3-5 undifferentiated	NN18 Discoaster brouweri Zone	2	Nitzachia manina Zone	99.6 98.1 96.6 95.1 93.6 S	1 2 3 4 5	0.5	Void				5/1), containing 5Y 5/1 97.0 to 101.2 n SY 5/1 NANNOFOSSI containing more organismu/smea	~10% CaCO ₃ (I: CALCAREOL 0.026, green) than 30% CaCC 30% CaCC 30% CaCC 30% CaCC 30% CaCC 30% CaCC 30% CaCC 10 20 20 20 20 20 20 20 20 20 2), sometimes relatively
		AG	AG		см	1.101	6 CC	1111					5GY 5/1 5GY 6/1		


×	APHIC		CHA	OSS		1									
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNDFOSSILS	RADIOLARIANS	DIATOMS	Sub-bottem depth	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	SAMPLES		LITHOLOGIC	DESCRIPT	TION
							1	0.5				5GY 5/1 5G 4/1 2.5Y 4/2	gray (SY 5/1 to 5GY) Top and bottom of co greenish gray (5GY 5/ Two layers of MUD, c	6/11, ore: CALC/ /1), dark gravist), containir	n brown (2.5Y 4/2) to ng ~7% volcanic glass:
							2	and and a second				• 5GY 6/1	Distorted green (5G 5 TIONS common betw	i/2) or gray een 104.7 /2) LAMIN ooze interv MARY (%) 3,40	(5Y 5/1) LAMINA and 104.84 m. IATIONS and PATCHES als. 4, 60
		undifferentisted	pentaradiatus Zone		arina Zone		3				•	5Y 4/1 2.5Y 4/2 and 5G 4/2 2.5Y 5/2 and 5G 5/2	Texture: Sand Silt Clay Composition: Qualt2 Feldspar Heavy minerals Clay Volcanic glass Micronodules Carbonate unspec.	D 35 46 1 4 25 7 TR 1	D
		PL3-5	NN17 Discoaster		Nizzehie marina Zone		4	and marken			*	5GY 6/1	Foraminifers Calc, nannofossils Diatoms Radiolarians Sponge spicules Silicoflagellates	TR	4 45 7 TR 1 TR
							5	the second s				5Y 5/1			
		AG	AG		FM		6					5GY 5/1			

SITE 611 HOLE A CORE 13 CO FOSSIL CHARACTER VIGTOR 19 CONTO CHARACTER VIGTOR 19 CONTO CONTO CHARACTER VIGTOR 19 CONTO CHARACTER VIGTOR 19 CONTO CONTO CHARACTER VIGTOR 19 CONTO CHARACTER VIGTOR 19 CONTO CONTO CHARACTER VIGTOR 19 CONTO CO		LITHOLOGIC DESCRIPTION	SITE 611 HOLE B CORE 1 COREDINTERVAL 0.0-8.9 m FOSSIL UHARACTER ULITHOLOGIC DESCRIPTION ULISION U
PL3-5 undifferentiated 1 10-1 1 10-1	······································	BGY 8/1 Layer of MARLY NANNOFOSSIL OOZE, greenish gray (5GY 8/1 to 471), but monty CALCAREOUS MUD, greensh gray Void Void to dark greenish gray (5GY 5/1 to 471), Green (5G 5/2) faint irregular PATCHES and LAMINA- TONS. SG 5/2 SGY 5/1 ZOOPHYCOS BURROWS between 118,20 and 118,30 m. Dropstone. SGY 4/1 SMEAR SLIDE SUMMARY (%) Clay SG 5/2 Sint SG 5/2 Sint SG 5/2 Omposition: Clay SG 5/2 Sint SG 5/2 Sint SG 5/2 Composition: Clay SG 5/2 Sint SG 5/2 Composition: Clay SG 5/2 Clautoms Soonge tokulas 1 Silicottagellates TR Soonge tokulas TR SG 5/1 SG 5/1	PI USB NOT

APHIC		F	OSSI RAC										
IIME - HOCK UNIT BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-bottom depth	SECTION	GRAPHIC LITHOLOG	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLO	GIC DE	SCRIPTION
	D N22 Globorotalia truncatulinoides	D NN21 Emiliania huxleyi Zone		🚽 🦷 Pseudoeunotia dollokus Zone	1.5 0.0	1 2 CC	0.5		•	10YR 5/4 to 10YR 6/4 10YR 6/4 10YR 5/4 10YR 5/4 10YR 5/4 10YR 5/4	light to dark yellow	vish brov CLASTI CHOND	RITES BURROWS.

2	VPHIC		CHA	RAC		2								
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-bottom depth	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	STRUCTURES		LITHOLOG	SIC DESCRIPTION
		N22 Glaborotalia truncatuliaroides	NN21 Emiliania huxleyi Zone		Pseudoeunoria dollolus Zone	5 6.9 5.4 3.9 2.4	1 2 3 4	0.5			1 - 1-1	5Y 7/1 10YR 6/2 2.5Y 5/2 5Y 7/1 2.5Y 6/2 2.5Y 7/1 2.5Y 6/2 2.5Y 8/3 5Y 7/1 5Y 7/1	MARLY FORAMII light gray (2.5Y 7) FORAMINIFERAL (5Y 7/1). Very sharp taminat and pale yellow (2. CALCAREOUS MI	6.25 to 6.87 m; common coarse ONE(?) clasts.
		40	FG		EM	7.35	cc	-	++	11-		5Y 5/1		


ii.	PHIC		F	OSS		R							
UNIT UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-bottom depth	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
		2	teanica Zone			8.9 7.4	1	0.5					7.40 to 9.75 m: very deformed by coring; mixing of gray silty mud and brown or light gray coze. Alternating: CALCAREOUS MUD, dark olive gray (5Y 4/1 to 4/2) or dark grayish brown (2.5Y 4/2), appearing silty; mottled; brown patches between 9.75 and 10.40 m; and FORAMINIFERAL NANNOFOSSIL OOZE, light gray to gray (5Y 7/1 to 6/1) mottled; some pyritic patches and streaks.
		Globorotalla truncatulinioides	NN20 Gephyrocapas oceanica Zone		Pasudoeunotia doliolus Zone	10.4	2	a second second			1 1		
		N22 Glob	z			-		the second			1 11 11		n 12
							3	1			-122		
						23 11.9	F.				1		
		AG	AG		СМ	n	cc				R.		

-	611 9	Г	-	.E OSS	_			RE	5 CORED		1	V PA	L 22.0-31.6 m	
	APH		CHA	RAG		1								
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIAMS	DIATOMS	Seb-bartom depth	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	STRUCTURES	SAMPLES		LITHOLOGIC DESCRIPTION
						25.0 23.5 22.0	2	0.5				*	5Y 4/1 5G 5/2 5GY 4/1 5Y 5/1 5Y 5/1 5Y 7/1 5Y 4/2 5Y 7/1 N3 5Y 4/2 5Y 4/2 5Y 5/1	Alternating: CALCAREOUS MUD, gray to olive gray (5Y 5/1 to 4/2), or graysh brown to very dark graysh brown (2.5Y 5/2 to 3/2): some interval appear more sitty: 31.6 to 31.9 m, 36.2 to 37.2 m, and 37.8 to 39.2 m; and FORAMINFERAL NANNOFOSSIL 0.02E, light gray (5Y 7/1) to MARLY FORAMINFERAL NANNOFOSSIL 0.02E, gray to olive gray (5Y 6/1 to 6/2). 32.2 to 32.31 m: layer of VOLGANIC MUD (rich in TUFF); underlaying mud seems ash-rich. Rare green or gray LAMINATIONS 37.38 to 37.60 m: vellowish brown (10YR 5/4) patch. MOTTLED INTERVALS: 31.6 to 32.2 m, 32.7 to 32.95 m, and 34.6 to 35.05 m. SMEAR SLIDE SUMMARY (%) 1.60 2,42 M D
		Gioborotalia truncatulinoides	Pseudoemillania lacunosa Zone			26.5	3	Treation 100					2.5Y 5/2 5Y 6/2 5Y 5/1	Texture: 30 Sand 30 Silt 60 Clay 10 Composition: Owner: 19 15 Mica TR Volcanic glass 65 Glucconite 1 Carbonate unspec 3
		N22 G/obo	NN19 Pseudoen				4						2.5Y 3/2 5GY 4/1	Carbonate unspec. — 3 Foraminiers TR 10 Calc. nannofossilis 15 68 Diatoms — TR Radiolaritains — TR Sponge spicules — 4
						28.0	5	A STATE STATE					5¥ 4/1	
						29.5	6	and a set of the set o			1 1		5Y 7/1 5Y 6/1 5Y 5/1 5G 5/2	
		AG	CG		в	31.2 31.0	7				1	_	5Y 4/1 -Void 5Y 4/1	

	ŧ		F	OSS	IL										
	APP			RAC	TE	-	-	1							
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-hottom depth		METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLO	GIC DES	CRIPTION
						31.6		1				5Y 4/2			
							1	0.5		-1-		2.5Y 5/2 2.5Y 6/2	or dark grayish bro NANNOFOSSIL O NANNOFOSSIL O	wn (2.5Y OZE, ligh	to olive gray (5Y 5/1 to 4/2) 5/2 to 5/3); and tt gray (N7 to N6) to MARLY y to brownish gray (5Y 6/1,
				1				1.0		1		5Y 6/1	2.5Y 6/1 to 6/2). Rare green (5G 5/2	laminat	ions
					1	33.1		-		1		N7	38.56 to 38.63 m:		
								1.3				5Y 8/1	SMEAR SLIDE SU		
				ł	ł		2			4		Gerand F.S.	Texture:	2, 102 D	4,94 D
								-		\$2 1		N7	Sand Silt Clay	11 11	15 25 60
						34.6		_		1		5Y 6/1	Composition: Quartz	2	60
				-				E		18		5Y 8/1 2.5Y 5/3	Feldspar Heavy minerals	TR -	3
		ides	Zone				3			11		5Y 7/1 and 5B 6/1	Clay Volcanic glass Carbonate unspec.	5 - 1	20 3 8
	ñ.,	stutino	lacunosa :				5	1				N7	Foraminiters Calc, nannofossils	9 84	4 2
		Globorotalla truncatulinoides	iania lac			-		3				2.5Y 6/2	Diatoms Radiolarians Sponge spicules	1 TR TR	 TR
		borotal	Pseudoemiliania			36		1				N7	Silicoflagellates	TR	
	-							-		1		5GY 6/1	Note: Core 7, 41.2	50.8 m:	no recovery.
		N22	NN19		1		4	1							
								1.1				5Y 5/2			
				5		37.6	T	1				5G 5/2			
								1.3				5GY 5/1			
					dii Zon		5	1				5G 4/1			
					reinhold		1	1.5				5GY 5/1 5Y 5/3			
					Nitzschia reinholdii Zone	30.1	+	-		1		5Y 5/1			
					Ni					1 4		5GY 5/1 N8			
							6								
										1		N7 5GY5/1			
		AG	AG		CN	0.04						5GY 4/1			

	PHIC	2		OSS	TER	2									
UNIT UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-bettom depth	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLO	GIC DES	SCRIPTION
						50.8		1		L.		5GY 5/1 5GY 4/1			
						56	1	0.5				5GY 5/1	gray (5Y 5/1 to 5/ brown (2.5Y 5/2), to 51.30 m, 51.8 to	3), green Some in o 52.35	ID (slightly ≫10% carbonate), ish gray (5GY 5/1) or grayish tervals seem more silty: 51.06 m, 53.45 to 54.5 m, 55.86 to nd 58.85 to 59.10 m.
								111				2.57 5/2	Rare intervals of M or bluish gray (5G)		VANNOFOSSIL OOZE, greenish 58G 8/1).
						52.3		111		Ξ		5G 5/2 5G 5/2	MUD LAYER, pro (5GY 4/1) between		Icanic, dark greenish grav to 51,15 m.
							2	1111				5GY 6/1	57.25 to 57.30 m: quartz, ash and tuf	igneous 1.	dropstone and clasts of
								111					SMEAR SLIDE SU	3,40	3, 95
						53.8	_	-				5Y 5/2	Texture: Sand	D 20	M
		ulinoides	noz son					111			×		Silt Clay Composition:	40 40	3
		Globorotalia truncatulinoides	Pseudoemiliania lacunosa Zone		8		3	1111		ţ		58G 6/1	Quartz Feldspar Heavy minerals	54 1 6	- 1 TB
		borotalia	doemilia		Nitzschia reinholdii Zone			111		-*- =		5GY 8/1 5G 5/2	Clay Volcanic glass	20 7	35
					tria raint	55.3		111		=		5GY 5/1 5Y 5/1	Carbonate unspec. Foraminifers Calc. nannofossils	8 2 2	10 53
		N22	NN19		Nitzsc			111				5Y 5/2	Diatoms Sponge spicules	TR TR	3/
							4	1111		-		5G 5/2			
						56.8		1111				5G 5/2 5Y 5/1			
		5				95		111							
							5	114				5Y 5/3 5GY 5/1			
							1	111		= =	1	5Y 5/3 5GY 5/1			
						5		-		=		5G 5/2 5B 5/1			
						85		1111		-		5G 5/2 5Y 5/2			
							6	111		-43		5GY 5/1			
						59.67		111		4		5GY 8/1 5GY 5/1			
						ŝ			Void	-	1				
		AG	AG		FM		7	-		84		5GY 5/1			

₽ FOSSIL				₽		FOSSIL					
FORSTIC HARACTER SOLUTIONAL CHARACTER ANANNOFOLIANS PIATONAL STANDARD	NOI LO38 HITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY SEDIMENTARY SAMPLES	LITHOLOGIC DESCRIPTION	TIME - ROCK UNIT BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	RADIOLARIANS		SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES	
		5GY 5/1 5GY 5/1	Alternating: CALCAREOUS MUD, greenish grav (5GY 5/1 to 5/2); and MARLY NANNOFOSSIL CO2E, light greenish grav (5GY 6/1) with very gravational contexts between one type and the other, especially around 82.3 and 87.1 m. Some sitty intervals in calcareous mud: 81.33 to 81.57 m, 82.88 to 83.6 m, and 84.1 to 85.95 m. MUD layers, olive grav (5Y 5/2) at 79.8 to 79.95 m and 88.45 to 88.6 m. Very are green (5G 5/2) LAMINATIONS 88.02 m: SANDY ASH class: SMEAR SLIDE SUMMARY (%): <u>2,73</u> 5,44 <u>0 D</u> Texture: <u>0 D</u> 10 51t <u>25</u> 10 10 10 11 10 10 10 10 10 10		PLG Globorcrafia obligata extremus		8.2 96,7 55,2 93,7 52,2	1 0. 1 1. 2 3 4 5 6		00	5GY 5/ 5G 5/2 5G

Γ				
SAMPLES		LITHOLO	GIC DES	SCRIPTION
	5GY 5/1 5Y 5/2 5G 5/2	olive gray (5Y 5/1 gray (N6 to N5) alt MARLY FORAMI	to 5/2), g ternating NIFERAL Flight gre	hish gray (5GY 5/1), gray to rayish brown (2.5Y 5/2) or with thinner intervall of L NANNOFOSSIL OOZE, light ennish gray (5GY 6/1) with tween both types.
	5GY 5/1 5G 5/2 5GY 6/1	LAMINATIONS; c (with light brownis	ommon b h gray [1	ish brown (2.5Y 5/2) setween 96.8 and 97.3 m OYR 6/2) traces of burrows).
	5G 5/2	Small SANOY PAT In Core Catcher: d ASH-BEARING M	ark green	(5G 4/1) layer (3 cm) of
	5G 5/2 5G 5/2	SMEAR SLIDE SU	MMARY 1, 101 D	
	5GY 5/1	Sand Silt Clay Composition: Quartz Feldspar Heavy minerals	15 30 55 60 TR 3	- - - TR TR
•	5G 5/2 5GY 6/1 5GY 5/1 5Y 6/1	Clay Volcanic glass Carbonate umpec. Foraminifers Calc. nannofossils	20 5 7 1 4	35 - TR 13 52
	2.5¥ 5/2	Diatoms		тя
	5G 5/1			
	5Y 5/1 5Y 6/1 5Y 5/1 5Y 6/1 5Y 6/1 5Y 6/1 N8			
	5G 5/2 "" N5			

	PHIC			OSS	IL			DRE 13 CC		TT		L 98.8-108.4 m				
UNIT - ROCK	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS		Sub-bottom depth	SECTION	GRAPH LITHOLO	DRILLING	DISTURBANCE SEDIMENTARV STRUCTURES	SAMPLES		LITHOLO	OGIC DE	SCRIPTION	
						98.8			- 5			5Y 5/1 + 5G 4/1 (mixed)			
							1	0.5	+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1			5Y 4/2 5GY 6/1	or 5GY 5/1 to 4/1 FORAMINIFERA MARLY FORAMI light greenish gray) alternat L NANN NIFERA to greeni cm) layee	gray or greenish gray (5Y 4/1 ing with thinner intervals of OFOSSIL OOZE to L NANNOFOSSIL OOZE. In gray (5GY 7/1 to 6/1). of marty foraminiferal us mud interval.	
	1.0		11			100.3			3-3			5G 5/2	Green (5G 5/2) and	d bluish a	ray (58 6/1) LAMINATIONS	
	1.1								TE	1-1			Bluish ones may be	halos ar	ound burrows,	
								3				5GY 5/1	Rare ZOOPHYCOS	BURRO	ows.	
							2		- 5			5G 5/2	Dropstone.			
- 1									-7-	FT		5GY 6/1				
	- 1								- 2	E		5B 6/1	SMEAR SLIDE SU			
						-			- 2	-		58 6/1		1.32 D	4, 35 D	
	- 0					101						5GY 5/1	Texture:	1973		
						1						5G 4/1	Sand	20	-	
1		- 1						-F-F-F-		11	l		Clay	50	12 I	
							3			1		5GY 6/1	Composition:			
	- 1	ted					1	1-1	- 5	1			Quartz Feldspar	62 TR	2	
		undifferentiated	Zon						- 2	-		5G 5/2 5GY 4/1	Heavy minerals	4	TR	
- 1		fter	ine .					1	- 2	-		5G 4/1	Clay Volcanic glass	15	20	
- 1		Pu	ano			103.3	_		- 2			1000000	Carbonate unspec.	7	-	
			a b		Zone	ř			-2			5G 4/1	Foraminiters	2	11	
- 1		PL3-5	Dast		urina			1	+-	17	•	5GY 6/1	Calc. nannofossils Diatoms	4	63 6	
	- 1	2	Discoastar brouweri Zone		a ma			- the test	T	44		5GY 5/1	Sponge spicules	TR	TR	
			NN18		Nitzschia marina		4					5GY 5/1				
						8			5			5Y 4/1				
						104			- 2							
			1	1	1	1	1		- 4							
	- 1		1		1		1	1 14-1		H-		5Y 6/1				
							5	100 H	+	rin		01 0/1				
							-	1-	t-T	777		5GY 6/1				
								1-4-	+-+			5GY 5/1				
								1	-75	Fi		0.100214				
						06.3	_		- 5			5GY 4/1				
						-		1	-5							
									5			50Y 5/1				
			1						- 2	-		5G 5/2 5GY 5/1				
				- (1	1	6		- 2			5GY 4/1				
										-		5GY 6/1				
						10		1-1-1-1	÷	277		5GY 6/1				
		AG	AG	- 1	CM	07.		1-1-1-1	+-	5-	1	5GY 7/1				

