DEEP SEA DRILLING PROJECT TECHNICAL REPORT No. 6

PRIME CONTRACTOR
 THE REGENTS, UNIVERSITY OF CALIFORNIA
 SCRIPPS INSTITUTION OF OCEANOGRAPHY University of California, San Diego

CORE BITS

Prepared For
 National Science Foundation Under Provisions of Contract NSF C-482

By

Deep Sea Drilling Project Scripps Institution of Oceanography University of California at San Diego
W. A. Nierenberg, Director Scripps Institution of Oceanography University of California, San Diego
M.N.A. Peterson, Principal Investigator

Deep Sea Drilling Project
Scripps Institution of Oceanography
University of California, San Diego

INTRODUCTION

It was early in the operational history of the Deep Sea Drilling Project that it became evident that core drilling bits for the coring and recovery of deep ocean sediments would have to be redesigned.

The hitting of unexpected very hard layers of chert or flint while drilling with tungsten carbide drag bits, milled cutter bits and diamond bits resulted in the almost complete destruction of the three aforementioned bit varieties. (Figures 1 and 2).

After careful study, it was agreed that a tungsten carbide insert roller bit might provide the solution to penetrating hard chert or flint and retain satisfactory core recovery in most sediments.

Tungsten carbide insert roller cone bits of three-and-four-cone cutter construction are now used exclusively in the DSDP coring program.

The evolution of core drilling bits from Leg 1 through Leg 32 of the Deep Sea Drilling Project is discussed in this report.

Scripps Institution of Oceanography of the University of California at San Diego is managing institution for the Deep Sea Drilling Project under contract to the National Science Foundation. The Project is a part of the Foundation's National Ocean Sediment Coring Program.

ACKNOWLEDGEMENTS

Overall supervision of redesigning Deep Sea Drilling Project core drilling bits by Operations Manager Valdemar F. Larson, a factor which enabled drillers to successfully cut through beds of chert or flint, is gratefully acknowledged.

Our thanks for the development, manufacture, and now exclusive use aboard D/V Glomar Challenger of the tungsten carbide insert roller cone bits of three-and-four-cone-cutter construction also go to cruise operations managers listed on Pages 45-46 Global Marine Inc. drilling supervisors, Smith Tool Company and the Marine Science Development Shop of Scripps Institution of Oceanography.

Invaluable technical assistance given by W. A. Roberts, Chairman of the Committee for the Evaluation of Core Bit Proposals, and all members of this Committee listed on Page 22 is acknowledged. Also providing technical assistance were the many oilfield bit manufacturers.

Chief Scientist Dr. N. Terence Edgar, John Eberhardt, of Standard Oil Company of California, and former Project Engineer Darrell L. Sims collaborated on an extremely helpful engineering study, "Methods to Penetrate Hard Formations in Deep Ocean Basins." See DSDP Technical Report No. 2.

The continuing help of Mr. A. R. McLerran, National Science Foundation Field Project Officer with DSDP, and the support of the Foundation is warmly acknowledged.

The support and guidance of the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES) in fostering the entire Project and its responses to scientific and technical imperatives is fully appreciated.

CONTENTS

Page
Discussion on performance of various core bits used by the 1-43
Deep Sea Drilling Project from Leg 1 through Leg 32.
Appendices $45-56$
Appendix A $45-46$Names and company affiliations of cruise operationsmanagers from Leg 1 through Leg 32.
Appendix B 47-56
"The Development of Rotary Core Drilling Bits for theDeep Sea Drilling Project" by L. L. Garner, SmithTool Company and T. E. Maxwell, Sun Oil Company(Printed with permission of the American Society ofMechanical Engineers).
Core Bit Summaries $57-148$

During the initial planning phases of the Deep Sea Drilling Project, it was generally thought that the sediments to be encountered in the deep ocean would be as extremely soft as those found during the preliminary drilling phase of Project Mohole (Phase I). Core bits faced with inserts of tungsten carbide or similar hard metal were considered to be adequate for general use. Diamond core bits were planned for, if and when needed: for example, in hard formations. (1) These had been the conclusions reached during the preliminary drilling Phase of Project Mohole regarding a single bit penetration, i.e., that diamonds would be capable of drilling soft, semi-hard and hard-to-drill rocks.(2) Coring bits and suitable wireline coring equipment were obtained from both Christensen Diamond Products Company and the Hycalog Company. (3 and 4) Both companies had been actively involved in floating vessel wireline coring operations. Christensen equipment had been used on the drilling ship "Cuss I" during the Phase I drilling of Project Mohole, while Drilling and Service Company (acquired by Hycalog in September of 1967) participated in coring work from the small coring vessels "Eureka" and "Caldrill" for various oil companies in the Gulf of Mexico and for Columbia U'niversity on the Blake Plateau East of the Bahamas in the Atlantic Ocean.