	PHIC		F	OSS	TER												
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-bottom depth	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	SEDIMENTARY	SAMPLES			GIC DES	SCRIPTION	
						08.4				40	-		Downhole contamin	hation			
						-	1	0.5			-		5Y 5/1 5G 4/2	becoming (around gray (5Y 4/1 to 5G IFERAL NANNOF becoming (around	111.55 Y 4/1); OSSIL (114.60 n	to dark gray (5Y 5/1 to 4/1 m): MUD, dark gray to gree and MARLY FORAMIN- OOZE, greenish gray (5GY 5 m): MARLY DIATOMACEO (hter greenish gray (5GY 6/1)	inish i/1), IUS
						109.9							5GY 5/1	ASH-BEARING M	UD layer	r between 114,14 and 114,18	8 m.
														Green (5G 5/2) or I	bluish (5	58 5/1 or 3/11 LAMINATION	NS.
							2	1			2		5B 5/1	Green mud patches and 112.95 m.	: 112.31	1 m, 112.47 to 112.49 m,	
								1			-	1	5B 5/1 5G 5/1				
								-	B		5		5Y 4/1	Foraminifer-rich in	terval: 1	113.55 to 113.65 m.	
						4					_		5GY 5/1 5G 5/2	SMEAR SLIDE SU	MMAR 2,85		
						111		1					5GY 5/1		2,89 D	5, 138 D	
								1.2					5GY 4/1	Composition: Quartz	1		
								1 3			_		58 3/1	Feldspar	TB		
			1.0				3							Heavy minerals	TR 30	1	
			2					1 - 3					5GY 4/1	Clay Volcanic glass	TR	35	
		undifferentieted	Zo		1						+			Carbonate unspec.		T	
		rent	ulta		Zon	112.9					<u>_</u>			Foraminifers Calc. nannofossili	12	6 47	
		diffe	una.		arit	1					=		5G 5/2	Diatoms	7	10	
		5	aste		ma				-+++	1	-			Radiolarians Sponge spicules	TR	TR	
		in	Disconster surculus Zone		Nitzschia marina Zone								5GY 5/1	Silicoflagellates	-	TR	
		PL3-5			NIL		4										
			91NN	1			1										
			z								_		5G 4/1				
						*							and a second of				
						114.4		-					5Y 4/1				
									E EFT	1	-1-						
				11				1 2	1				5GY 6/1				
										11							
							5				=		5G 5/2				
								1	t	11	-						
								1	1		-						
				1		115.9	-	-									
				1		1 =					****		5GY 4/1				
	L	1			1								+ 5¥ 4/1				
								1.5			-		5G 4/2				
			1	1	1	1	6				-		58G 4/1				
													5Y 5/1 + 5GY 6/1 mixed				
									1		1		+ 5GY 6/1				
				1		4		1.1	루	1	1		5GY 6/1				
						117	7			1	-	0	58 5/1				
				1			-	-	Void		1						
		AG	AG	1	AN	1	cc	-		1			5GY 6/1				_

TE		<u> </u>	HOI	oss		-		RE	15 CORED	ΓT	1		L 118.0-127.6 n	
8	THI		CHA	RA	CTE	R			1				l.	
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-bottom depth	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	SEDIMENTARY	SAMPLES		LITHOLOGIC DESCRIPTION
•	8102	PL3-5 undifferentiated FOR	NN18 Disconster surculus Zone MAN	AAN CONTRACTOR CONTRACT	Mitzechia marina Zone Diat	125.5 121.0 122.5 121.0 118.6 244-3	3 4 5	0.5				8 846	Pebbly wath-down 5Y 5/1 5Y 6/1 5Y 5/1 5Y 5/1 5Y 5/1 5Y 5/1 (dominant) + 5G 5/2 and 5Y 6/1 5Y 5/1 5Y 5/1 5Y 5/1 5Y 5/1 5Y 5/1 5Y 5/1 5Y 5/1	SILICEOUS NANNOFOSSIL OOZE, light gray or greenish gray (SY 6/1 or 5GY 7/1), to MARLY SILICEOUS NANNOFOSSIL OOZE, gray (SY 5/1), alternating with thinner layers of MUOZ, gray (SY 5/1), alternating with thinner layers of MUOZ and gray (SY 4/1). Green (SG 5/2) or gray (SY 6/1) LAMINATIONS in whole core, respecially common in siliceous nannofossil ooz. General MOTTLING.
		10	40	VPM	d co	127.0	7						and 5Y 8/1 5Y 4/1	

	611 ¥		F	E OSSI	L			RE	16 CORED				127.6-13	
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	ANNOFOSSILS	HADIOLARIANS	TER SWO	Sub-bottom depth	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	MENTARY	SAMPLES		LITHOLOGIC DESCRIPTION
E):	8018	FOR	NAN	RAD	DIATOMS	Sub-la				DRU	STRU	SAM		
						129.1 127.6	1	0.5					5Y 2/2 5Y 4/1 5Y 5/1 to 6/1 5Y 3/2 5Y 4/1	Alternating: MUD, dark olive gray (5Y 3/2) to CALCAREOUS MUD, dark gay (5Y 47). Amount of carbonate probably increasing towards core base; and MARLY SILICEOUS NANNOFOSSIL 002E, gray (5Y 47) to 57), to SILICEOUS NANNOFOSSIL 002E, light gray (5Y 5/1 to 6/1). General MOTTLING; especially on siliceous nannofossil core: green (5G 5/2) mottles and laminations. Two brown (10Y 4/2) laminations at 136.75 and 136.76 m. SMEAR SLIDE SUMMARY (%) 1, 70
		stiated	tus Zone			130.6	3	d'reed reed and			1111			D Composition: Ouartz 20 Carbonate unstel: 3 Foraminites 4 Calc, nanofosiis 3 Diatom 3 Radiolarians 2 Sponge provide: 20 ORGANIC CARBON AND CARBONATE (%)
		PL3-5 undifferentiated	NN16 Discoaster surculus Zone		Nitzschia Joureae Zone	132.1	4	Terre Trees are			1 4 1 1 1 1 1		5Y 6/1	1, 7–8 Organic carbon – Carbonate 3
						133.6	2000	10000		TAN AND AN AND AN			5Y 4/1	
							5				1 2 2 2 2		5Y 4/1 5Y 8/1	
						1 22.1					- Fellinser		5G 5/2	
						20.0	8						5Y 4/1 5Y 6/1 5G 5/2	
		4.5			1 Ch		7	-	- 눈고 ?		III-1		5G 5/2 10Y 4/2 5G 4/2 5Y 4/1	

Openation International Int	2	THIC			RAC		1							
AG AG VRW FM AG AG AG VRW FM AG AG AG AG VRW FM AG AG AG VRW FM AG AG AG VRW FM AG AG AG AG AG VRW FM AG A	UNIT UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		SECTION	METERS	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLO	GIC DE	SCRIPTION
Organic carbon -			PL3-5	NN16	VPM		39,27 138.7	2	-			5GY 5/1 OOZE, gray (SY 5 Common greenish and diffue horize 138,89 to 138.70 5G 3/2 SMEAR SLIDE SI 5Y 5/1 Composition: Outrz 5Y 5/1 Mica Heavy minetals Glauconite Pyrite Carbonate unspice Foraminifers Cale, namofosilis Diatoms Radiotarian Spong spicules Silicottagefiltes	(1) to gray (6(c) errar (LA) (1, 90) (1, 90) (1, 90) (1, 90) (1, 91) (1, 93) (1, 93) (1, 93) (1, 93) (1, 93) (1, 93)	eenish gray (5GY 5/1). iY (6/1) and olive MOTTLES MINATIONS. grayish green (5G 3/2) thin Y (%) 1, 149 M - - 1 TR 94 1 - 4 - - - - - - - - - - - - -

TE		1		E	-	-		DRE 18	CORED	TT	T	L 146.8-15	6.4 m			
8	HI		CHA	RAC	TEF	2										
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-bottom depth	SECTION	METERS	GRAPHIC ITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	SAMPLES		LITHOLO	IGIC DE	SCRIPTION	
	810317	PL3-5 undifferentiated Foram	NN16 Discoaster sursulus Zone NAMO	RADIO	Nitrzchia Jousaas Zone S	3 152.8 151.3 149.8 148.3 145.8	3		╠╟╴┠╌┠╌┠╌┠╌┠╌┠╌┠╌┠╌┠╌┠╌┠╌┠╌┠╌┠╌┠╌┠╌┝╌┝╎┝╎┝╎┝╎	901.01 1911년 - 21 22.12.22 14.12.12.12.12.12.12.12.12.12.12.12.12.12.	*	5Y 5/1 5Y 6/1 5Y 6/1 5Y 7/1 5G 5/2 5Y 5/1 5G 5/2 5Y 6/1 5Y 7/1 5Y 7/1 5Y 7/1 5Y 7/1 5Y 7/1 5Y 7/1 5Y 7/1	(5Y 7/1 to 6/1), wi gray (5Y 5/1 to 4/1	th some 1). G, green 5 5/2) L/ MMARY 2, 70 D 20 5 20 5 40 2 8	or brown, occasionally AMINATIONS. (%) 3,80 D 10 2 3 5 70 2 8 CARBONATE (%)	
						1542	6			1 + 12 + 1		5Y 5/1 5Y 7/1				
		AG	AG	FM	FM	155.	7 CC			11. 出 ~-		5Y 6/1 5Y 5/1				

¥	VPHIC	Į.	F	OSS		2									
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-hottom depth	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURGANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLO	GIC DE	SCRIPTION
						156.4	1	0.5				5Y 5/1	greenish gray (5Y (FORAMINIFERA) greenish gray (5Y)	5/1) to N L NANN 5/13.	RAL NANNOFOSSIL OOZE, MARLY SILICEOUS OFOSSIL OOZE, darker
		ntiated	aurculus Zone		see Zone	157.9		1.0				5Y 6/1	LAMINATIONS A Dark green (6G 3/3	ND MO	id light gray (SY 7/1) ITLES ICONITE PATCHES at: 61.14 m (burrow fills).
		PL3-5 undifferentiated	NM16 Discossier		Nitzschia joussae Zone	B.4	2	The second s			*		SMEAR SLIDE SU Composition: Quartz Heavy minerals Clay Volcanic glass	MMAR 2,70 D 15 2 3 TR	4, 24 M 10
						159.	з	The set of the set				5Y 6/1	Glauconite Garbonate umpec. Foraminifers Galic: nannofossila. Diatoms Radiolarians Sponge spicules Situcoffagellates	- 15 55 5 TR 5 TR	83 - 5 - -
						161.3 160.9	4						5454000 (175 (475 199)		CARBONATE (%) 80

	PHIC			OSS		R	Γ			Γ					
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	-	Γ	Seb-bettoni depth	SECTION	METERS	GRAPHIC LITHOLOGY		SEDIMENTARY STRUCTURES	SAMPLES		LITHOLO	DGIC DESCRIPTION
SITE	611	D PL3-5 undifferentiated	D NN16 Discoarter surculus Zone	FM	D Nitzschie joussee Zons	168.65 167.5 166.0	1 2 CC	0.5 1.0		000		*	5Y 5/1 5Y 8/1 5Y 8/1 175.6–185.2 m	OOZE, very light s mottling, green lan SMEAR SLIDE SU Composition Ouarzz Foraminiters Calc. nanofosils Diatoms Sponge spicules	
			F	OSS	L	e:			GONED						
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-bettern depth	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SEDIMENTARY STRUCTURES	SAMPLES		LITHOLO	GIC DESCRIPTION
		PL3-5 undifferentiated	D NN18 Discoutter surculus	VRV	в	176.8 175.6	1	0.5					5GY 8/1	7/1). Comman green (5) N3 to N5) MOTTL Common diffuse g	zeen LAMINATIONS. 2) BURROW FILLS of glauconite,

SITE 611 HOLE C CORE 20 CORED INTERVAL 166.0-175.6 m

TE	611 2		HOI	OSS				DRE 22 CORI	DINTERV	1				_	
£	APH		CHA			ε.									
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-bottom depth	SECTION		DRILLING DISTURDANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOG	GIC DE	SCRIPTI	ON
						185.2		172.2			5Y 6/1				
							1	0.5			5¥ 8/1 N3	NANNOFOSSIL O to 7/1). Some MAP			to light gray (5Y 8/1 ay (5Y 6/1 to 5/1).
							1			•		Common green mo	stiing, o	ccasional	lly pyritic.
									占占		5G 7/2	Very common gree layers (5G 7/1 to 5		(2) lamin	ations, or thin
						186.7	-				5Y 8/1	SMEAR SLIDE SU	MMAR	Y (%)	
								-+	3		5G 6/2		1,80	4,80	
							l î	1		1	5Y 6/1	Composition:	D	D	
							2	手注于正	1	Ц		Quartz Micu	20	30	
							1	1 Internet	는 번	1	5Y 8/1	Carbonate unspec.	-	3	
								1-1-1-				Foraminifers Calc. nannofossils	4 78	6 52	
			Reticulafenestra pseudoumbilica Zone			- IN			-	11		Radiolarians	1000	2	
			lica 2			188.2			5 1/1		5Y 7/1	Sponge spicules	Ξ.	3	
			indim					1-1-1-1	그 片		5G 7/1	ORGANIC CARBO			
			napr		Zon				- <u>1</u>	Ц	5Y 7/1 5G 6/2	Organic carbon	1,80-	-B1	4,80-81
		ted	peed	8	Nitzschia jouseee Zone		3	1 3-1	- 17		5Y 7/1	Carbonate	83		53
		entia	estra		1 jour				-1 -1	Н	5G 7/2				
		undifferentiated	afen		schij				- 1		5Y 7/1				
		pun	ticul		Nitz	-		1 11-1-1	금 남		5G 7/2				
		io.				189			너 네						
		PL3-	NN15						드 년 -		5Y 7/1				
			2						Ē						
							4	1-1-1-		*	5Y 5/1				
								1-1-1-	- 11	1	D1 D/ 1				
									-1 11						
						1.2		+ + +	- 1						
						191	Г		- II	Н					
								1 1 1 1 1	- 1						
									- ;		5Y 7/1				
							5	1 1 1 1							
								++	- 1						
								++	- 11						
						-			- =		5G 4/2 5Y 6/1				
						192			- 1	Н	56 4/2				
									-1 ++		5¥ 7/1				
									그 님						
							0	キューナー	-		5Y 8/1				
								1-1-1-1	-						
								1-1-1	-						
						4 2			-1						
						94.5 194	-		-		5Y 8/1				
						1 24 2	7				5¥ 7/1				
	1	lie	1.0	L/Db	FN	1 -	cc			1.1	5Y 7/1				

	VPHIC			OSSI								
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFDSSILS	RADIOLARIANS	DIATOMS	Sub-bottom depth	SECTION	GRAPHIC LITHOLOG		STRUCTURES	LITHO	LOGIC DESCRIPTION
		undifferentiated	Reticulatenestra pseudoumbilica Zone			196.3 194.8	1				NB (NB to 5GY 8/1 to 5GY 8/1 5GY 8/1 5Y 2/1), Green and gray 5G 6/2 Rare green (5G	6/2) LAMINATIONS. SUMMARY (%) 1, 70 D
		PL3-5	91NN			27	2		님		5Y 8/1 Quartz Carbonate unsp Foraminifers Celc. narmofoss	4
		AG	AG	VRM	FM	2	cc			1_	5Y 6/1	teon and carbonate (%) 1, 70–71

	2		E	oss					24 CORED	TT	T			
Ś	APH	h	CHA	RAG		-								
UNIT UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-bottom depth	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION	
		~	NN15 Revictor/instance paired/or/instance zone		AVItatichia jouraan Zone AVItatichia jouraan Zone	211.9 210.4 208.9 207.4 205.9 204.4	3 3 4 4 5 5 6	0.5					NANNOFOSSIL OOZE, very light gray to very light: greening gay (5V &11 to SQY &11), and MARLY intervals, gay (5V &11 to SQY &11), and MARLY PYRITIC MOTTLING. 12 Common green LAMINATIONS or this intervals (2-4 cm); rare gray or brown laminations. 8/1 to 204.80 m: large (4.5 cm) pebble. 5/2 ORGANIC CARBONAND CARBONATE (%) 5, 70–71 Organic carbon — 5, 70–71 Carbonate — 79 8/1 Note: Core 25, 214.0–223.6 m: no recovery. 5/2 8/1 5/2 5/2 8/1 5/2 8/1 5/2 8/1	
				VRM		212.4	cc	-	+++++++++++++++++++++++++++++++++++++++		_		2/1 2/1 2/1	

FOSSIL BIOSTRATIGRAPH ZONE FORAMINIFERS FORAMINERS FORAMINES TIME - ROCK UNIT METERS Sub-bottom depth SECTION GRAPHIC LITHOLOGY DRITLING DISTURBANCE SEDIMENTARY STRIACTURES SAMPLES LITHOLOGIC DESCRIPTION 223.6 N8.7 NANNOFOSSIL OOZE, very light gray (N8), with gray (5Y 7/1 and 5GY 7/1) patches. and 5GY 7/1 0.5 1 Common green (5G 6/2) patches, becoming laminations around 226.5 m. 1 1 1.0 1 Ħ 1 1 Pyritic mottling and patches, 226. SMEAR SLIDE SUMMARY (%) paritae 1 1 1 1, 111 1 -D 1 N8 with 5GY 7/1 and 5Y 7/1 -Composition: alia Heavy minerals TR 11 1 2 Clay 5 25 TR ÷ -1 Retict Carbonate unspec. -5 Foraminiters 6 Calc. nannotossils 90 Diatoms TR 64 3 -PL2 NN15 1 1 Diatoms i. 1 Sponge spicules TR 1 228. 1 DRGANIC CARBON AND CARBONATE (%) 4, 13-14 -70 1 1 Organic carbon Carbonate 3 --197 228 * 5Y 7/1 5G 6/2 N8 N8 5Y 7/1 ۱ ۵ N8 N8 5Y 7/1

CORE 26 CORED INTERVAL 223.6-233.2 m

SITE 611 HOLE C

2 cc

G AG VRM FP

-1 1

525

ITE 61			FOS	SIL		Ŧ							1		0	Т		ossi	1		1	
TIME - ROCK UNIT BIOSTRATIGRAPHIC ZONE	ZONE	FORAMINIFERS	ARA	SWOLVIO		depth	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION		TIME - ROCK UNIT	BIOSTRATIGRAPHIC	FORAMINIFERS	CH/	SNEIL	TER	Set-battom depth SECTION		METERS
		PL2 Globoratión inveguriae NA14 Discontinua nonomatricos Transmittos Transmittos Panas NA14 Discontinua reconstruction Panas		0 > Mirrohin inneae Zone	20.000 (20.00))))))))))))))))))))))	242.2 2407 239.2 231.7 236.2 24.7 231.2	22 33 44 55 7 7 7	0.5		8 ⁸ A		NANNOFOSSIL OOZE, becoming more and more chalky light gray (N8 ar EY 7/11, with common gray and greenish (SY 7/1; SG 7/2 to 5/21 parches. From 240 2 m diswn: NANNOFOSSIL CHALK (set by use), light gray (N8 or 5Y 7/1) with evident burrowing gray SY 7/1). SMEAR SLIDE SUMMARY (%) 				PL2 Globoratilia mergaritae	NN14 Disconter asymmetricus Zone-NN12 Amazonithus ricemicultus Zone	BG		251.8 260.3 243.8 247.3 245.8 242.8 5 01.1 ~ 1 w 24.5 242.8 5	2	

611 9	-	HOI	OSS	_		1	RE	28 CORED INT		L 242.8-25			
APH		CHA	RAG	TER	ŝ.								
BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Seb-bottom depth	SECTION	METERS	GRAPHIC LITHOLOGY DAVENINI	SEDIMENTARY STRUCTURES SAMPLES		LITHOLO	OGIC DE	SCRIPTION
					242.8	1	0.5			5Y 6/1	hard chalk blocks.	HALK, II	flow-in (soft ooze) between ght gray to light greenish larker (5Y 6/1) MARLY
							1.0		1	5Y77/1	intervals.		
					244.5	-		主言ン	×	5G 6/2	(2.5Y 7/2 to 6/2) p	atches.	i/2) or light brownish gray
		Zone				2	- The second		1	5G 7/2	Rare laminations in (and wispy) below SMEAR SLIDE SU	252.0 m	
		miculates 2				2	- Tri		1	5GY 7/1 2.5Y 6/2	Composition:	4, 115 D	5, 115 D
		us trican			245.8		-		25	2.5Y 6/2	Heavy minerals Clay Micronodules	TR 35 -	- 8 TR
	hargaritae	Amaurolithus tricomiculatus Zone				3	- Draw			5GY 7/1 to 5Y 7/1	Carbonate unspec. Foraminifers Calc. nunriofossils Diatoms	TR 3 60 2	4 86 2
	Globorotalia margaritae	STNN-30				3	and re-		+	2.5Y 7/2	Sponge spicules Silicoflagellates ORGANIC CARBO	TR TR	CARBONATE (%)
	PL2 Glo	cricus Zone-			247.3	-			3		Organic carbon Carbonate	4,303 66	
	٩	Discoaster asymmetricus				4	- and an		:	5Y 6/1			
		NN14 Diso			3.8		1		; ;	5G 6/2			
		-			248.		Theorem 1		1	5G 6/2			
						5	- United		÷ 	5Y 7/1 5G 7/2 2.5Y 7/2			
					250.3		-		1	5G 7/2			
						6	to be a		-	5Y 8/1 2.5Y 7/2 5G 6/2			
						0	111		1.00	2.5Y 7/2			
					251.8	7			-	5Y 6/1			
_	AG	AG	RG	RP		cc	-			2.07 0/2			

SITE 611 HOLE C CORE 29 CORED INTERV	AL 252.4-262.0 m	SITE 611 HOLE C CORE 30 CORED INTERVAL	L 262.0–271.6 m
POSSIL CHARACTER SIGC UNU SIGC SIGC SIGC SIGC SIGC SIGC SIGC SIGC	LITHOLOGIC DESCRIPTION	TIME - ROCK INIT PLOSTRATIORAPHIC POARTACINA SOUR ANNOF TO AN ANNOF TO AN ANNO ANNOF TO AN ANNO ANNO ANNOF TO AN ANNO ANNOF TO AN ANNO ANNO ANNO ANNO ANNO ANNO ANNO	LITHOLOGIC DESCRIPTION
PUI Gotoonoplu magnitudi Amula Piloneti angentitati PUI Gotoonoplu magnitati (Gotoonoplu magnitati (Gotoo	Very fragmented by drilling; flow-in between blocks. NB NANNOFOSSIL CHALK, very light gav or greenish grav (NV to SGY 7/1) to SGY 7/1); darker MARLY intervals (BY 6/1 or SGY 0/1); transitions between both types very gradiatonal. Frequent grav (SY 7/1) or green (BG 7/2 to SG 5/2) patches. SGY 7/1 Bare green (SG 6/1 to 5/2) laminations. SY 6/1 Deformed Zoophycot burrow at 257 85 m. SMEAR SLIDE SUMMARY (%) 6, 83 5, 119 D M Composition: SG 6/2 Heavy mine ath - TR Carbonate 7 Biologillette TR SG 5/2 Cake, neurologillette Datomat 3 SG 5/2 Cake, neurologillette Datomat 4, 85–86 Organic carbon - Sopore spicule TR SGY 6/1 Abb-86 N8 SGY 7/1 N8 SGY 7/1	PLI Globroratia angenties 2005 2000-mail an	66.6/2 Very fragmented by drilling: flow in between blocks. Hard blocks get larger towards base. N8 NANNOFOSSIL CHALK, very light prov (NB) to premish gray (GS 7/1); darker (5Y 6/1) MARLY intervals. 56.7/2 Frequent light boxinish gray (2.5Y 7/2 to 6/2) burnore patchins, and green (5G 7/2 to 6/2) darinations. 5G 7/2 SMEAR SLIDE SUMMARY (%) 3, 18 5G 7/2 SMEAR SLIDE SUMMARY (%) 7, 18 5G 7/1 SMEAR SLIDE SUMMARY (%) 8, 18 5G 7/2 O D Composition: Feldpar TR Feldpar TR 65 6/2 O L 50 7/1 Micronobilis 71 Raficianis 73 1 74 Feldpar 76 - 71 Raficianis 73 - 74 - 75 0.1 76 - 76 - 71 Raficianis 72 0.1 73 - 74 - 74 - 75 0.1 76 - 77 17 76 - 74 - 75 - 76 - 71 -

527

HIC		FOSS	IL			RE		Π	271.6-281.2		SITE	APHIC		FC	E C		Τ	ORE
UNIT BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	-	Π	Sub-hottam depth	SECTION	METERS	GRAPHIC LITHOLOGY WITTING GRAPHIC DUTTING SUBJECT	SAMPLES		LITHOLOGIC DESCRIPTION	TIME - ROCK UNIT	BIOSTRATIGRAPI ZONE			ADIOLARIANS 2	Т	depth	METERS
	PL1 Gioborotalia respectible Gioborotalia respectible della respec	Amuuroitthus tricomulatus Zone		200.920.06 279.0 277.6 273.1 271.6 5	2	0.5		•	5GY 7/1 NB 5GY 7/1 NS 5GY 7/1 5G 5/2 5GY 7/1 2.5Y 6/2 5G 7/2 5G 7/2 5GY 7/1 5G 7/2 5GY 7/1 1W 5GY 7/1 5G 6/2 5G 6/2	Very fragmented by drilling; flow-in between blocks. NANNOFOSSIL CHALK, very light gray to greenidh gray (N to SGY 7/1). Common light brownish gray (2.5Y 7/2) burrow mottling. 279.3 to 2810 brownish gray (2.5Y 7/2) burrow mottling. 279.3 to 2810 brownish gray (2.5Y 7/2) burrow mottling. 0 boren-up lamination. SMEAR SLIDE SUMMARY (%) 2, 0 Composition: 0 burrow TR Heavy minerals TR Clay 25 Carbonute urspec: TR Foroure urspec: TR Soonge spicules TR Silicoflagellates TR Silicoflagellates TR ORGANIC CARBONAND CARBONATE (%) 2,80–81 Organic carbon = Carbonate 50		8	Piul Globorovalia mperenteraficialoporatalia murpaciaes	NN11 Disconter quinqueranus Zoni	<i>x</i>	8.	287.2 285.7 284.2 282.7 281.2	4 5 7

No No<	APHIC	0		DSSI	L TER									
And Construction No.5 Image: under 284.0 m; flow in batween blocks. SGY 7/1 SGY 7/1 SGY 7/1 SGY 7/1	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLANIANS	DIATOMS	Sub-bottom depth	SECTION	METERS	GRAPHIC	DRILLING	STRUCTURES	SAMPLES		LITHOLOGIC DESCRIPTION
		1	1		8	e hear 3 285.7 284.2 382.7	3 4 5			F # Z + Y + Z + Z + Z + F + F + Z + Z + Z + Z + Z			2.5 Y/2 5GY 7/1 N5 5GY 7/1 dominant with 5G 7/2 5G 7/1 5G 5/2 5G 7/1 5G 7/1 5G 7/2 5G 7/2	Larger under 284.0 m; flow in between blocks. NANNOFCOSSIL CHALK, wry light gray to greenish gray (N8 of SQF 7/1), or SLIGHTLY MARLY and disker (SY 5/1), motited by frequent frommlin gray (25 Y 7/2) attrinis and more or less disrupted greenish (SGY 7/2) taminations. On marky intervals: green (SG 5/2 to 4/2) wispy taminations. Zoophycos burrows. SMEAR SLIDE SUMMARY (%) 1,72 4,70 D D Composition: Feldgar – TR Heavy minariak – TR Cay 8 25 Micronodules – TR Carbonate unspec, TR – Foraminifers 5 2 Carbonate unspec, TR – Foraminifers 5 2 Calc. namofesil 87 72 Diatoms TR 1 Songe spicules TR TR ORGANIC CARBON AND CARBONATE (%) 1,70–71 Organic carbon

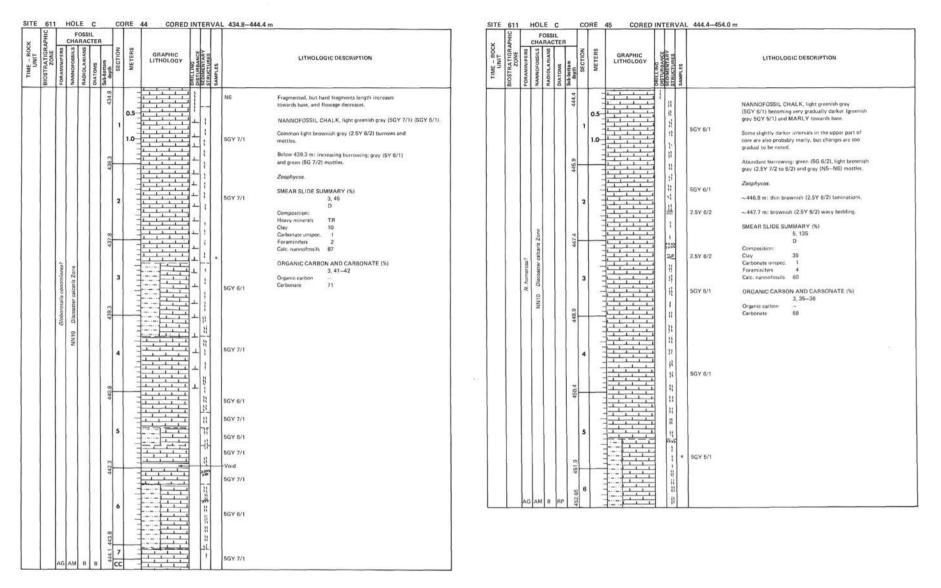
	2			oss	11.		—							
×	Han		CHA	RA	TE	R								
	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-bottom death	SECTION	METERS	GRAPHIC LITHOLOGY	DESTURBANCE	SEDIMENTARY	SAMPLES	LITHO	LOGIC DESCRIPTION
		P.L.1 Globootatika nepenthes/Globoratatika neugenthes	NN11 Discoster quinquearus Zate			0001 2063 2058 200.8 200.8 200.8	4 5	0.5			<u> </u>		NANNOFOSSIL 5/8/1 to 6/1), 5/8/1 to 6/1, 5/8/1 to 6/1), 5/8/1 to 6/1, 5/8/1 t	SUMMARY (%) 6,35 M 1 TR 4 5

4	APHIC			RAG		3								
TIME - ROCK	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-bottem depth	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE	SEDIMENTARY STRUCTURES	SAMPLES	LITHOLO	DGIC DESCRIPTION
		PL1 Globorotalie nepenther/Globorotalia margaritae	NN11 Discosster quinqueramus Zone			313.0 310.0	1 2 3	0.5		X X X X X X X 0000	··· · · · · · [] ···] ·· ··] ·· · · ·		greeninit gavy (60' drilling: flow-in, 60 throoghout, Green SMEAR SLIDE SL SGY 8/1 Composition: Ouartz Carbonate unspec. Fozaminifers Caic, namofosith Sponge spicules	
			AG	AG	CP		cc			1	1		5Y 6/1	

TE	611 U	-		E		-	CC	RE	36 CORED	INT	EH	VA	L 319.6-329.2 m
	PHI			OSS	TER								
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS		Sub-battom depth	SECTION	METERS		DRILLING DISTURBANCE	STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
		Gioborotalia nepenthes (Globorotalia margaritae	Discouster quinquerantus Zone			322,6 321,2 319,6	1	0.5		/ / / / / / /	······································		Very fragmented by dritting, with flow in between blocks. NANNOFOSSIL CHALK, light grav (NB to 5Y 7/1), or light secenals grav (BCY 8/1 to 6/1) with frequent grav (SY 7/1) burrow motifs and green (SG 6/2) aregular wispy laminations. 2323 to 324.2 m most motifs appear flattened and uited (~15 ⁻⁵). 223.7 m: first fault with SLICKENSIDES. From 325.6 nit: motifies and green laminations are tilted (45-55 ⁻⁵) and cross-cu by <i>yeophycos</i> burrows. Green laminae frequent 326.7 to 322.2 m (with thin dark microfinanes), rare under 327.2 m SMEAR SLIDE SUMMARY (%) SGY 8/1 6,47 Composition: Durit 12 Haav minerals 3 Foriaminers
		PL1 Gioboro	NN11 Disc			324.2	3	trailant trail		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	+ /5/		Catc. nannofossils 80 ORGANIC CARBON AND CARBONATE (%) 6,46–47 Organic carbon – 5Y 7/1 Carbonate 75
						8	4	for the first		/ \/ \/			Factor NB
						.2 326.4	5	THE PERSON PERSON		>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	ロー・コード がた ロ		56Y 8/1 56Y 8/1
						327.	6	a frittini.		+	·	•	5Y 7/1 N8 5G 5/2 5G 7/1
		AG	AG	VRA	5.FP	328.9 328.6	7	11.11		+ + + ××	~ /		56 5/2 N8 5¥ 7/1 N8

B C Fragmented by drilling; flow-in between blocks. 0 1 0 0 1 </th <th></th> <th>VPHIC</th> <th></th> <th>F</th> <th>RAC</th> <th></th> <th>1</th> <th></th> <th></th> <th></th> <th></th>		VPHIC		F	RAC		1				
Programmered by dnilling; flow-in between blocks. NANNOPOSSIL CHALK, very light greenish gray (56 7/1 or 5GY 8/1). Common green and brown mottles and irregularly shap burrows.	TIME - ROCK UNIT	BIOSTRATIGRI ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-bottom depth	SECTION	METERS	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION
and AG B RF B <t< td=""><td></td><td></td><td>Globorotalia nepenthes/Globorotalia</td><td>9</td><td></td><td></td><td>330.7 332.2 330.7</td><td>2</td><td>1</td><td>N N N N N N N N N N N N N N 00</td><td>SGY 8/1 NANNOFOSSIL CHALK, very light greenish gray (SG 7/1 or SGY 8/1). Common green and brown motiles and irregularly shap burrows. Bate inclined (70 to 80°) laminations. SGY 8/1 323.211 m: fault with slickenside; different scdiment colors either side; general bedding inclined (~80°) either side. 324.12 m: horizontal lamination. ORGANIC CARBON AND CARBONATE (%) 5G 7/1 Organic carbon 4.25-27 5G 8/1 Carbonate</td></t<>			Globorotalia nepenthes/Globorotalia	9			330.7 332.2 330.7	2	1	N N N N N N N N N N N N N N 00	SGY 8/1 NANNOFOSSIL CHALK, very light greenish gray (SG 7/1 or SGY 8/1). Common green and brown motiles and irregularly shap burrows. Bate inclined (70 to 80°) laminations. SGY 8/1 323.211 m: fault with slickenside; different scdiment colors either side; general bedding inclined (~80°) either side. 324.12 m: horizontal lamination. ORGANIC CARBON AND CARBONATE (%) 5G 7/1 Organic carbon 4.25-27 5G 8/1 Carbonate

	611 9	Г	HOI	OSS		-		DRE	T	T		338.8-348.4 m	
e.	H	L		RAC		R		1					
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-bottom denth	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPT	10N
						338.8	1	0.5				5G 5/2 Very fregmented by drilling: flow- NANNOFOSSIL CHALK, very ligh 5G 5/2 greenish yavy (5GY 8/1 to 0/1). Gray (5Y 7/1) burrow mottles; con	t greenish gray to
						340.3						5GY 8/1 346.7 and 347.4 m. Green (5G 5/2) wispy laminations; 346.4 and 346.9 m. 347.8 to 348.1 diffuse green (5G 5/2 or 5GY 7/2) laminations.	m: common
							2			1 1 1 1 1 1 1		Zoophycos burrows. SMEAR SLIDE SUMMARY (%) 2, 97	
		iozea				341.8	-					5GY 8/1 D Composition: Quartz 5 Foraminifers 5 Calc, narmofossils 90 Sponge spicules TR	
		Globorotafia conomiozea	Discoaster guinqueramus Zone				3	to the test				ORGANIC CARBON AND CARBO 2, 97–98 Organic carbon – Carbonate 67	MATE (%)
			NN11 Discoaste			343.3	4			· + + + + + + + + + + + + + + + + + + +		5GY 8/1	
						344.8	_			+++		5G 5/2	
							5					NB 5G 5/2	
						2.46.2				1 1 1		5G 5/2 5GY 8/1	
							6			にはない		5Y 6/1	
		AG	AG	8	в	348.1 247.8	7	-				5GY 8/1	

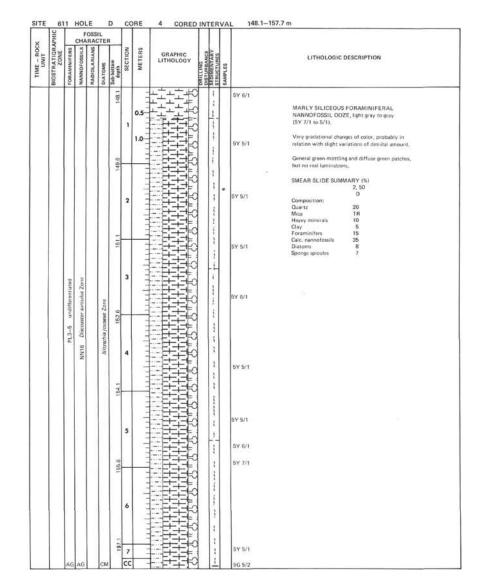

	PHIC		F	OSS	TER	4								
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	Г	Sub-battom depth	SECTION	SE GRAPHIC LITHOLOG	DRILLING	SEDIMENTARY	SAMPLES		LITHOLO	IGIC DESCRIPTION
		Gioburotalia conomiozea	NN11 Discoaster puinqueramus Zone			9 354,4 352,9 351,4 349,9 348,4	1 2 3 4 5		ער אין			5GY 8/1 00 5GY 8/1 00 5GY 8/1 20 5GY 8/1 H4 5GY 8/1 10 5GY 8/1 00 5GY 8/1 00 5GY 8/1 00	18.4 to 348.72 m; ANNOFOSSIL Ci Ci eenish gray (SGY sommon gray (SY 60.0 to 350.20 m embarrows, sopphycos, MEAR SLIDE SU opphycos, MEAR SLIDE SU sopphycos, MEAR SLIDE SU SU SU SU SU SU SU SU SU SU SU SU SU S	HALK, very light greenish gray to 8/1 to 6/1). 7/1] and green (5G 5/2) mottles, 1: dark green (5G 4/2) halos to light
						355	6			1 1 1 1		5GY 6/1		
						367 7 357 4						5GY 7/1		

×	APHIC		F	OSSI RAC						Π		
TIME - ROCK UNIT	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-bottom depth	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SELIMENTARY STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION
		Globorotatia conomiozea	1 Discosster guinqueramus Zone			359.5 358.0	1	1.0		////	-	358.0 to 359.25 m: wash-down; including a 7 cm gneiss fragment. 359.25 to base: wery fragmented, and extensive flowage. NANNOFOSSIL CHALK, very light greenish gray to greenish gray (SGY 8/1 to 6/1). SGY 6/1 Minor gray (SY 7/1) mottling.
		66	AG	1014	99	362.25	cci	1111		K	Z	5GY 7/1 5GY 8/1

SITE		_	HOL		_	_	CO	ORE 41 CORE	DINTER	VA	L 367.6-37	7.2 m
	DIH		F	OSS	TER							
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	HADIOLARIANS		Sab-bottom depth	SECTION	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY	SAMPLES		LITHOLOGIC DESCRIPTION
						369.1 367.6	2				5GY 8/1	Very tragmented, with important flowage between blocks; ~40% receivery. NANNOFOSSIL CHALK, very light greenish gray (50° 8/1 to 2/1). Common green (56° 7/2), light brownish gray (10° 87/1) or light gray (N7 – pvritic), mottling. Rare vague horizontal green diffuse laminations. SMEAR SLIDE SUMMARY (%) 5, 77 D Composition: Quartz 5 Clay 5 Volcanic glass TB
		Globorotalia conomiozea	Discoaster quinqueramus Zone			372.1 370.6	3				5GY 8/1	Carbonate unspec. TR Foraminisfer: 2 Carc. nonoffositi 88 Diatom: Radiolarians Sponge spicules Shicoflagellates: ORGANIC CARBON AND CARBONATE (%) 5, 76–77 Organic carbon - Galbonate 69
		Globa	O LUNN			373.6	4				5GY 8/1	
						375.1	5					
		RG	AG	VR	28	TH O TH R	6				5GY 8/1 5GY 7/1	

	PHIC		F	OSS	IL	R								
UNIT UNIT	BIOSTRATIGRAPHIC	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	Γ	Γ	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLO	GIC DESCRIPTION
						377.2		0.5		/ × / × / × /		5GY 8/1	NANNOFOSSIL CI light greenish gray I	ontal-light brownish gray (10YR 7/1)
						378.7				1 8 1			Rare wispy green (f	5G 5/21 laminations. In slickensides; upper sediment
						2	2			×///		5GY 8/1	395.91 m; horizont burrow. SMEAR SLIDE SU	3, 80
		Globorotalla conomiozea	Discoaster quinqueramus Zone			380.	3	a see la see		× × × × × ×		5GY 8/1	Composition: Quartz Mica Heavy minerals Foraminifars Calc. nannofossits Diatoms Sponge spicules	D 5 7R 6 5 88 7R 7R
		Globorot	NN11 Discoaste			381.7	4	and the set of the				5GY 8/1	ORGANIC CARBO Organic carbon Carbonate	N AND CARBONATE (%) 3.80–81 - 74
						182.9								
							5					5G 5/2 NB with 5GY 8/1		
						7 A45	6			·				
		FG	AG	в	B	6 200 3 200		-		トートー		6G 5/2		