Based on discussions with these and other companies and individuals, the Project went to sea initially in August, 1968, with a variety of core bits, mostly of the drag or diamond design. A long-tooth milled cutter roller core bit was also included. (Figures 3-5). A $9-1 / 4^{\prime \prime} \times 2-1 / 2^{\prime \prime}$ diameter core bit was selected for the $8-1 / 4^{\prime \prime}$ drill collars. During Leg 1, diamond and diamond drag core bits were used primarily except at Site No. 4 where a milled cutter cross section core bit was used. Starting at Site No. 4, it became apparent that, where chert was found, the scientific objectives of that site probably would not be met. A massive section of chert was encountered at Site No. 7, where drilling rates as low as six inches per hour were recorded. The chert was very hard and abrasive, but seemed to fracture easily. Leg No. 1 Cruise Operations Manager Jim Dean concluded from this experience, "If it were possible to re-enter a hole and change bits, these sections could probably be penetrated more quickly and more easily with a 'button' roller bit. "(5)
(1) University of California Request For Proposal For Drill Ship And Answers Given At Proposer's Conference, June 9, 1967 to those responding to the RFP. (Not published).
(2) Experimental Drilling In Deep Water At La Jolla And Guadalupe Sites, Publication No. 914, National Academy of Sciences, National Research Council, Washington, D.C., 1961.
(3) Marine Rigid Barrel Wireline Coring System Series E-8710, Operating Manual, Christensen Diamond Products, Co., May 28, 1968.
(4) P. R. Crocker and R. L. Brakefield, 18-1/4" Outside Diameter Wireline Core Barrel Manual, Hycalog, Inc.
(5) Technical Report No. 1, Operations Resumes, Leg 1-18, Deep Sea Drilling Project, October 1971

Figure 1

Chert layers in the deep ocean sediments led to the early destruction of milled cutter core bits initially used in the Deep Sea Drilling Project.

Figure 2

Diamond core bits also faired poorly in the deep ocean chert layers.

Again, on Leg 2, chert formations were encountered. Several new core bits were tried that showed promise of increased durability and rates of penetration. These were the "Sinter-Set" crushed tungsten carbide bits and the "controlled bite" tungsten carbide drag bit. Following Leg 2, Cruise Operations Manager Dan R. Bullard said, "The massive set diamond bit remains the only solution to penetration in thick chert sections. Even with these bits, results have been marginal and costly." Massive set diamond core bits costing upwards to $\$ 8,000$ has not been budgeted for, and considering their marginal success, only a limited number were made available.

By the end of Leg 3, many of the techniques for recovering the soft oozes of the deep ocean had been worked out and an overall core recovery of 95% was achieved. Cruise Operations Manager Dean evaluated the three basic core bit designs at the end of Leg 3 as follows:
"(1) Tungsten Carbide Drag Bit - Does not penetrate and core satisfactorily in the hard formations.
"(2) Milled Cutter Bits - Susceptible to losing cones and could not take the punishment of the pounding from a floating vessel.
"(3) Diamond Bits - Have performed best in all types of formations. Two types of diamond bits have been used: the massive set (650 carats) and the blade, or drag, type. There had not been enough difference in performance of these two to economically justify the continued use of the massive set diamond bit."

During Leg 3, a larger diameter $9-7 / 8^{\prime \prime} \times 2-1 / 2^{\prime \prime}$ core bit was run. Even though there was no noticeable difference in the performance of this bit from the $9-1 / 4^{\prime \prime} \times 2-1 / 2^{\prime \prime}$ previously run, the $9-7 / 8^{\prime \prime}$ size was standardized by subjective evaluations in the field. Face discharge diamond bits were generally accepted as better. They did not wash the core away. Conventional water courses were retained at the center to keep the diamonds cool when very hard formations (chert or basalt) were encountered.