	PHIC			OSS	IL					Γ	Γ	Γ	. 386.8396.4 m	
LINU	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	Г	Seb-bettom depth	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTIO	N
		Giobovatakie conomionee	NN11 Disconster quinqueremna Zone			394.3 392.8 391.3 389.8 388.3 386.8	1 2 3 4 5 6	0.5			a source of the second se		Fragmented by drilling; flowage betwee N7 NANNOFOSSIL CHALK, very light at grav (N8 to N7; SGY 7/1 to 6/1). SGY 7/1 Common grav (10YR 7/1) burrow mo (ISC 7/2) motiles. SMEAR SLIDE SUMMARY (%) 6, 47 Gomposition: Heavy minoritik Heavy minoritik 9 SGY 6/1 Carbonate unspec. 1 Carbonate unspec. 6, 46–47 0 Organic carbon 6, 46–47 Organic carbonate 69 SG 6/1 SG 8/1 SGY 6/1 SGY 6/1 SGY 7/1 SGY 6/1	ay or greenish
		AG	AG	в	в	96.36	CC	Internet					5GY 7/1	

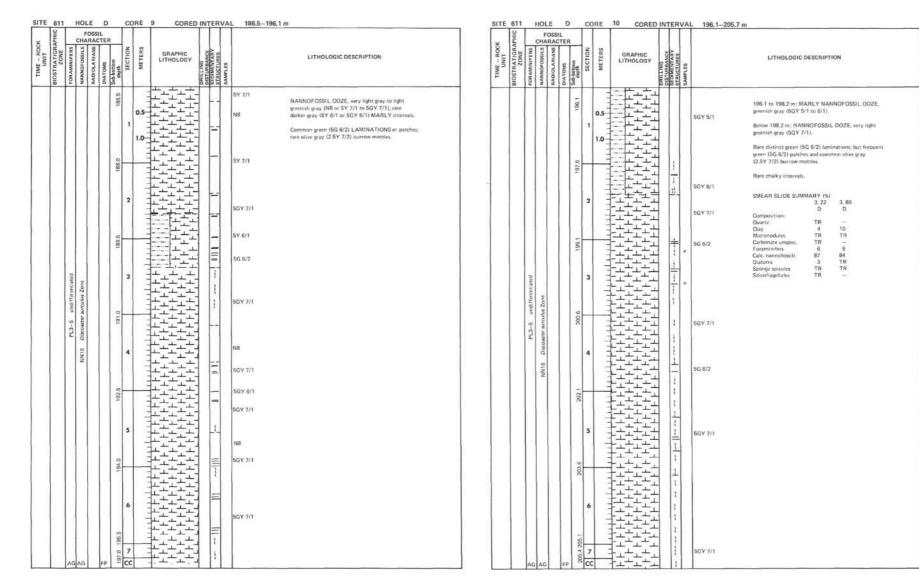

Open Processite International Text Open Processite International Text Open Processite International Text Open Processite International Text Description LITHOLOGIC DESCRIPTION International Text Internatex International Text Interna		2		F	oss	1L		Γ					1		
NANNOFOSSIL CHALK to MARLY NANNOFOSSIL CHALK, ibp greening gay (507 271) to greening gay (507 67). NANNOFOSSIL CHALK to MARLY NANNOFOSSIL CHALK, ibp greening gay (507 271) to greening gay (507 67). SOY 8/1 SOY 8/1 SOY 8/1 Some faults with dickenside. Some faults with dickenside.	e l	APH	_	CHA	RAI	CTE	R								
000000000000000000000000000000000000	UNIT	BIOSTRATIGR	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	-	SECTION	METERS	RAPHIC	DRILLING	SEDIMENTARY STRUCTURES	SAMPLES	LITHOL	DGIC DESCRIPTION
56Y 6/1		18	humerosa	Discouster hamatus Zone		5	0 408.4 496.0 495.4 492.4 492.4	2 3 4 5	1.0			おおちちちまたいしましたいたちなななない ちょうちょうないないない いろう ちょうちょう ないない ちょうちょう うろう ちょうちょう たいちょう ちょうちょう ちょうちょう しょうちょう		CHALK, light gree (GGY 8/1). Abandant burrow gray (2.5Y 7/2 to Zoophycox. Some faults with SMEAR SLIDE S Composition: Ourrz Felduge Heavy minerals Clay Carbonate unspeci Carbonate carbon Carbonate 5GY 8/1 5GY 7/1	mish gray (SGY 2/1) to greenish gray ing: green (SG 6/2), light brownsh 6/2) and gray (N6) mottles. slickensides. UMMARY (%) 5, 70 TR TR 1 53 ON AND CARBONATE (%) 5, 70–71
							100	-				Ľ			

	HIC		CHA	OSS	IL								
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-bottem depth	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	SAMPLES		LITHOLOGIC DESCRIPTION
						503.5 502.0	1	0.5				5GY 6/1	NANNOFOSSIL CHALK to MARLY NANNOFOSSIL CHALK, light greenish gray (5GY 7/1) to greenish gray (5GY 6/1). Abundant burrowing: gray (NS) and mostly light brownish gray (10YR 6/2) mottles. Rare zoophycos. SMEAR SLIDE SUMMARY (%) 5, 130 Composition:
		N. Pumerosa	Disconstar hamatus Zone			6.5 505.0	3	and the set free free		+++ 		5GY 6/1 5GY 7/1	Heavy minorals TR Clay 45 Micronodules TR Carbonate suspect. TR Carbonate suspect. TR Carbonate 55 ORGANIC CARBON AND CARBONATE (%) 2, 80–81 Organic carbon – Carbonate 62
			D 6NN			8.0 506.1	4	and trial and		1 = = = = = = = = = = = = = = = = = = =		5GY 6/1 Void	
						509.5 508.	5			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		5GY 7/1 5GY 6/1	
		CM	AM	в	в		сс			13		5GY 6/1	

	611 9		HOL	oss	_			RE	1 CORED							
×	APH	—		RA	TER	1						1				
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-bottom depth	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURFS	SAMPLES		LITHOLOGIC	DESCRIPT	ION	
TM	810571	N22 Globsorashia truncatrulinoides Fontan	NN19 Papudopiniliania lacunota Zone AANNO	RADIO	Previdenzantia delifeitas Zone	130 11.5 100 8.5 7.0 5.5 event	3	0.5				SY 4/2 SY 4/2 SY 6/1 SY 6/1 SY 6/1 SY 6/1 SY 6/1 SY 5/1 SY 5/2 SY 5/2 SY 5/2 SY 5/2 SY 5/2 SY 5/2 SY 6/1 SY 5/1 SY 6/1 SY 5/1 SY 6/1 SY 5/1 SY 6/1 SY 5/1 SY 6/1 SY 5/1	Alternating: CALCAREOUS MUD SIL/CEOUS NANNO darker gray (5Y 6/1), Abundan: granule-size intervals, 14.20 to 4 Pyritized burrow: 12.1 7,55 m: limestone dro SMEAR SLIDE SUM Composition: Cuartz Heavy minerals Clay Volcanic glass Carbonate unspec. Foraminifers Cate, namofeasih Distoms Sponge usicules	FOSSIL OC probably n ed dropstor 28 m: tuff boze genera boze genera boze genera boze genera	DZE, light gray (5Y 7/1); narly intervals. es in calcareous mud clasts, ally mottled.	
						14.5	-	and a state of the				5Y 7/1 5Y 6/1 5Y 4/1 5Y 6/1 5Y 5/1 5Y 5/1 Void				
				1		-				HE	1	5Y 6/1				
	1	20.0	1	1	FN	4	cc	1			•	5Y 6/1 Void				- 1

United by Excellent of grant of the second multiplication of the second multiplic			-	HOL	OSSI	1			DRE	- SOMED		T	T	128,9-138.5 m	
Very and a set of the set o	THAT			CHA	RAC	TEF	1								
Participanies Part	UNIT	ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-bottom depth	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENYARY	STRUCTURES CAMPLER	SAMPLES		LITHOLOGIC DESCRIPTION
6			1.3	Discoaster		Nitzechia marina Zone	9 1365 1349 1335 131.9 130.4 128	2 3 4 6	-			محمد معالاتهم معاد معارماتهم عدامة معادية المعادية معاملة معاد المعامية المعارية معاملة والمعارية والمعارية		5Y 6/1 5G 5/2 5Y 6/1 5G 3/2 5Y 5/1 5Y 4/1 5G 3/2 5Y 6/1	gray to gray (SY 6/1 to SY 6/1), alternating with thinner intervals of CALCAREOUS MUD, dark gray (SY 4/1). Common gran (SG 5/2) and low gray (SY 4/1) motiles and laminations; less common on calcareous mud. Rare green (SG 3/2) small patches of glauconite. SMEAR SLIDE SUMMARY (%) 1, 75 Composition: Outant 30 Feldspar 5 Mica TR Heary minerals 5 Foraminifes 5 Calc. namotossis 42 Diatoms 5 Radiolarians TR Radiolarians TR Radiolarians TR Sponge spiculies 8

	HIC		F	oss	IL				TT				
OCK.	E	<u> </u>	CHA	-	TER	È	NO	GRAPHIC	μp				
UNIT	BIDSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-bottom depth	SECTION	SHE GRAPHIC LITHOLOG	A DRILLING DISTURBANCE	STRUCTURES	SAMPLES		LITHOLOGIC DESCRIPTION
						138.5	,		0"0"0			5Y 5/1	SILICEOUS NANNOFOSSIL, OOZE, light gray to gray (5Y 3/1 to 5/1), Darker (5Y 4/1) interval probably marty, but changes of color very gradational. Common green mottling.
						140.0				L		5Y 4/1	146.56 m: very dark green haloed burrow. 147.77 m: small (0.5 cm) pyritic patch.
							2		0.0	1			SMEAR SLIDE SUMMARY (%) 1, 50 D Composition:
						141.5			5			6Y 6/1	Ciay 5 Carbonate unspec. 2 Foraminifets 3 Calc, nannofosilis 68 Diatoris 10 Radiolarians 2
		undifferentiated	fur Zone		we Zone		3		2	1 1 1		5Y 5/1	Sponge spicules 10
		PL3-5 undif	Discoaster surculus Zone		Nitzschis Jouseae Zone	143.0			0.0.2	2		5G 5/2	
			NNIB			5	4		2QQ			5Y 6/1	
						144.5	5		000			5Y 5/1	
						146.0	_		0.0.0				
							6		000			5¥ 7/1	
						147.5	7		0.0			5Y 6/1	
		AG	AG		AN		cc		-	1		5Y 6/1	



		1		oss	_	-		DRE	5 COREC	TT	T	L 157.7-167	
×	HH	_%	CHA	RAC	TER	É.							
TIME - ROCK	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-hettors depth	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURGE	SAMPLES		LITHOLOGIC DESCRIPTION
						159.2 157.7	1	0.5				5Y 6/1	MARLY SILICEOUS FORAMINIFERAL NANNOFOSSIL OOZE, grav (SY 5/1 to 6/1). Below 166.3 m: SILICEOUS NANNOFOSSIL OOZE, light greenish grav (SGY 7/1). Common olive grav (SY 6/2) and green (SG 5/2) motting, Rare diffuse green (SG 5/2) luminations. Rare small green (SG 3/2) patches of glaconite.
						160.7 158	2	D. L. D. L.		4 11		5Y 6/1	
		undifferentiated	surculus Zone		ae Zone	162.2 16	3	the formation				5Y 6/1	
		PL3-5 und	NN16 Disconster		Nitzschia jouseae Zone	-	4	al contraria		E		5Y 5/1	
						163.7	_					5Y 6/1	
							5	1 of to 1 of 1				5G 5/2 5G 5/2 5Y 5/1	
						145.2	-	111		=		DT D/ I	
							6	- I - I - I -		14 H 14 H 1		5Y 5/1 5Y 6/1	
						10.0.7	7 7					5GY 7/1	
		AG	AG		CN	1	co	-	11		4	5G 5/2	

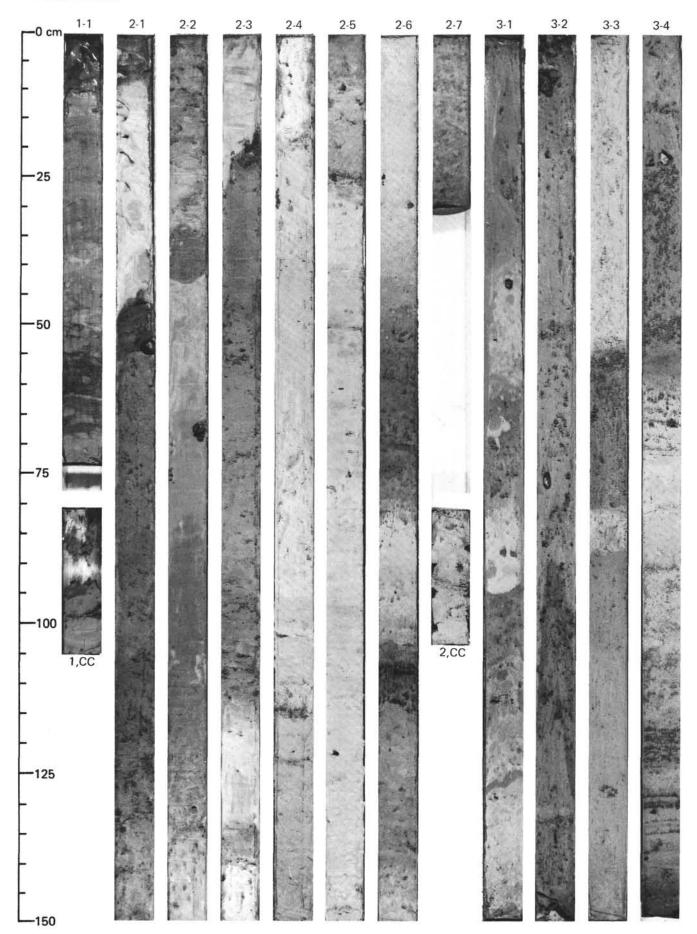
	PHIC			OSS		4							
UNIT UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-bettom depth	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOG	SIC DESCRIPTION
						167.3		0.5				Mottling: frequent	NOFOSSIL OOZE, gray (SY 6/1). t diffuse green patches, tending Rare laminations, green (ISG 5/2)
						168.8	_	111111		2		5Y 8/1 SMEAR SLIDE SI	UMMARY (%) 1,100 D
		-5 undifferentiated	Discosster surculus Zone		Nitzschia joussae Zone	170,3	2	thur thur the				Composition: Quartz Clay Volcanic glass (brr Carbonate unspec Foramillen Calc, namofossib Diatom Radiolariam Sponge relocute	5
		PL3-5	NN16 2		Nitz	-	3	يبدليبينا	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$			5Y 6/1	Ð
		AG	AG		AM	172.2 171.8	4			2 2 2 2		5Y 8/1 5G 9/2	

BIOSTRATIGRAPHIC	12	CHA	RAC									
TIGF	.12		05	1 1		-						
BIOSTRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-bottom depth	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	SAMPLES		LITHOLOGIC DESCRIPTION
	PL3-5 undifferentiated F	NN16 Disconster surctifus Zone			178.3 176.5 175.3 173.5 172.3 1	3	0.5				5GY 6/1 5G 5/2 5G 5/2 5Y 5/1 5GY 7/1 5GY 7/1 5G 5/2 5G 5/2 5G 5/2 5G 5/2 5G 5/2	SILUCEOUS NANNOFOSSIL OOZE, light greenish grav to grav (5GY 7/1 to 5Y 6/1). Below 178.3 m: MARLY SILICEOUS NANNOFOSSIL OZE, grav to dark grav (5Y 5/1 to 4/1). Frequent diffue green patches (almost laminations). Rare real green (5G 5/2) taminations. Common olive grav mottles. SMEAR SLIDE SUMMARY (%) 5.37 Texture: Sand – 5.37 Texture: Sand – 5.37 Composition: Outro 40 Mica 1 Foraminders TR Calc. nanofosilis 66 Diatom 4 Radiolarian 2 Spong: spicules 7

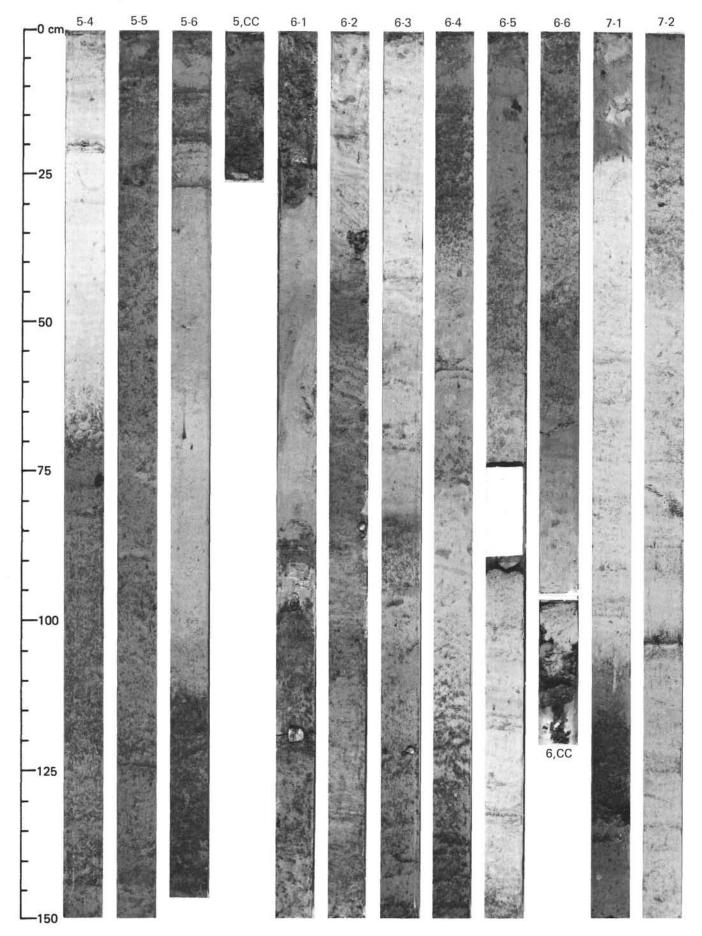
2 2		F	OSS	IL	1									
UNIT UNIT BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS		Sub-battom depth	SECTION	GRAPHIC LITHOLOGY	DERLUNG	STRUCTURES	SAMPLES		LITHOLOGIC	DESCRIP	TION
	PL3-5 undifferentiated	NN1B Discouter surchis Zone		Mitzecha joursee Zone	185.9 184.4 182.9 181.4 178.9 178.4 176.9	1 2 3 4 6 6		┝┝┝┝┝┝┝┝┝┝╎╎╵╹╏╏╹╏╹╎╹╵╵╵╵╵╵╵╵╵╵╵╵╵╵╵╵╵╵╵			5Y 6/1 5G 6/2 5G 6/2 5Y 7/1 N8 5GY 7/1 5G 5/2 5G 5/2 5Y 6/1 5G 6/2 5Y 6/1 5G 6/2 5Y 6/1 5G 6/2	gray (5Y 6/1), 178.15 to 181.2 m; I OOZE, light gray to 1 5GY 7/1). Below 181.2 m; alter MARLY NANNOFO NANNOFOSSIL OO.	FORAMINI light greeni nating: SSIL OOZI ZE, light gr arrows, ligh requent gre rs.	E, gray (5Y 6/1); and eenish gray (5GY 7/1), t olive gray (2.5Y 7/2). en (5G 5/2 or 6/2)

ITE		i i	_	OSS	D			DRE 11 CORE	DINTE	T	L 205.7-3	
2	IHd	- 9	CHA	RA	CTE	R			11			
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-battom depth	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	STRUCTURES SAMPLES		LITHOLOGIC DESCRIPTION
						205.7	1		1		5GY 6/1	NANNOFOSSIL OOZE, very light gray or greenish gray (N8 or 5G 77 to 5GY 7/1) to MARLY NANNOFOSSIL OOZE, greenish gray (5GY 6/1). Green (5G 6/2) laminations and patches. Chalky intervals getting more common.
						207.2	2				5GY 6/1	SMEAR SLIDE SUMMARY (%) 5, 130 D Composition: Ovartz TR Feldpar TR
						208.7	2				5G 6/2 N8	Clav 4 Carbonate unspec. TR Foraminifen 7 Cala: canofossils 89 Diatoms TR
		p				20	3				to 5G 7/1	
		undifferentiated	Discoaster surculus Zone			210.2				-	5GY 7/1	
		PL3-5	NN16 Discoaste				4				5GY 6/1	
						211.7	_				5G 6/2	
							5				5G 7/1 5Y 7/1	
						213.2					NB	
							6				5GY 7/1	
		AG	AG		RP	215.0 214.7	7				5GY 7/1	