During Leg 4 in the Atlantic Ocean, two attempts were made to penetrate Horizon "A" chert without success. Drilling has shown that Horizon "A", a somewhat continuous seismic reflector mapped in various parts of the Atlantic Ocean by oceanographers was in most cases composed of chert layers of Eocene age. On both attempts, massive set diamond bits were completely demolished. (Figure 6). Leg 4 Cruise Operations Manager Bullard reported that, "viewed in light of other attempts to penetrate this chert section, it must be concluded that a diamond bit is incapable of penetrating this formation unless the section is thin or is not completely developed into chert.
"Apparently Horizon "A" consists of chert sections possibly one or two feet thick, laminated with other materials. In any event, it is not homogeneous chert section 15 to 31 meters thick as one might be led to believe. This probably accounts for earlier optimist reports indicating penetration of 31 meters of chert, when actually it was more in the order

Figure 3
$9-1 / 4^{\prime \prime} \times 2-1 / 2^{\prime \prime}$ milled cutter core bit furnished by Hycalog Company at the beginning of DSDP

Figure 4

Figure 5

This is a 9-1/4" $\times 2-1 / 2^{\prime \prime}$ diamond drag core bit which was among the first used by DSDP.

Figure 5A

Pictured is a $9-7 / 8^{\prime \prime} \times 2-1 / 2^{\prime \prime}$ controlled-bite diamond drag core bit.

Figure 6

This massive set diamond bit was just about completely demolished by chert layers.
of five to ten feet. However, the statistical chances of success in penetrating this formation with existing equipment are so slight that further attempts should be discouraged."

Bullard went on to suggest that a solution would be to seek aid from industry in constructing a $12-1 / 4$ " "insert" roller core bit. This was the type of bit normally used for drilling chert, and chances of penetrating chert sections would be greatly increased. "This," said Bullard, "points out the need for a re-entry system in expanding the scope of the Deep Sea Drilling Project, since even with a chert bit, more than one run would probably be necessary."

During Leg 4, "Sinter-Set" crushed carbide bits were used satisfactorily on the majority of holes. (Figure 7). Economic considerations dictated that these, or light set diamond bits (Figure 8), continued to be used as the basic drilling tool. During Leg 4, the throat diameter was decreased slightly to $2-15 / 32$ " to improve the entrance of the core. Face discharge water courses were used to prevent washing away of the soft oozes.

During Legs 5 and 6, light set diamond and "Sinter-Set" crushed tungsten carbide core bits were used. In addition, a "Sintered" drag core bit with small crushed diamonds was tested without showing any marked advantages. (Figure 9).

During equipment tests for Project Mohole Phase II, a tungsten carbide insert roller core bit had been tested to determine its suitability for the penetration of basalt. (Figure 10). Hole conditions deteriorated after a single insert core bit was run, and final evaluation was not made. The one run made a total of 55 feet in 28 hours and four minutes with 53 feet of recovery in basalt, and the bit worn out.(6)

Design of the bit was of a six-cutter construction that had been in common use by the Hughes Tool Company for milled cutter core bits. These bits have three frusto-conicalshaped core-forming cutters equally spaced around the core between three conically shaped outside or gauge cutters. (7) (Figure 8).

A conclusion made by Brown \& Root (Prime Contractors to the National Science Foundation for Project Mohole) at the time of the test, was that "the conventional carbide core bit performed very well and will be satisfactory to use in deep hole formations not suitable for diamond bit drilling. Such hard and friable formations as chert will destroy diamond bits."

Because of the many problems with cherts that were preventing the accomplishment of the scientific objectives to sample the entire sedimentary column of the deep ocean, the Deep Sea Drilling Project began an investigation that led to a report, "Engineering Study Methods to Penetrate Hard Formations in Deep Ocean Basins." While the major conclusion of the report was to develop a re-entry system for multiple core bit runs, it also recommended that an evaluation be made of the tungsten carbide insert roller core bit as soon as possible.(8)
(6) Stage A: Report - Equipment Evaluation Test Well At Uvalde, Texas, Mohole Project, Contract No. C260, May 1, 1965.
(7) Rotary Core Drilling, Hughes Tool Company, Houston, Texas, 1949.
(8) J. R. Eberhart, D. L. Sims, Dr. N. T. Edgar, Engineering Study - Methods To Penetrate Hard Formations In Deep Ocean Basins, June 30, 1969. (Published in the Deep Sea Drilling Project's Technical Report No. 2.

Figure 7
"Sinter-Set" crushed carbide core bits were effective in the soft oozes of the deep oceans.

Figure 8
"Light Set" diamond core bits with face discharge circulation and an upset face in the core-forming area were used during the initial 18 months of the Deep Sea Drilling Project.

Figure 9

A "Sinter-Set" drag core bit with crushed diamonds did not show any marked advantage.

Figure 10

This is a tungsten carbide insert roller core bit used during Phase II of the Mohole Project and at Sites 61 and 63 of the Deep Sea Drilling Project.

Two of the Project Mohole Phase II insert roller core bits were made available to the Deep Sea Drilling Project by the National Science Foundation and placed aboard D/ Glomar Challenger for Leg 6. Unfortunately, this voyage was in an area of the eastern Pacific Ocean that had insufficient soft sediment cover to support the drill collars required for the 35,000 to 40,000 pounds of weight thought to be required to penetrate hard formations with insert bits. One bit and the required crossover sub were lost in handling. A new crossover was then made available for Leg 7 and a trial was finally made at Sites No. 61 and No. 63. The new insert bit performed well. Torque was reduced, penetration rate in firm sediments was increased and 33 feet of basalt were cored with the recovery of 23 feet. The bearings were quite loose at the end of 11 hours. Although little chert was encountered, the insert roller core bit showed promise of extending the Deep Sea Drilling Project's capability of sampling the older, deeper sediments.

An attempt was made to purchase additional insert roller core bits from the Hughes Tool Company. However, as the company had generally discontinued the manufacture of core bits many years previously, it was reluctant to furnish special core bits in small lots. A four-month delivery time was forecast even in larger lots.

Because of funding limitations, alternate means to capitalize on these bits were sought.
Insert rock bits are designed to cut a small diameter core. (Figure 11). The usual tricone roller rock bit has a "spear point" on the No. 1 cone that extends to the center of the bit to remove the rock in the very center of the hole. When insert bits were first introduced, this "spear point" was provided. However, in very hard rocks, they had a tendency to be cut off during drilling. Bit manufacturers found that, if insert bits were built with the "spear point", penetration remained satisfactory even though a small core was cut. The core apparently broke off and gave no problem.

It was based on this latter design that the Deep Sea Drilling Project went to a bit manufacturer in nearby Los Angeles to see whether a satisfactory core bit could be manufactured from standard rock bit components welded onto the standard Hycalog core bit body. (DSDP, by late 1969, had standardized on a modified Hycalog barrel).

The Smith Tool Company agreed to build a prototype unit and have it ready for delivery in six weeks at Tahiti, for the beginning of Leg 9. This concept was greeted with a great deal of skepticism. Many thought recovery in the soft sediments would be greatly reduced. Despite this, a design was worked up. It was found that four, standard, Smith 7-5/8" type 9 C cutters could be fitted around the shank of a core bit. The resultant size was $10-1 / 8^{\prime \prime}$ with a 2-15/32" core diameter. Four cones, it was hoped, would provide for better stablization of the core once cut. This bit was completed on schedule and evaluated during Leg 9. (Figure 12).

During Leg 8, coring was accomplished with various diamond and "Sinter-Set" crushed carbide core bits. Penetration rates were low in the limestone and chert encountered. Some success was reported using a circle set diamond bit with 525 carats. (Figure 13).

Figure 11

Here's an insert rock bit used for "chert" drilling. Note that the bit cuts a small core in the center.

Figure 12

Pictured is the first insert core bit using standard rock bit cones. Note the lack of a core-forming guide of any consequence.

Figure 13

Penetration of chert on Leg 8 of DSDP with this circle set diamond bit gave engineers a little encouragement for the continued use of diamonds.