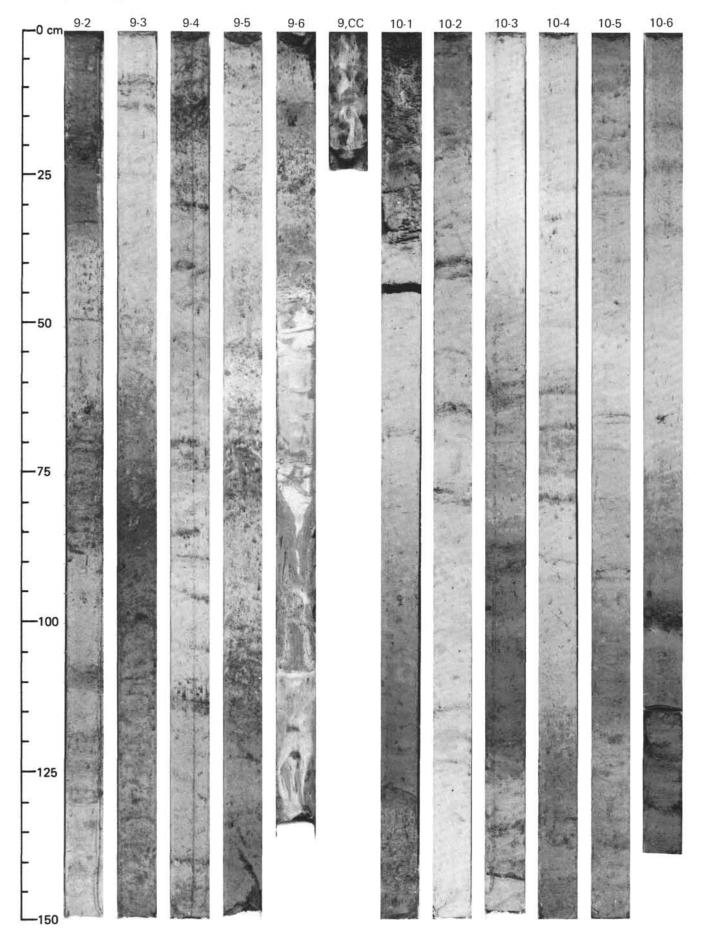
	611 1			ossi	IL			RE			-		215.3-224.9	
OCK	GRAPI	<u> </u>	CHA		TER	R	NO	SS	GRAPHIC					
UNIT UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-bottom depth	SECTION	METERS	LITHOLOGY	DRILLING	SEDIMENTAR	SAMPLES		LITHOLOGIC DESCRIPTION
						215,3	1	0.5					5Y 5/1	NANNOFOSSIL OOZE, light gray to greenish gray (NB or SGY 7/1) to MARLY NANNOFOSSIL OOZE, gray to greenish gray (SY 6/1 to 5/1; SGY 6/1). Rare green (SG 6/2) iaminationi, frequent between 222.8 and 223.25 m. Diffuse green (SG 6/2) patches. Rare privice (N3) patches. Scatteried chalky intervale.
						216.8	2	the first of the second s					5GY 7/1	
		undifferentiated	Reticulofenestra pseudoumbilica Zone			218.3		0.00					5G 6/2	
		PL3-5 un	NN15 Reticulofenestr			219.8	3	Total terral			*		5GY 7/1 5G 6/2 N3 5GY 6/1	
			NN			216	4	AND AND ADD					5G 7/1	
						221.3	5						NB	
		AG	AG		B	227.26 222.B	6				I I I III IIII		5GY 7/1 5G 6/2 5GY 6/1 5Y 6/1	

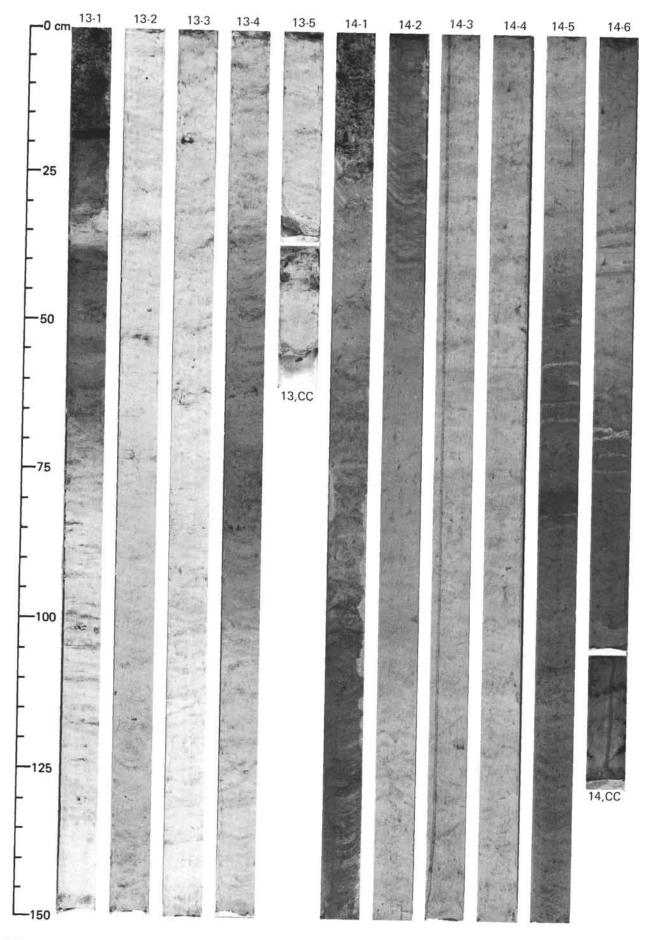

	611	r –	HOI			_	-	DRE 13 CORE	TT	T	AL 224.9-234.5	m	_
	THU		CHA	RAG	TER	2					1		
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-bottom depth	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE	STRUCTURES		LITHOLOGIC DESCRIPTION	
						224.9					N8	NANNOFOSSIL OOZE, atmost CHALK under 231.5 m, very light gray or greenish gray.	
							1			-	5GY 7/1	One dark (5Y 6/1 to 5GY 6/1) MARLY interval, Rare green (5G 6/2) or olive gray (2.5Y 6/2) laminations.	
											and an	SMEAR SLIDE SUMMARY (%)	
						226.4					5GY 6/1	3, 70 D	
										-	5G 4/2	Composition: Clay 5 Carbonate unspec. TR	
1							2				5Y 6/1	Foraminifers 3 Calc. nannofossils 92 Diatoms TR	
											N8	Sponge spicules TR	
			aud			227.9	-						
		pa	bilica Z										
		undifferentiated	Reticulatenettra pseudoumbilica Zone		Zone		3				NB		
		undiff	estra ps		Nitzschia jouseae Zone								
		PL35	culaten		itzschia	229.4	_						
1		۹.			N	R					N8 and 5G 7/1		
			NN15				4			_	5G 6/2		
											5501		
						230.9							
						2				_	2.5Y 6/2		
							5						
							1				N8 and 5GY 7/1		
						1.4							
						231							
							6			_	2.5Y 6/2		
							0			-	5G 6/2		
						233.9							
1	1					234.2 2	7			-	5G 6/2 5GY 7/1		
		AG	AG		CM	23	cc		1				

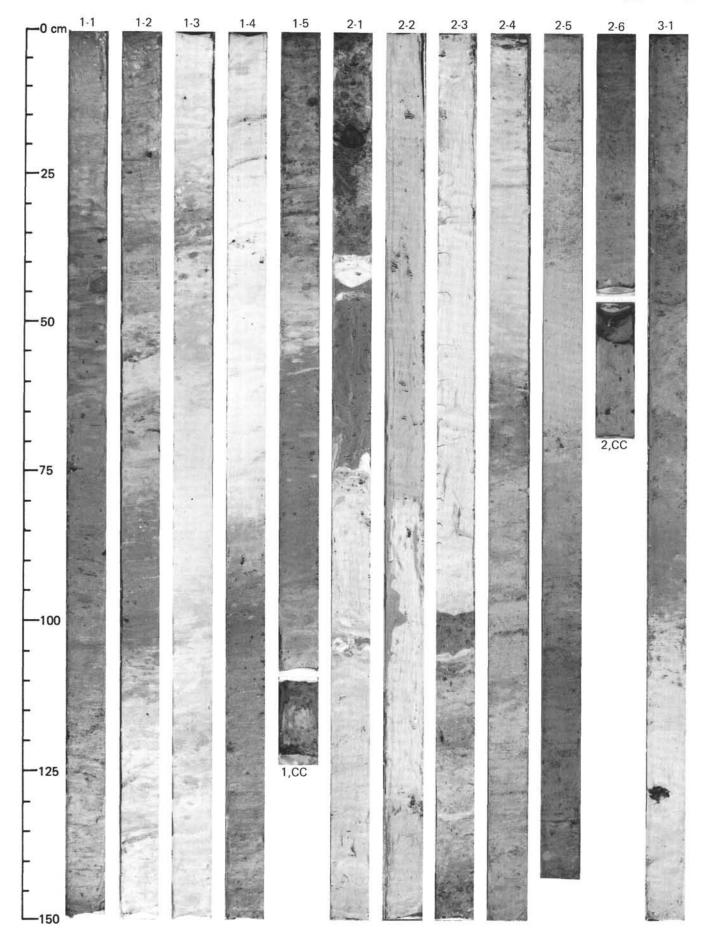
NANNOFOSSIL CHALK, very light gray or greenish grav (Na De GGV 7/1) to MARLY NANNOFOSSIL 10 10 10 10 10 10 10 10 10 10 10 10 10		APHIC		CHA	RAC		1						
Bigging 0.5 Image: Stress of the stress of	UNIT UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Sub-botteen depth		METERS	DISTURBANCE	STRUCTURES	SAMPLES	
40 98 98 98 96 <						Witzschia jouseae Zone	39.35 239.0 237.5 238.0 234.5	1 2 3 4			1.40 1114(100104)		gray (NB or 5GY 7/1) to MARLY NANNOFOSSIL CHALK, greensh grav (5GY 6/1). 234.5 to 235.7 m; soupy ooze, breccia and downhole graval. NB Frequent green (5G 6/2) laminations under 237.8 m. SMEAR SLIDE SUMMARY (%) 2, 65 D Composition: Clay 7 Foramiler 4 Color nanotossils 80 Diatoms TR Sponge spicules TR NB SGY 7/1

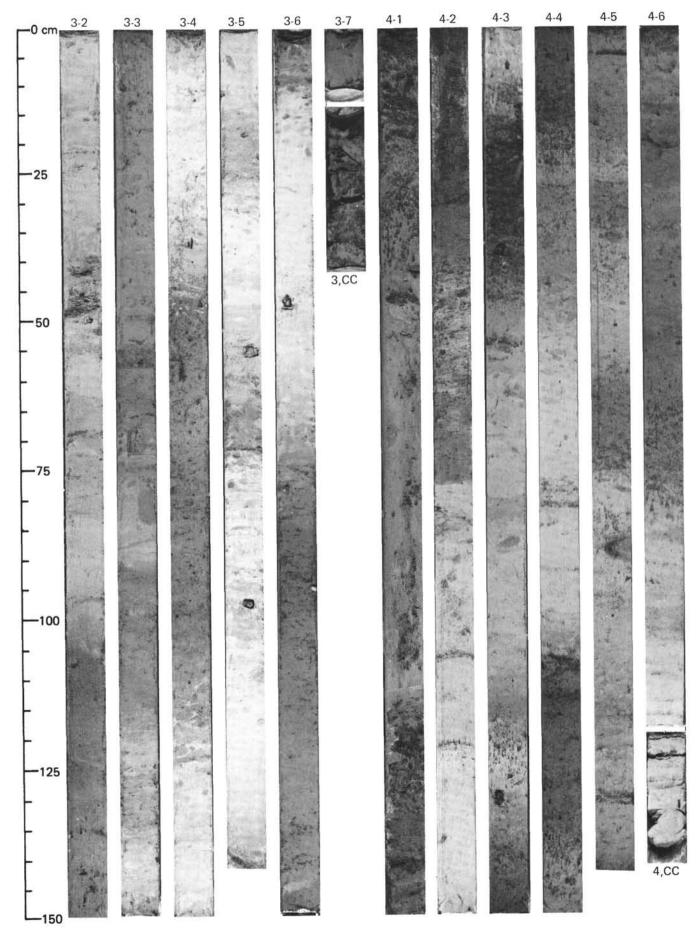

	611 U			.E OSSI		-		RE	1 CORED	TT.	Ē	L 6.5-16.1 m			
	Hat			RAC		1									
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Seb-bottom depth	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC	DESCR	IPTION
						6.5	1	0.5				5Y 7/1 5Y 5/3 5Y 5/1 5Y 7/1	or greenish gray (5 FORAMINIFERA gray (N7 or 5Y 7/1 Darker (5Y 6/1 or	GY 5/11; L NANN 1) or light 5GY 6/1	to olive gray (5Y 5/1 to 4/2) and OFOSSIL OOZE, light greenish gray (5GY 7/1). 1) Intervals are probably MARLY. (N8 or N7), bluish (58 5/1)
						8.0				1			Open burrows; Zoo	ophycos.	
								1					Dropstones.		
							2		E				SMEAR SLIDE SU	MMARY	(%)
												5Y 4/2	Texture:	3, 85 M	6, 30 D
						9.5						5Y 4/2	Sand	121	10
						0		1.14	1			1.000	Silt Clay	-	20 70
	0.3	i i	2					1.3		14		5Y 5/2	Composition:		
		Globorotalla truncatulinoidees	Pseudoemiliania lacunosa Zone					1	1	i in		5Y 7/1	Quartz	-	38 2
		tull	080				12	1.3	++++	1	Ľ.,	2.5Y 6/2	Heavy minorals Clay	TR	30
		mca	incur.				3		++++	1 100		NB	Volcanic glass	-	3
		E.	la là		2			1 4		11	1	2.5Y 6/2	Carbonate unspec.		3
		ta/la	lian		ñ			1.5		2		N7	Foraminifers Calc. nannofossils	12	6 18
		8	erro		No.					1	L		Diatoms	3	18
		lob	nda		ind.	11.0	-			1		5GY 6/1	Sponge spicules	TR	-
		N22 G	NN19 Paer		Pseudoeunotia doliolus Zone		4			***					
												5GY 6/1			
						12.5	⊢			1 1	1	5GY 7/1			
										1		5GY 6/1			
							5	1		-		5GY 6/1			
						14.0	L			-		5GY 7/1 5GY 6/1			
									=			5GY 5/1			
								-			1	5GY 6/1			
							6		Land Land	E	1	5GY 5/1			
						1	1		1		1	5GY 6/1			
						1	1		12+2+2	1 14	1	5Y 7/1			
		1				an	1	1	+++++	1 1	1				
	1	1			1	un un				1 E		5Y 6/1 5Y 5/2			
	1				1	15.8	7		+++++			5GY 6/1			
		1	1				-	_	+++++	1 1		100 C.			
	1	AG	AG	1	CN	1	CC			1 1	1	1			

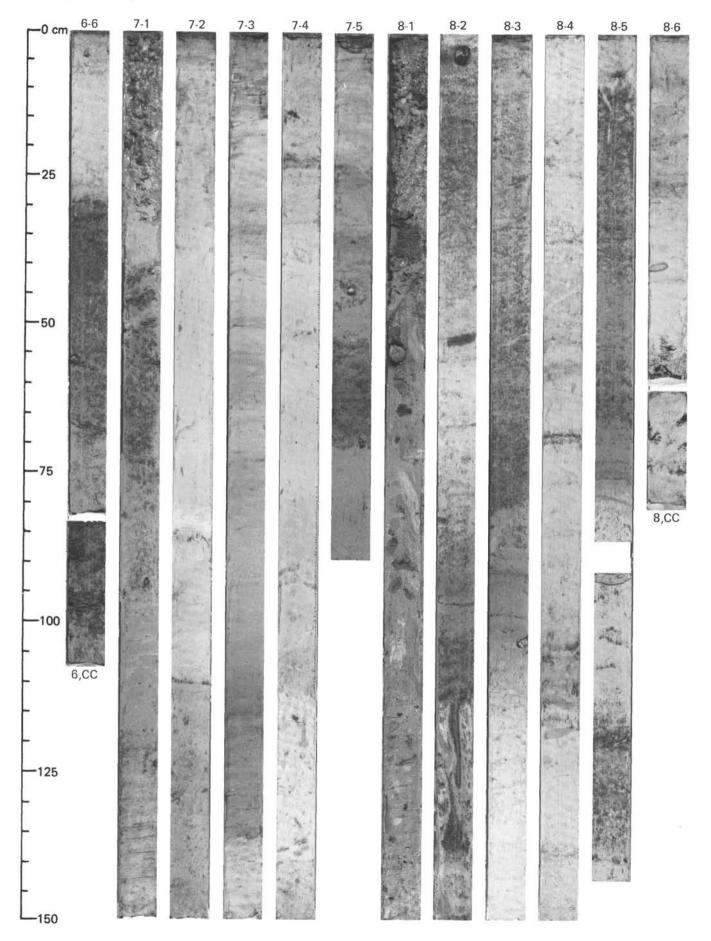
	HIC		F	OSS	IL					Τ				
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	Γ	Sub-bottom depth	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENYARY	STRUCTURES SAMPLES		LITHOL	OGIC DE	SCRIPTION
-		-	-	-	-	16.1				-	5Y 6/1			
						10	1	0.5	+ -	-	5Y 5/1 5GY 5/1	gray (5Y 5/1 to 5) FORAMINIFERA	4/3) or L NANN 8 7/1, 50	, olive gray to dark olive greenish gray (5GY 5/1); and OFOSSIL OOZE, light gray 3 7/1); darker intervals bu MABT V
								<u></u> E	1 -	-	5Y 4/2	Very rare (5G 5/1		
						17.6			1	1	5G 4/1			thorations.
						-					5Y 4/3	Rare open burrows	6	
									1 -	-	5G 5/1	Dropstones.		
							2		+			SMEAR SLIDE SU	2, 55	3, 80
								E	+		2.5Y 5/2	Texture: Sand	D	M
						-			1 -	-		Silt	15 30	-
			1			19.1		E	+ -		5G 5/1	Clay Composition:	55	100
		Globorotalia truncatulinoides	Pseudoemiliania lacunosa Zoné	i i				3		1	2.5Y 5/2	Quartz	36	-
		ulline	050					E	1 H			Feldspar Heavy minerals	1	1
		inicat	NCUN				3		3 L.		58 7/1	Clay	30	5
		(a 111	nia l					E			5GY 6/1	Volcanic glass Carbonate unspec.	3	2
		rotal	milla								10220000000	Foraminifers	б	10
		otto	ndoe						4		5GY 5/1	Cale, nannofossils Diatoms	3	80 2
		19	Pseu			20.6						Radiolarians	-	TR
		N22	6					E						
		2	NN19								5Y 4/2			
							4	E	4		020100			
							11		- 1	-				
								E			5GY 5/1			
			- 4	1		5			H					
						22.1					5Y 4/2			
											014/2			
							5	E	+ [2.5Y 5/2			
									1		1999 (1997) 1997 - State State (1997)			
								1-1-1-1			5Y 6/2			
						23.6			-	1	5GY 6/1			
						~		+++++		1	1952/15/			
								1++++++++++++++++++++++++++++++++++++++			5G 7/1			
								======			20.25.25			
							6	3	4		5Y 4/2			
								E		1				
								=			-			
						25.1			4 -	-	5Y 5/2			
						26.6	7		1		5GY 6/1			
		AG	AG		в		cc	+++++++++++++++++++++++++++++++++++++++			5Y 6/1			