On Leg 9, the newly designed insert bit was run on Site No. 77 and Site No. 78. Of the 828 meters cored, 757 meters $(2,482$ feet) of sediments were recovered. The bits ability to recover the soft oozes of the deep ocean had been proven. Ironically, the sediments on these sites in the eastern Pacific Ocean were young and without cherts. Basement was reached on both sites, however little penetration of basalt was achieved, as the bit appeared to be severely "balled-up" by stiff clays. Design modifications were made to cover this "balling" by extending the core forming guide closer to the cones and extending the bit nozzles closer to the cones. From the appearance of the core, it appeared the bit had apparently tried to "walk". Stabilizer pads were therefore added to the body. On the remainder of Leg 9 sites, light set (250 carat) and massive set (500 carat) diamond core bits were run and performed satisfactorily. The light set diamond bit had a crown at the center to aid in core forming. (Figure 8).

On Leg 10, a second four-cone roller insert core bit was run in limestone, dolomite, and chert. The improvements suggested by the experience on Leg 9 had not yet been implemented. The penetration rate achieved was much better than that recorded by the diamond bits in use, but unfortunately core recovery was poor.

During Leg 11, off the east coast of the United States, the roller insert core bit had its first real extensive trial. Successes during this voyage and Leg 12 changed the whole Deep Sea Drilling Project outlook regarding core bits. Scientists were successful in reaching beyond the cherts into the older Mesozoic rocks and into basement. Time would show that most of the sediment objectives in the deep ocean could be reached with a single roller insert core bit.

The development of a core bit using standard rock bit components had allowed the Project to take advantage of modern-day rock-bit technology with its improved metallurgy and bearings. Its geometry also allowed larger bearings to be used. Bit costs were greatly reduced.

During Leg 11, 155 meters (508 feet) of hard formation cores were recovered. Both three and four cutter roller insert core bits were used. (Figures 14 and 15). On Site No. 100, for example, 200 meters were drilled (equivalent to the maximum penetration of Site No. 4, Leg 1, at the same location) before a core was attempted. The first core was chalk containing chert pebbles. The remaining 117 meters, prior to reaching basalt, were firm to hard limestone with scattered chert pebbles and/or thin chert layers. Fourteen meters of basalt were cored and five meters were recovered. Penetration rate in the basalt was two meters an hour. A drill bit life of $37-3 / 4$ hours was achieved.

Slow progress was reported in hard clay. At Site No. 107, operations were terminated at 77 meters because of the slow penetration ratio (3 meters/hour). The need for longer inserts in the cones was pointed out by Leg 11 Cruise Operations Manager Jim Dawson, who rightly prophesied that "this type bit may eventually become the standard for the Deep Sea Drilling Project."

Figure 14

Note the added core guide on this type 9 C 4-cone insert roller core bit which is also known as a "button" bit.

Figure 15

Initially, core bits were furnished from Christensen Diamond Products Company and Hycalog Company, both of whom had provided the wireline coring equipment in response to a University Request For Quotation.

Once evaluation of the various types of drag and diamond bits had been made, competitive bidding was used. Bits were purchased from Williams Diamond Bits Company, Varel, Christensen and Hycalog.

After the initial 18-month term of DSDP was completed and the Project was funded for an additional 30 months, a formal attempt was made to accelerate improvements of core bits that would meet the demands of deep ocean sediment coring without a large internal Project staff.

A Request For Proposal for the development of core bits was prepared and sent out concurrently with the trial of the new Smith insert roller core bit. Replies were solicited from all manufacturers of drill bits for the oil well drilling industry. A Bidders' Conference was held in January 1970, and a panel from the oil well drilling industry was convened in February, 1970, to evaluate the technical section of the proposals received. Mr. W. A. Roberts, Executive Vice President, Phillips Petroleum Company, was instrumental in setting up this AD HOC Committee, and graciously acted as chairman.

The AD HOC Committee members for evaluation of core bit proposals were:

W. A. Roberts, Chairman
B. J. Livesay
Jack Marsee
J. W. Cox
W. A. Glass
J. N. Pederson
R. E. Throckmorton
Lejeune Wilson
T. B. Houck
C. H. Young

A picture of the AD HOC Committee members is Figure 16.
Responsive Proposals had been received from American Coldset, Hycalog, Smith, Varel and Christensen prior to the February, 1970 AD HOC Committee meeting. To allow a meaningful evaluation to be made, the committee separated the Proposals into two categories; namely, diamond cutter core bits and roller cutter core bits. The evaluation procedure was also separated into two parts. The committee considered only the Smith and Varel Proposals responsive regarding roller cutter core bits. All five proposers were considered responsive regarding diamond core bits.