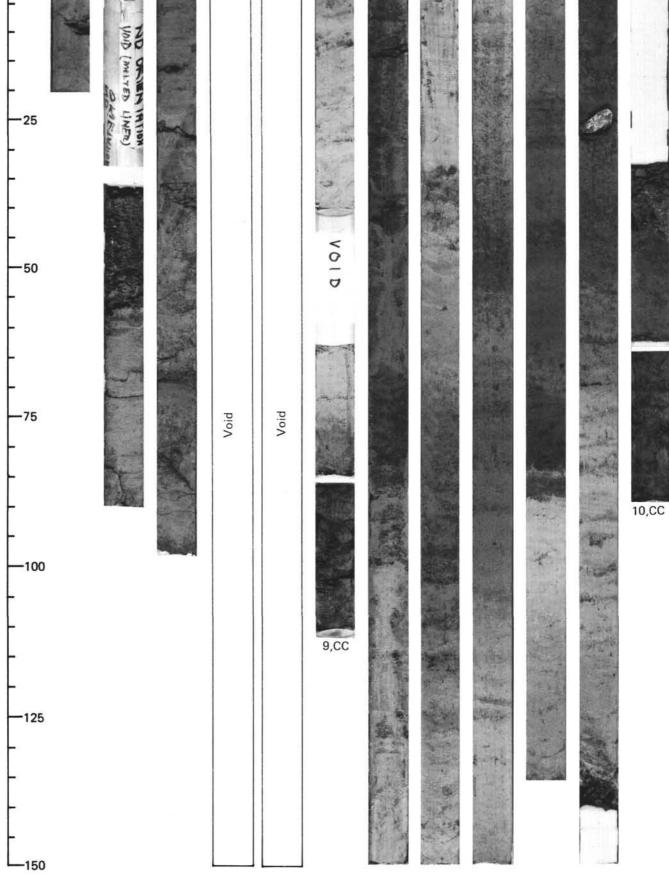

SITE 611


-0 cm	3-6	4-1	4-2	4-3	4-4	4-5	4-6	4,CC	5-1	5-2	5-3
	3,CC										



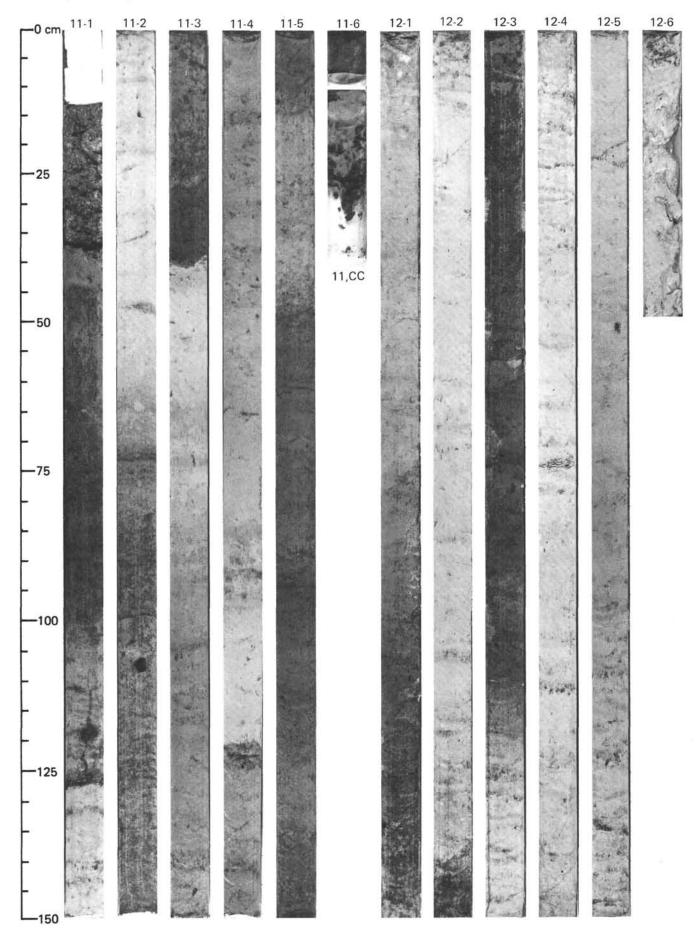

									SITE 611 (HOLE 611)
-25 25 	7-4		7-7 7,CC	8-1	8-2	8-3	8-4	8-5	8-6	9-1


-0 cm_10,CC	11-1	11-2	11-3	11-4	11-5	12-1	12-2	12-3	12-4	12-5	12-6
-25 25 		11-2	11-3		11-5 11,CC	12-1	12-2		12-4	12-5	12-6
-		A CARLAN WIN		· · · ·		ALE STREET		and the first		の正常にある。	

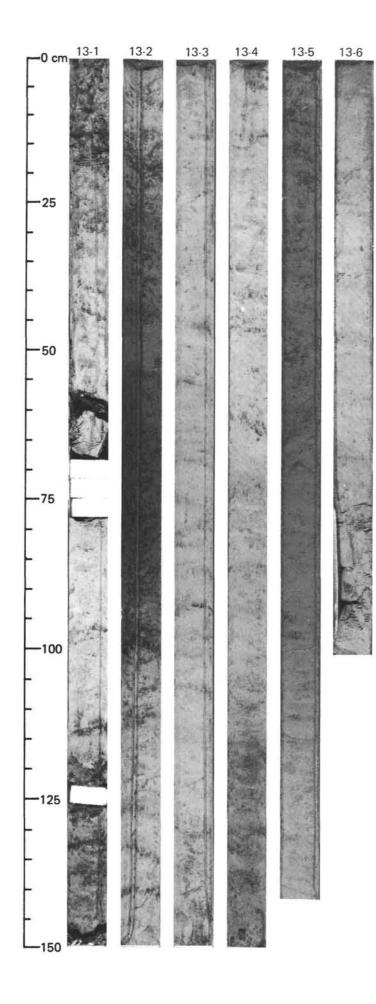


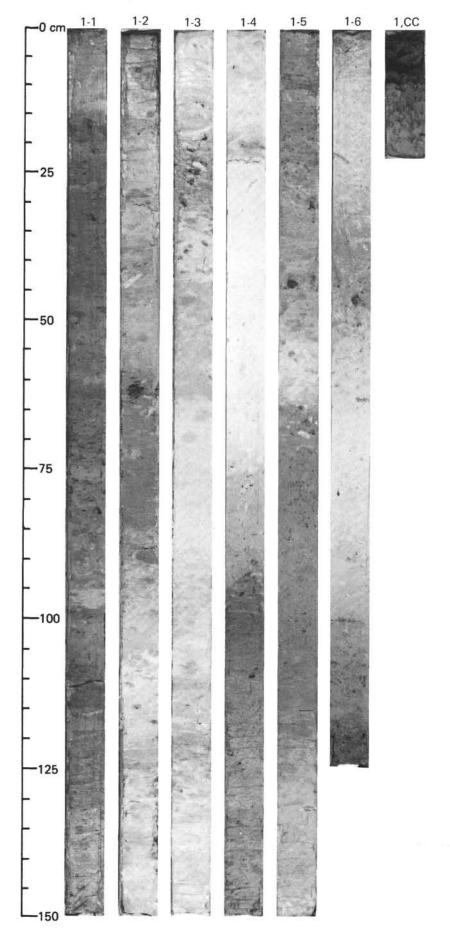
[⁰ cm] ⁵⁻¹	5-2	5-3	5-4					51112 011 (HULE 611A)
				5-5	5,CC	6-2	6-3	6-4	6-5

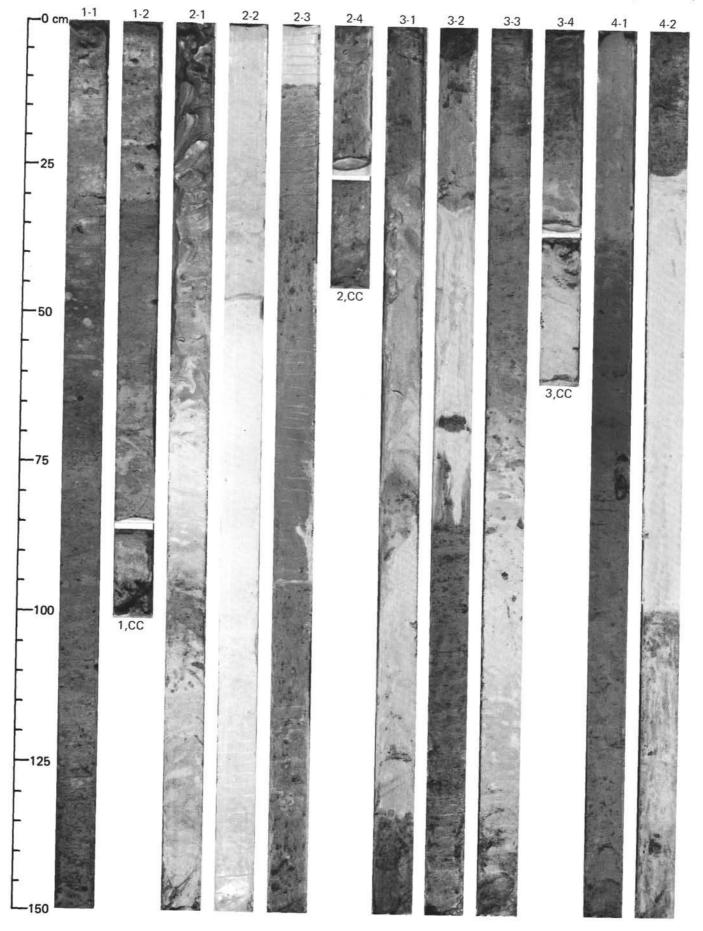
10-1 9-5 9-6 10-2 10-3 10-4 10-5 10-6

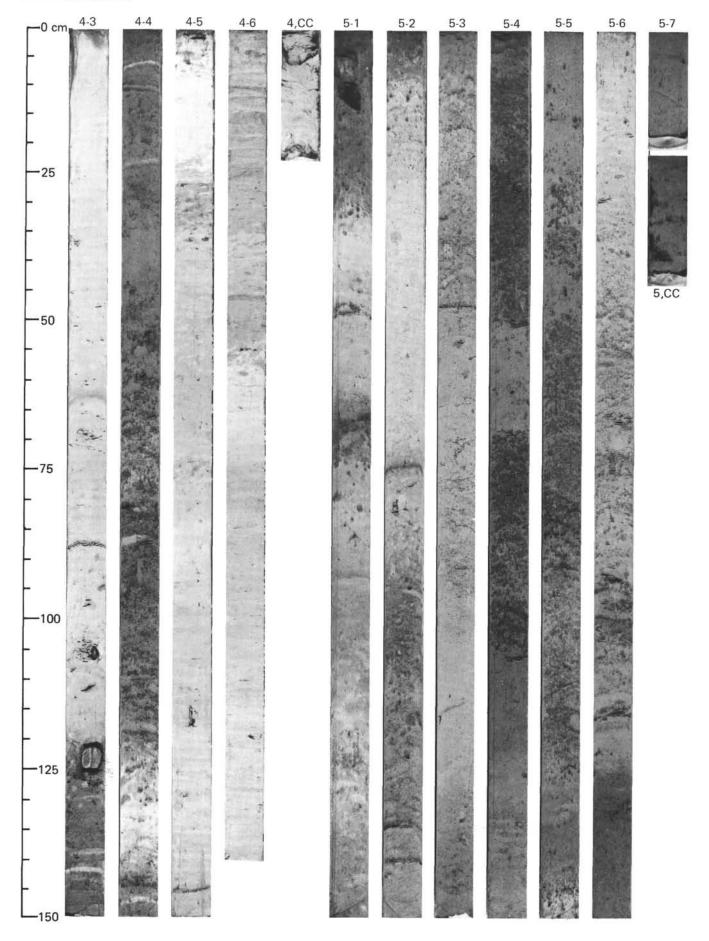

9-1

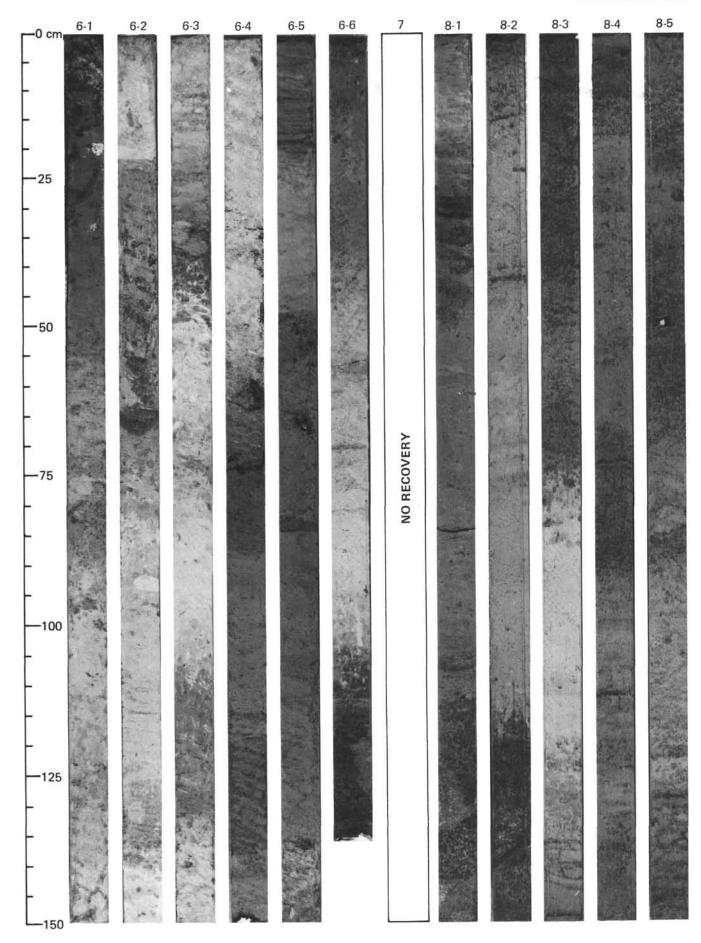
-0 cm

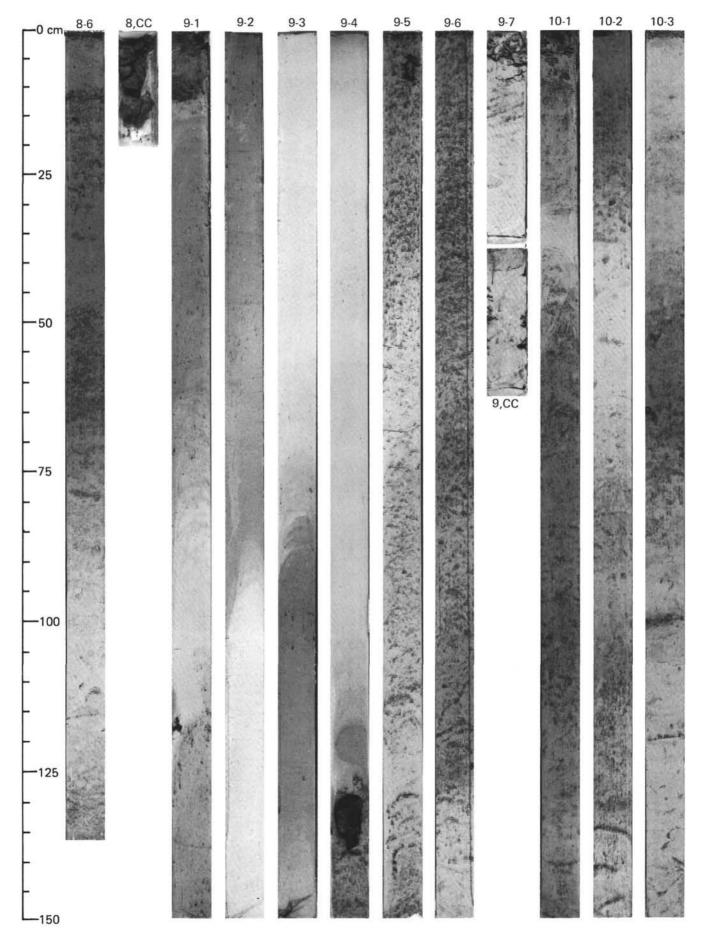

9-2

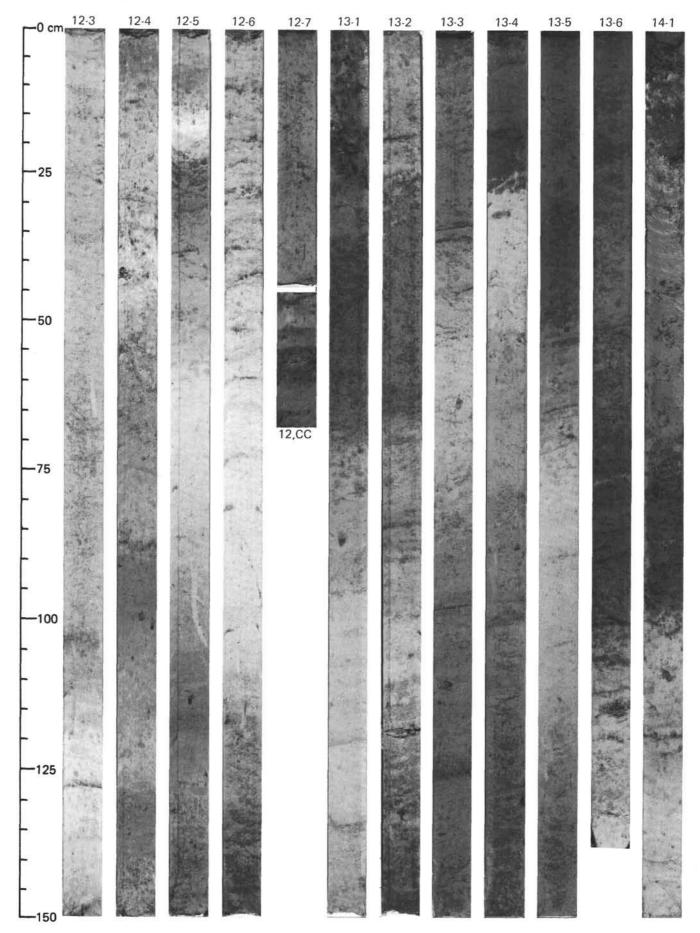

9-3

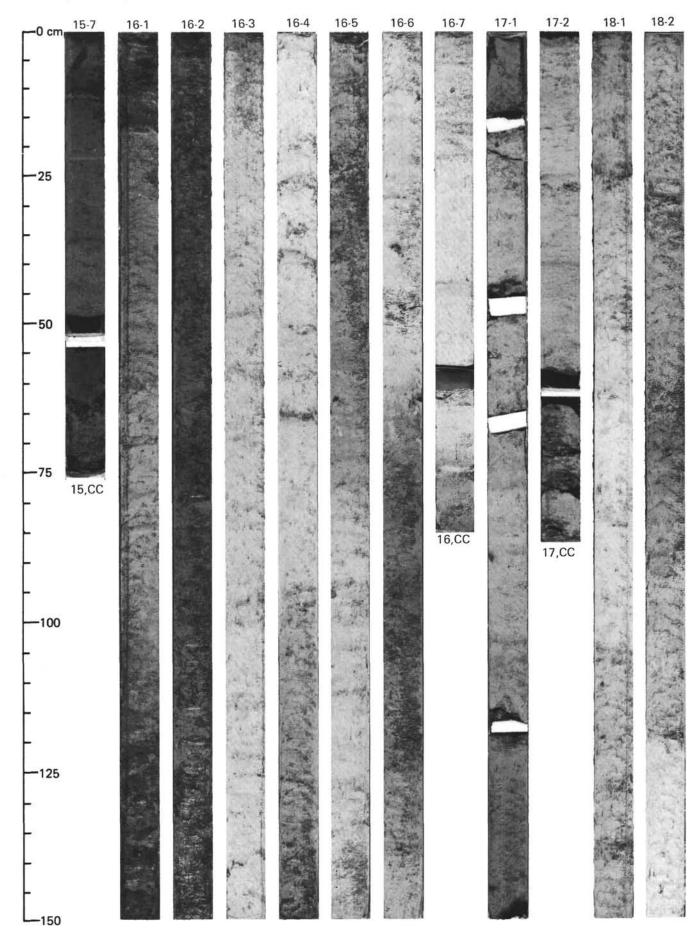

9-4



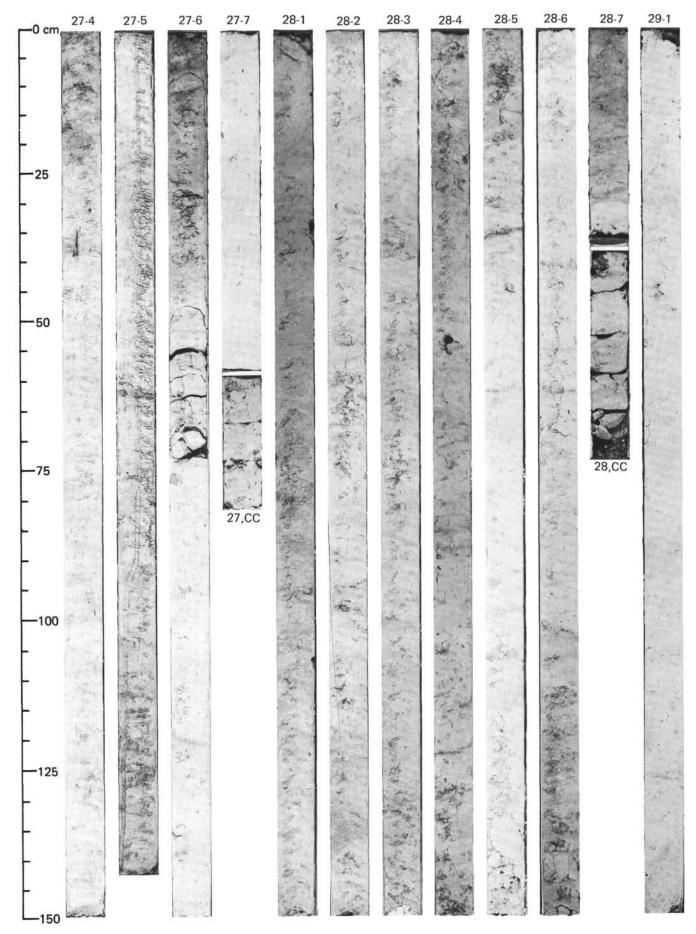


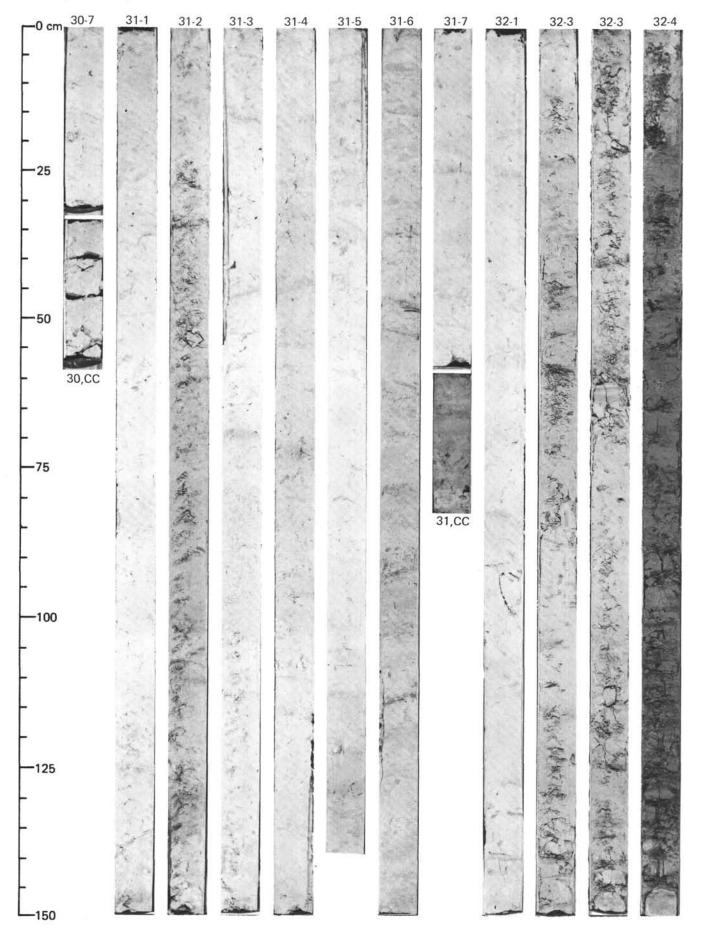


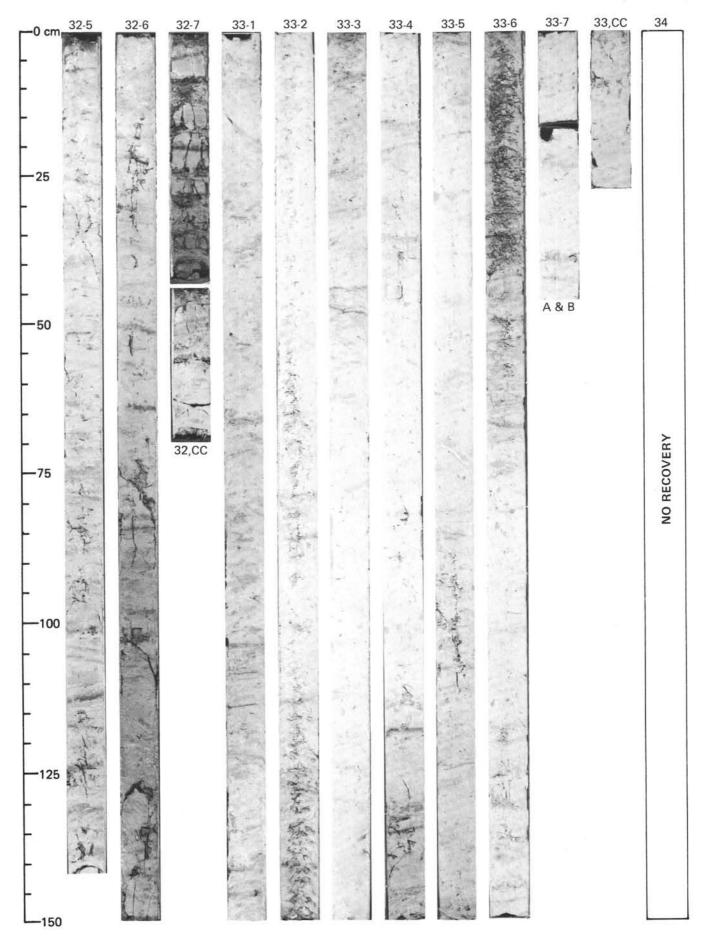




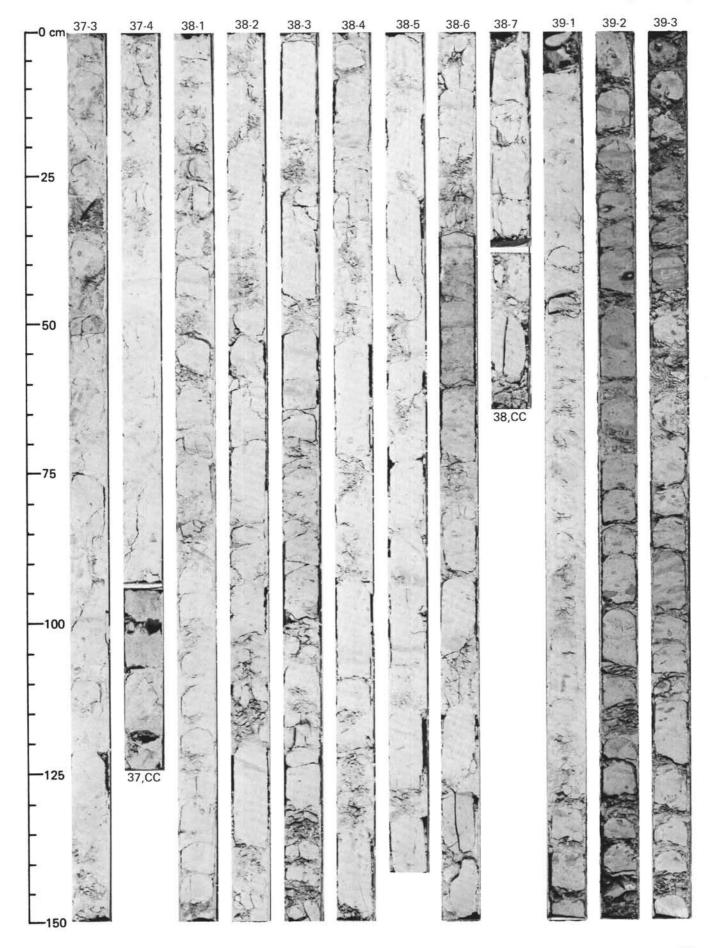
-0 cm 10-4	10-5 10-6	11-1	11-2	11-3	11-4	11-5	11-6	11-7	12-1	12-2
$-0 \text{ cm}^{10.4}$	10-5 10-6			11-3				11-7 11,CC		

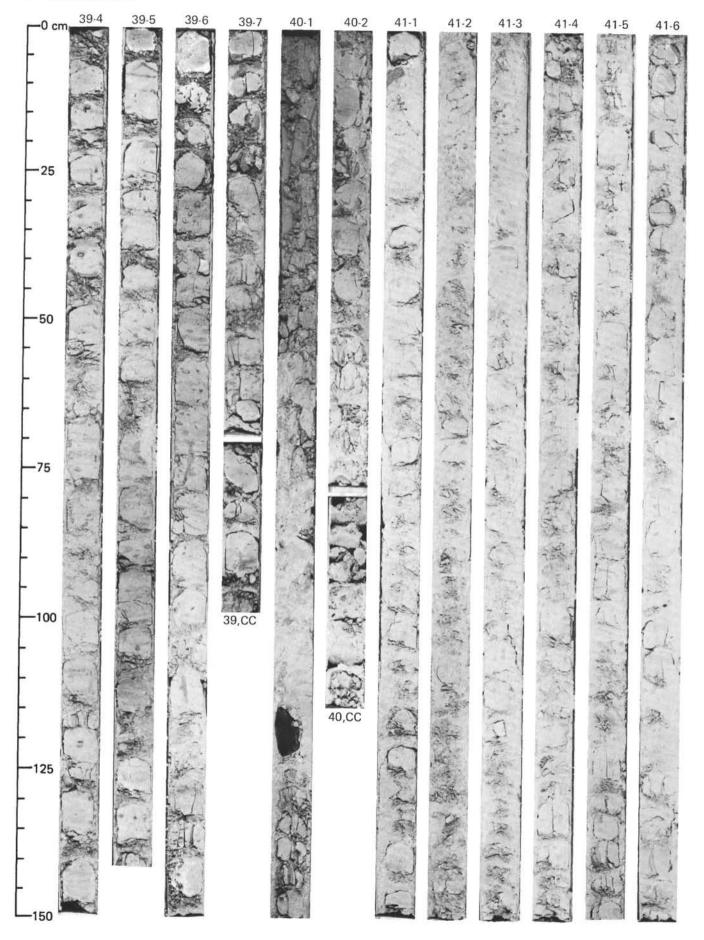

-0 cm 14-2	14-3 14-4	14-5 14	4-6 14-7	15-1 15-2	15-3	15-4	15-5	15-6
					·		ales?	San Ser
	The second							
			male		Printer (A A A A A A A A A A A A A A A A A A A
			Zat		A Star			
-			-	And I	and the second s	and the		
-25		17A	E AN	Part April	Maar	Contraction of the second		
-		and the second second		15.4- C.		100		
				the second	-tiesting			
-	1.224		1 pes		and the second	The section		and an
-				and paits	the a	and the second		THE
-50		4	14,CC	A COLOR				in transfe
-		Felty and a set		Proventing and the		Alter and		The second
-		147	and the second sec			in a little	43.	merin
-				1	and and	No. 2	0	E Martin
- 55	The second second		2.5	and any		四 节 一		
-75		E. an		and lease				200
				-		A.		
_	4	and a set		and and	and the second	1 + 2 - (and the second
a start		artification and		AME S - AR		Are Land		
				and the	The state of the s	anter-	The second	-
100				A State		al a		a state
-100	()			1442 - 1 - 1 - 1		3 . Jahan	and the second second	and the second
		e a L. Albert					ALCO NO	New York
		1. 14		2 F				100
		No. 1		Trans and			and the second	
-			× 12	and the second		Seren a		P. She
-125					The second	and the		m-
-				the state of the s	ALC: NOT	Carrie March		
- (1995)		·ie			and the second	En frank	14- 1	
	7			and provide	-	The Party	and a	-
-			-2		A CAN		12.0	
150	10			and the land	1		12	Provent a

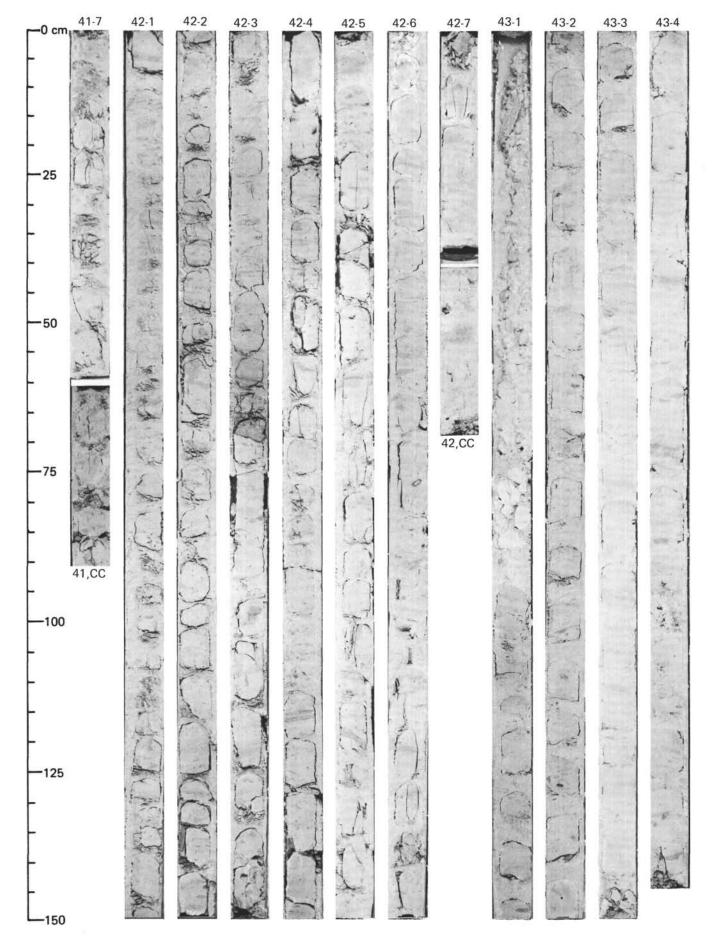

-0 cm	3-3 18-	4 18-5	18-6	18-7	19-1	19-2	19-3	19-4	20-1	20-2	21-1
- 25		and the second is	A second of the				Burger and the second	Contraction of the second second		a state of the sta	
			and a state of the second of the	18,CC	Construction of the second sec	and a state of the				20,CC	A CARLEN AND A CARLENA AND A C

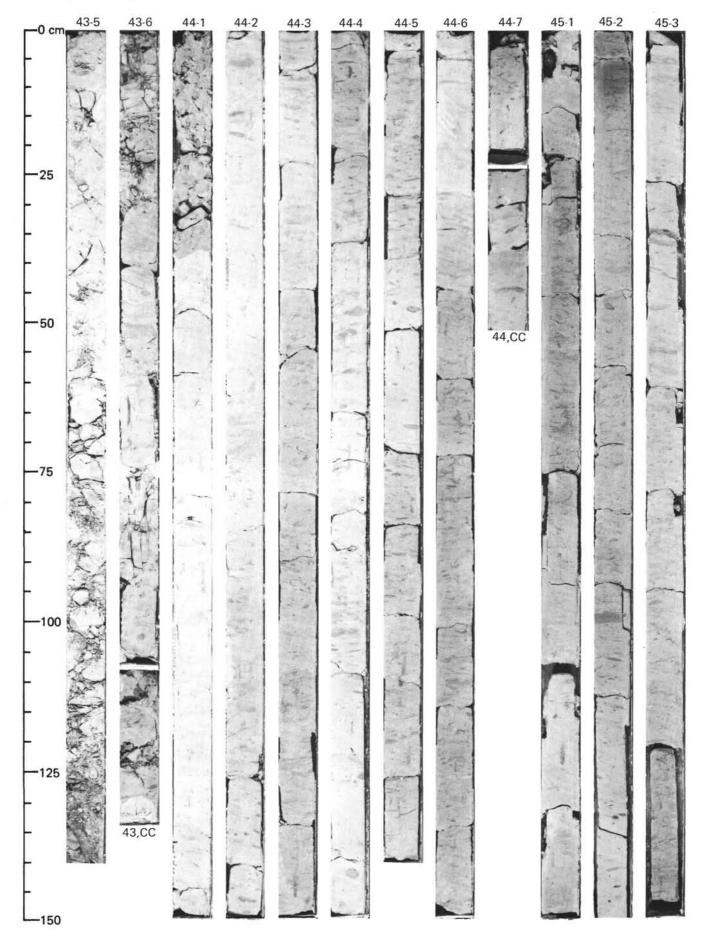

-0 cm 21,CC	22-1	22-2	22-3	22-4	22-5	22-6	22-7	23-1	23-2	24-1	24-2
		. Oberta	and the second s	105 M	A. A.		44	-			- AND
		1) - XBY - 1	All the		144	A REAL	12 A.M.				N CAR
		A.S.	- And	120	and the second		1				
_		T alle	1.200	1.5	12	and the second s			A.	a start	10
-25		The second		N. A.						and a start	
	5		1			and and a	and the second	1		1	6 . A
	2	C.	and the second		10	1.400	A.C.			-	202000
L		a sea	A the second	A STATE	C A A	1		AND I		17.00	and the
L	1		124		の書の	(M) () () () () () () () () () () () () () () ()		11	1		
- 50	1.1				Sec. 2			As Law	See.	\$	a marten
	- 63		and the second		all car	1.25	-	2	- Isa	57	- the second
			No.		1	12.		and a second	· · · · ·	1. A	100
		-	and the second	S. A.	1	1			1	1994	
						. []		and the second	33	1	
75	100					15251		10.00	14.		
-75	14	· · · · ·	" The	and the second	and the second se	9		EV.	in and		1100
		-		-		1	22,CC	150	0		5.4
			-		14			4.4			E. Star
Γ		e .	(Aller		Ser L	3			1999	24	
	- 2		A.C.	a series	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1		1			13
-100	1.251	-	1 alatha	- State	10/20			1	23,CC		
	- 59 - 59	1	(80		all and	2		4		i all	
	1-1	the second	ALC -		and the second			kar		344	
T I	1		1			1			in the second	1783 1. Ki	
T I	1				A call	4		Free	- CETA	4	curt
-125		1	A State	「「「	1988 B			5		13	and the
F		1		197	No.					- APT	
F	-10fter A				A A			P. 81			
F		2.24		int Bill		1.27		100	5%	-	
F	1 M		ALL A	1		1		T	and the		No. of Concession, Name
L-150	Ser Provention		102252693	0.0046		-		- realized		1.00	10000

~	24-3	24-4	24-5	24-6	25	26-1	26-2	26-3	26-4	27-1	27-2	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -
-0 cm^2	and the second of the second of the second			24,CC	NO RECOVERY				Z6,CC	the second se		