Figure 16

DRILLING TECHNIQUES ADVISORY PANEL - The newly named Drilling Techniques Advisory Panel for the highly successful Deep Sea Drilling Project, composed of members from the contractor drilling industry, met recently in La Jolla, California, with DSDP officials to review and evaluate proposers' bids for supplying core bits and to recommend their selection of a supplier. DSDP is managed by Scripps Institution of Oceanography of the University of California at San Diego, under contract to the National Science Foundation.
Left to right, first row, Darrell L. Sims, Project Engineer, DSDP; A.R. McLerran, National Science Foundation Special Assistant for Coring Operations with DSDP; Kenneth E. Brunot, Project Manager, DSDP; Panel Chairman W.A. (Bob) Roberts, Senior Vice President, Phillips Petroleum Company, Bartlesville, Oklahoma; V.F. Larson, Operations Manager, and James A. Dawson, Cruise Operations Manager, DSDP. Second row, B.J. Livesay, University of Tulsa; W.R. (Bob) Jack, Contracts and Planning Administrator with DSDP, and Carl H. Young, Helmerich \& Payne International Drilling Company, Tulsa, Oklahoma. Third row, John W. Cox, Transworld Drilling Company, Oklahoma City, Oklahoma; Lejeune Wilson, Santa Fe Drilling Company, Santa Fe Springs, California; Jan Pederson, The Offshore Company, Morgan City, Louisiana, and Ted Houck, Parker Drilling Company, Tulsa, Oklahoma. Last row, W.A. Glass, Big Chief Drilling Company, Oklahoma City, Oklahoma; Jack Marsee, Loffland Brothers Company, Tulsa, Oklahoma, and R. E. Throckmorton, Sharp Drilling Company, Midland, Texas. The core bit at the left is a tungsten carbide model, while a roller-type bit is at the right.

After completing their evaluation, the committee entered into a general discussion during which it was concluded that "in the view of all of those representatives of the drilling industry present on the committee, the roller bit cutter head was considered superior for successfully coring chert stringers encountered by the Deep Sea Drilling Project. This opinion was based on the general failure of diamond bits to successfully drill in either broken chert or massive chert formations."

Chert apparently tends to break up and roll under diamond bits, thus destroying the matrix metal holding the diamonds in place. The need to pursue roller core bits for the Deep Sea Drilling Project had become clearer.

The committee's technical evaluation of Smith's Proposal was the highest, and development of roller core bits has been continued with Smith Tool Company. As the results from Leg 12 were quite encouraging, the envisioned large-scale development program was not carried out. Negotiations with Smith Tool Company resulted in prices comparable with those in the oil well drilling industry.

During Leg 12, shaped inserts were tried for the first time. Previously only rounded inserts had been used. No noticeable difference in penetration rate was observed. Overall performance was excellent with high penetration rates and long bit life reported on both styles of bits.

Torque was noticeably reduced over that of diamond or drag type bits. Torque seldom exceeded $8,000 \mathrm{ft} \mathrm{lbs}$, and no bottomhole assembly failures occurred, even though hard formations were encountered before the bottomhole assembly was buried. In the Bay of Biscay, however, penetration rates in mudstone dropped to six-to-eight feet per hour. The need for longer teeth was evident.

During Leg 13, in the Mediterranean Sea, several cross-section roller core bits were evaluated. As a result of the solicitation of the Request For Proposal for the development of core bits, the Deep Sea Drilling Project was made aware that several of the Reed type PD-2 milled cutter core bits were still available, even though manufacture of these bits had been suspended indefinitely by Reed. (Figure 17). These core bits were superior for penetration in the lithified formations encountered in the Mediterranean Sea, and core recovery was adequate to meet scientific objectives. Later, development of extended insert roller bits made these core bits obsolete. At this time, however, these bits filled a need in some formations that could not be penetrated by the rounded insert or "button" bit.

During Leg 13, a cross-section "button" bit was also evaluated. The bit performed fairly well, but did not hold core gauge too well. The bearings in the bit were not comparable to those manufactured from standard rock bit components, and no further evaluations were made. (Figure 18).

Figure 17

While drilling and coring in the Mediterranean Sea during Leg 13, DSDP used this Reed PD-2 milled cutter cross section core bit with success.

Figure 18

Cross section insert core bit manufactured by Varel for the Deep Sea Drilling Project.

When maximum recovery was desired on Leg 13, light set diamond or "Sinter-Set" tungsten carbide core bits were used.

The "button" core bits were used on all but one site during Leg 14. Cruise Operations Manager Del Redding stated that "although the 'button' bit has a low penetration rate in the limey clays and mudstones, its ability to drill limestone, chert, and basalt, and to remain on bottom for long periods of time, make it almost a necessity."

One of the Reed cross-section milled tooth core bits was run at Site No. 139, where neither chert nor basalt was expected. The penetration rate did not increase as expected, but core recovery dropped far below an acceptable figure. The conclusion was that the Reed core bit was "walking" (i.e., not rotating about the axis of the bit) and drilling up the core before it could get in the barrel. It was suggested that stabilizer pads be provided as had been done on the "button" bits.

On Leg 15, the "button" bits were used on all but two sites in anticipation of chert layers. Extensive, interbedded, chert sections were encountered and successfully penetrated with the "button" bits. In no case was drilling terminated because of the inability to penetrate chert beds. Basement, diabase or basalt, was cored at five sites.

At Site No. 147 and No. 148 that had geochemical objectives, light set diamond core bits were used to improve recovery in very soft formations. The complete crown from one of these bits separated from the bit shank. This was apparently caused by failure of the matrix bond because of a defect in manufacturing.

At Site No. 146, re-entry was used to assure reaching basement in a location where Site No. 29 of Leg 4 had been terminated at 432 meters because of the inability to penetrate successive chert layers. The first core bit, a Smith "button" four cutter type, penetrated 701 meters or to within 61 meters of basement and when pulled, still had an estimated 25 to 30% additional life.

The need for extended insert cutter had been considered since Leg 11. Standard cutters could not be used, as that cones of normal rock bits with extended inserts were not of equal size. (9) After Leg 12, when the chisel or shaped insert (Smith Tool type 5) was shown to be ineffective in clays, Smith Tool Company developed special type four cutters of equal size. The type four insert differs from the type five in that the major chisel shaped insert rows extend $0.245^{\prime \prime}$ from the cone shell, as opposed to the $0.178^{\prime \prime}$ of insert extension of the type 5 cutting structure. As a special production run was required, these type 4 core bits were not available until Leg 16.
(9) L.L. Garner and T. E. Maxwell, "The Development of Rotary Core Drilling Bits for the Deep Sea Drilling Project"

On Leg 16, the type 4 extended insert core bit was evaluated. (Figure 19). The results were outstanding. Three bits of this type were run. Each one was not only able to cut chert and basalt successfully, but cut the whole section faster than the regular "button" bits. In addition, the only good recoveries in basalt were made with this type bit. Cruise Operations Manager Redding felt this new bit would have drilled the hard clays and shales that he encountered on Leg 14 in the Atlantic Ocean much faster than the regular "button" bits. He went on to predict that the type 4 core bit would be an outstanding advance because there had been numerous instances that holes had been abandoned before reaching basalt because of the slow penetration rates in the hard clays and shales. He further encouraged the evaluation of even longer shaped inserts.

Sealed bearings were run on Leg 16 for the first time. This one bit was used on four holes and penetrated 677 meters. The bearings were still in fair condition. The sealed bearing had lived up to expectations. The sealed-bearing design selected for trial was the same as that used successfully by Smith Tool Company in the oil fields. The design consisted of a Belleville spring seal, with a compensating system or equalizer to displace pressure buildups that occur in the system. The standard design and size availability made it possible to have them available early. U'p until this time, regular or non-sealed bearings had been used. As sea water was the circulating fluid, there was some concern over the need for the improved lubrication.

During Leg 17, extended insert roller core bits were used extensively. All performed very well, in that each successfully penetrated the hard chert stringers and was still capable of penetrating the basalt. In most instances the bits also penetrated the chert better than the compact inserts. The limiting factor on these bits seemed to be the bearing life, even though total rotating time and bit weight were low.