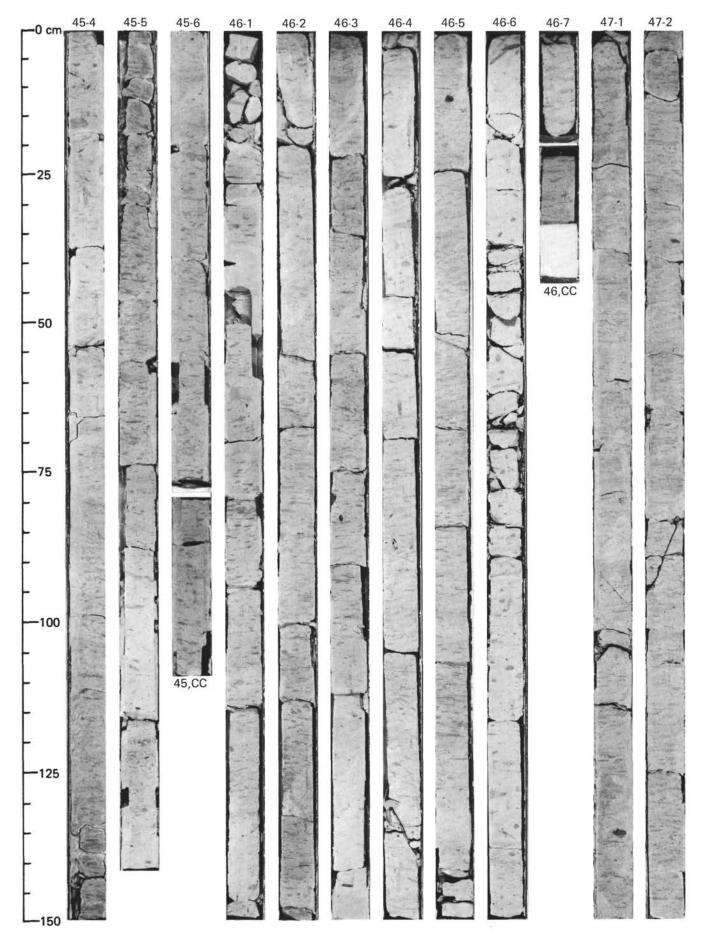


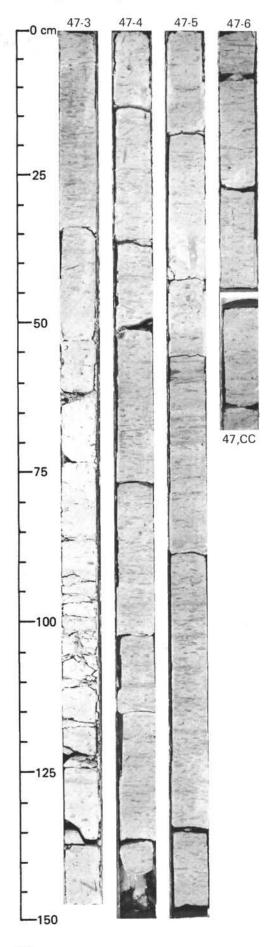

-0 cm 29-2	29-3	29-4	29-5	29-6	29-7	30-1	30-2	30-3	30-4	30-5	30-6
-	L.S.M.		125		1,150	North -	14.45 B		1.0		a da a
-	Carlo and	C.C.	a.	-	4. T-				The second		A.
-	re-	*	a start	-	1. A. S.			Sec.	1 2 4	-	
Rest		1.	5 1 2	and and	1 A	1000	A.	and a	A.	and a	
-25	the second			-		T - Can	14		A		and the second second
and the	1. 1.0	201		A	1.000	No. and	15		1	plane -	(4.80 5 F.07
			STER S		- State		- An		1		1. 21
1 A	the second		104-14 14 14	AN I		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	and a	T.A	52	and the second	
-50	and the	15-04	Story .		1	1		No.		J = 1	at a
-	and an internet				and the	1		And And	Sec.	A I	$e_{j^{2}\cdots j^{n}}^{j^{n}\cdots j^{n}}$
-	the state	- All	and the second	1000		and and	The second	A.C.	N.	a hard	and and
-	1.00	23.5	4	с. С. т. т. т.	-	200	They're	A.		The second	-
-	1		-		家	1 - A	L'and	and the		10 t	200
-75	A STA	A.	and the second	1	-	P.	- Service	25.	199		100
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	E ST		ある	34	1.20	S.C.	5,1		1. A.		74
2		4	Right	the d	and the	The man	\$1.0	and the second	100	3.4	2 4
110	all a	the state	25	125	29,CC		117	300		1	
	674 P	19	The second	126.7	20,00	A TO A REAL	No.		Re-	and a	
	-	5	and the second s	A CHARA		122	N. S. S. S.	A la stade	A A A	a starter a	
The second second	S.	34.4	Se	the second		1 M	and a second		No. 1.	4	101
- Sata	1	Star and		14.4		1-15°	1	1	一般の	N BORN	A.A.
-		1000	4			and the second s	June 1		Clar ta		生き
-125	1914	The second	and the second s	A.			Za	1	The second		-
-	S. THE CO.	AL AN	AND A	a faile		St.	A Real	6.9	Esta	Spect Cont	省
-		12		2000		tone .		June 1	A REAL	Sec.	3.7
-		4.14		-Dec		n.		いいの	A. C.	会.	
		to and		19 a		A.			The second	1	
L-150						20 N.L		-			

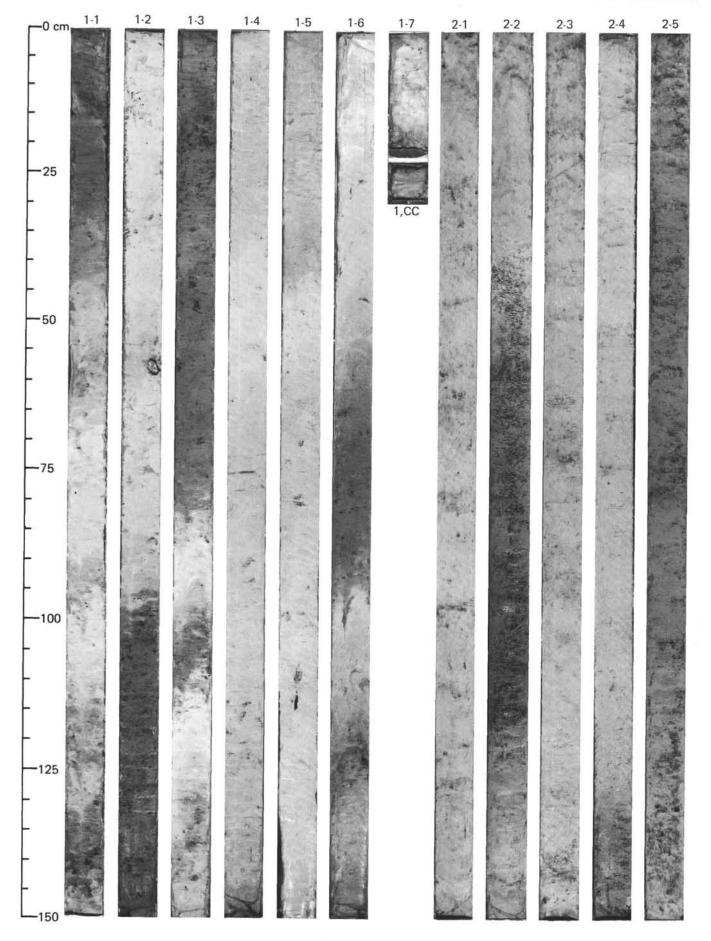


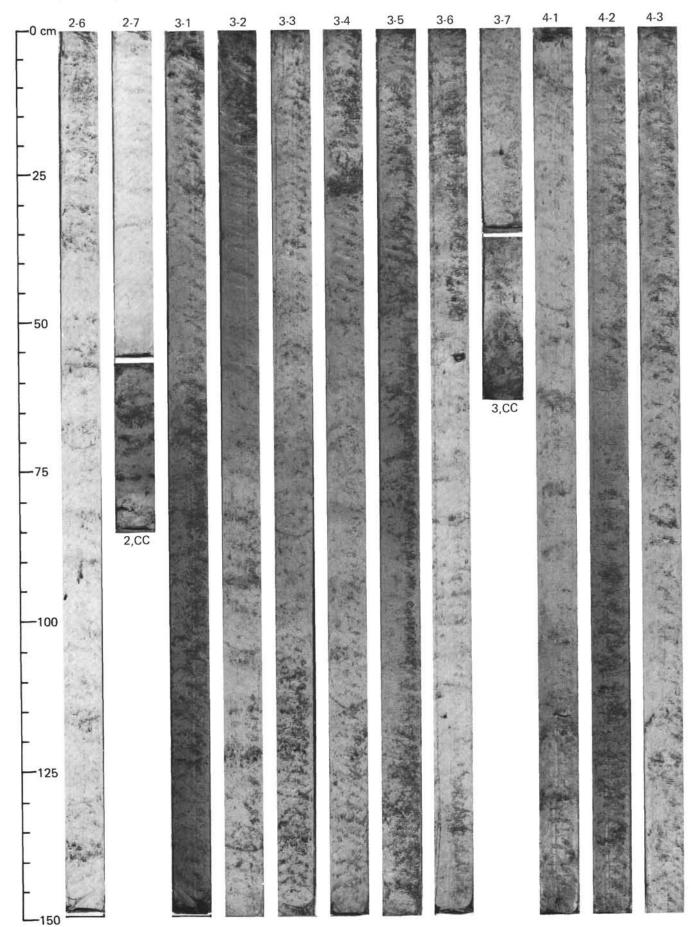


0 cm 35-1 35-2 35-3 34 25 25 	36-2 36-3 36-4 1 1 1 <	36-5 36-6 36-7	37-1 37-2
--	--	----------------	-----------

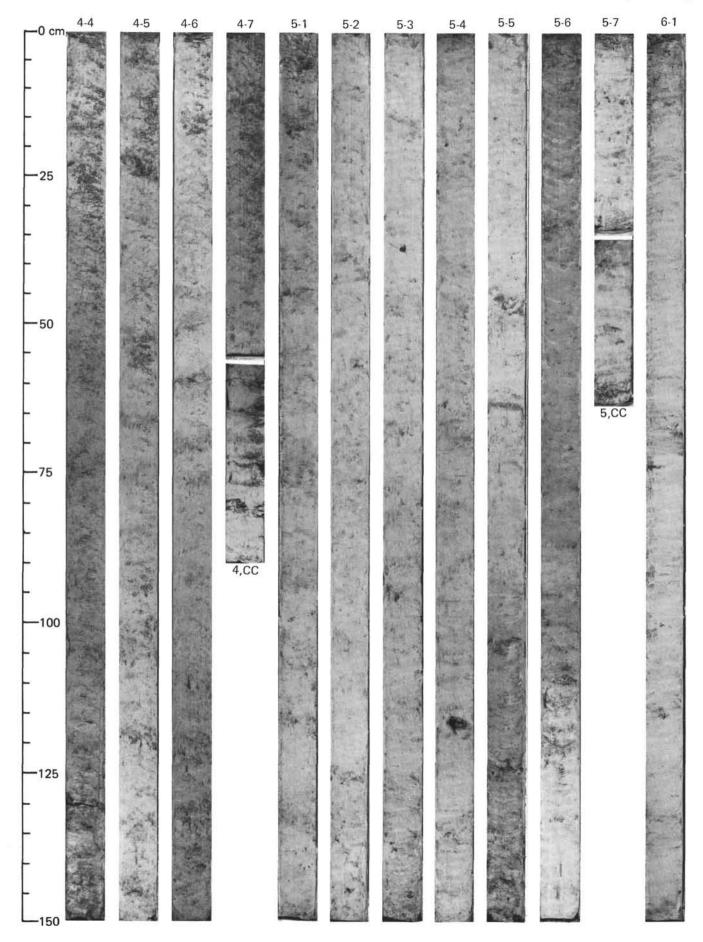




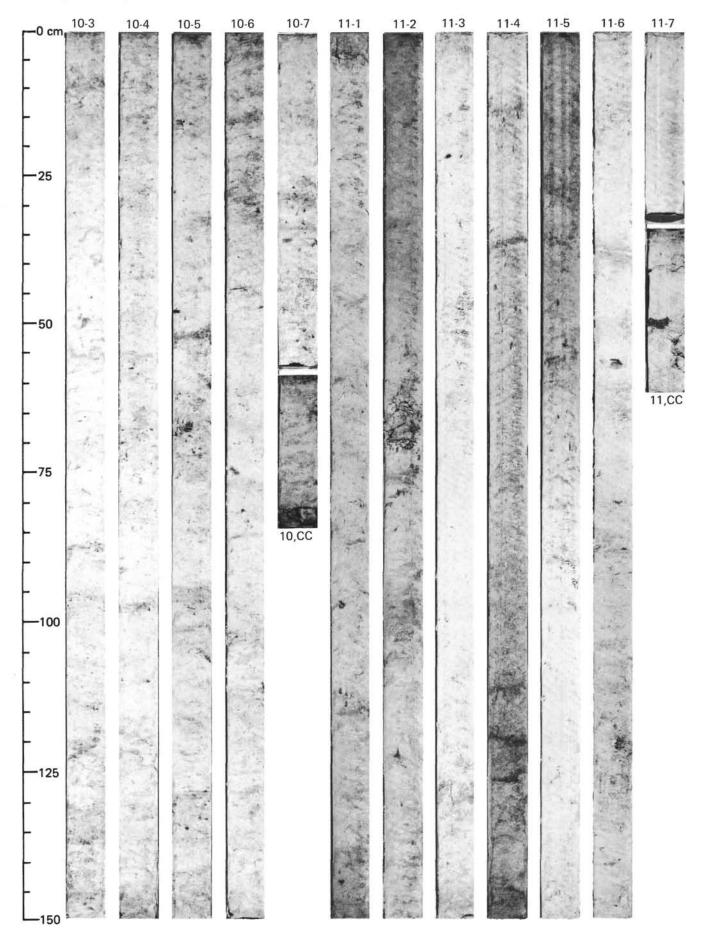

SITE 611 (HOLE 611C)



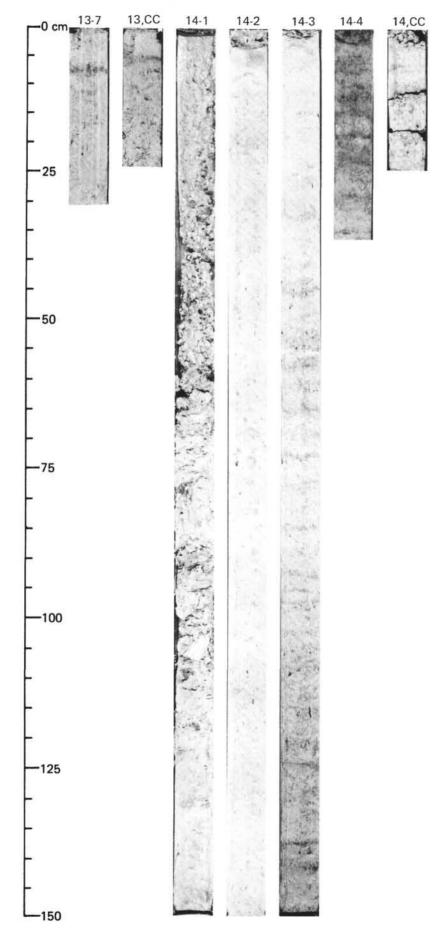
SITE 611 (HOLE 611C)


SITE 611 (HOLE 611D)

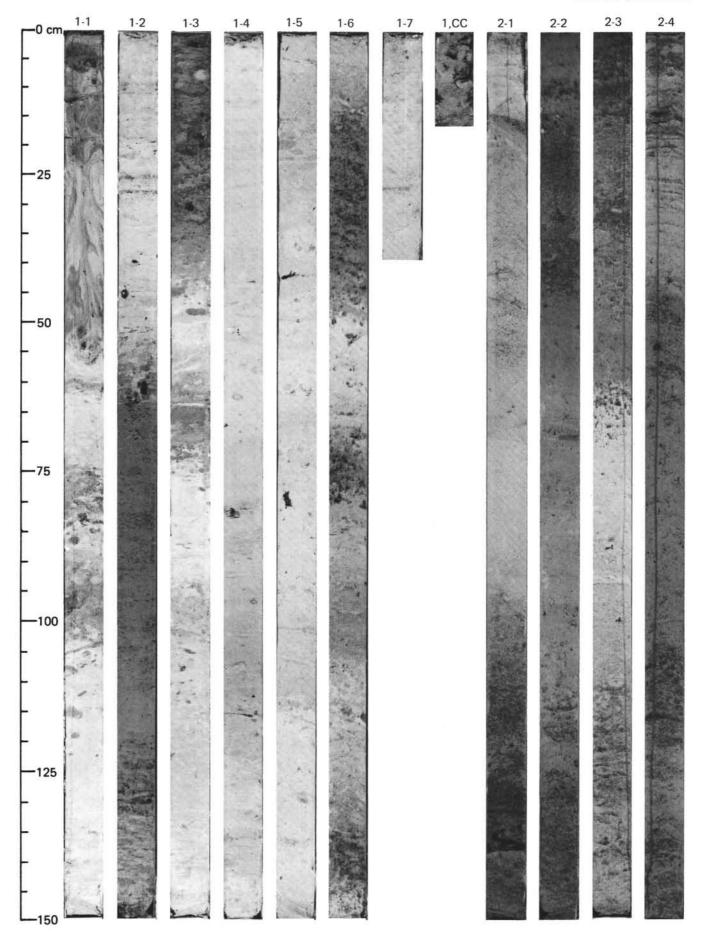
582

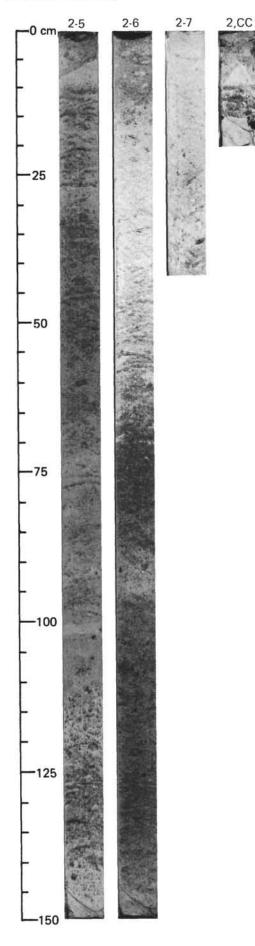

SITE 611 (HOLE 611D)

) cm	6-2	6-3	6-4	7-1	7-2	7-3	7-4	7-5	8-1	8-2	8-3	8-4
Ē	, cm				126	and the second		A & B					
-							ALL STOR	and the second s		and the second			in the
-:	25	*	e. t		C. Star			A CAL		i trans		the set	
-						ALL ALL	N. W. Co	1			al a la	-	the state of the s
-	50		11 11	1									
-		1						「「「「				ALL R. P.	1
	75			6,CC	14					4.			
			-			F							15
-	100	alle a	1. 1. 1. 1. 1. 1. 1. 1.				Aller -			A Carlot			
-		*			A CAR		and a second	193 - No.			*	and the second sec	
	25						ALL ALL	A TAT SALA	7,CC	1			-
-			and the second s		No. of Street,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		A Martin			1		A HANNE
Ŀ	50									4		i	r tog


SITE 611 (HOLE 611D)

cm8-5	8-6	8-7	9-1						S	SITE 611 (H	IOLE 611D)
		B,CC		9-2	9-3	9-4	9-5	9-6	9-7 9,CC		


586


-0 cm- ¹²⁻¹	12-2	12-3	12-4	12-5	12-6	13-1	13-2	13-3	13-4	13-5	13-6
-0 cm		्राम अस्त		12-5		a sea of				100	100 C
	12		1 APR		ALT	The .	AND		and the second		
		No.	1.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 70		1	- 2	1.0	16
		4	17		A LEAN			1. 200	100		nt.
_ 25					- Andrew	504				1 22	1
-25		「「「「「「「」」」		1 5			1	1.1	-	. 1	
	in the second				R without			and a second			
_		10 m 10			pmint.		1		1	12	
-					1	ALS.		27			
-50		and the second		1	5.6			1	100	1.4	1.12
-				1		E.		×	× *	icin -	N. W.
-	-	1.14		1.58		A STATE	- Tan	2	1	25	1
-			大学		10 7	1	1	2	- 34 - 4 2 - 5 - 5 - 5	12	~ 教物
-	1		1 AN			14	AL AN				100
-75			1 100	Carlo	10.00	A.	1	1	and the	-	and and
-	北方	a la	1995	i.	12,CC	Net 1	1.		1		
-	and the second	and the second	1					7			and a
-		-	No.	1.4.		105	a start	1	100		Constant of
-		1.35				The second		it .		an ann	in the second se
-100		STA-	1			Alter		in the		AL.Y	
-		12		-		Et.	14		and the	1.18	12
-		AP APP A				AL AL	1	No.		Art	100
-		1 Section		and the second		1sen	A Barris			100	
-	and the second	and a		N. N.		Part - C				are"	1. 11
-125		1		a state		- Ar			and the second		Je in
-	12	Farger	1					ing:		3	
-		and the second				and	1		2010 2011 2011 2011 2011 2011 2011 2011	-12	a de la compañía de l La compañía de la comp
- Participa	14	and the second s		and the second		r and					1
-	>			ANN AND			-	4 23	1	-	A DEC
-150	- M		1			de la de la	121 Million	Capitine (1	1000 - State	2000	

588

SITE 611 (HOLE 611E)