Average rotating time on Leg 17 was 11 hours 35 minutes, with bit weights of 2,000 to 30,000 pounds. It was suspected that the dull bearing grades ranging from five to eight were caused primarily by the continued pounding on the bottom of the hole from the heave of the vessel. The seals on several of the bearings had failed. Some of these failures appeared to have been caused by chert chips cutting away a portion of the shirttail of the legs and exposing the seal itself to the chips.

On Leg 18, type 4 extended insert bits were continued in use. Both three and four cutter bits were used. Cruise Operations Manager Lamar P. Hayes felt that the 3-cone sealed bearing bits with extended shaped inserts (type 4) gave the best performance. On one site this bit drilled 875 meters of sand with very little pump pressure. The shaped inserts were like new, but the bearings were loose. When a type 4 four-cutter core bit was used, it did not provide the faster penetration of the three-cutter bit.

A Reed PD-2 milled cutter cross section core bit was used with disappointing results. After drilling only 38 meters of sand and gumbo, the cones were sanded up and locked. Core recovery was only 21.2%. No further trials of milled cutter core bits have been made, and all have now been removed from D/N Glomar Challenger as obsolete.

Figure 19

This type 94 extended insert core bit with sealed bearings penetrated 1,185 meters (3,888 feet) of deep ocean sediments on Leg 17 of DSDP./29

In an effort to reduce core disturbance, a spring-loaded, extended, inner-core barrel coring system was used on Leg 18 at Site No. 173. (Figure 20). This required a special $3-9 / 16^{\prime \prime} \times 11-1 / 4^{\prime \prime}$ core bit that was fabricated at the Scripps Institution of Oceanography's Marine Science Development Shop from Reed insert cutters. It was very successful in recovering less disturbed cores. The inner core barrel extended four inches below the bit, directly on the formation. In firm or hard formations, the spring-tensioned inner barrel would compress upward until the cutter shoe was flush with the face of the core bit. The core recovered at Site No. 173 was 95% sand with some clay and thin chert streaks. Of 333 meters cored, a recovery of 59.5% was achieved, with 80 to 120 gpm of circulation used continuously. This would not have been possible with the standard coring assembly.

This inner-barrel system was used again on Leg 18 at Site 180. Here a fine silty sand would jam the inner barrel and only a core catcher of sediment would be recovered. These silts were very water sensitive, and the only successful technique for core recovery was to drydrill approximately one meter and then break circulation. This latter method increased torque and this caused the latch to fail, releasing the core barrel and resulting in zero recovery. The conclusion was that the extended inner barrel was not suitable for gumbo or sticky clay.

On Leg 19, a type 93 insert bit was used and did an excellent job. (Figure 21). The limiting factor still seemed to be the bearing life. On Leg 19, the average rotating time for four 3-cutter type 93 core bits was 25 hours 57 minutes, with an average penetration of 1,793 meters. Cutting structures were in excellent condition and they appeared almost new.

The weak point in the bearing was the thin portion of the shirttail that supported the seal. When worn, it exposed the seal to abrasive conditions. Once the seal failed, so did the bearing. (Figure 22).

At one time the wear was attributed to chert cuttings. However, chert was not encountered on Leg 19. The hardest formations other than the basalt basement were mudstone and limestone. On these bits, the core would be cut under gauge as the bearing gave out. On one occasion, a 1-1/2" core was reported.

In the deep abyssal plains of the Western Pacific on Leg 20, numerous problems were encountered because of chert layers. Type 94 insert bits were run on most sites. Many broken teeth were reported.

Again, on Leg 21 type 94 insert bits were run. Excessive shirttail wear was reported causing premature seal and bearing failure. Cruise Operations Manager T. C. Bangs reported that "the excellent performance of the sealed-bearing, shaped-insert bit makes re-entry appear unnecessary at this time."

On Leg 22, types 93 and 94 were run with good results. A journal bearing bit was run and performance appeared satisfactory.

Figure 20

A special insert core bit built at the SIO Marine Science Development Shop for use with an extended inner barrel coring system is inspected by Global Marine Inc. Drilling Superintendent J. P. Guess.

Figure 21

This type 93 extended insert core bit (3-cutter) with longer inserts was found to be especially good for penetrating shale.

Figure 22

Shirttail wear has been a problem. Additional hard facing was applied by Smith and has greatly reduced the problem.

A type 94 four-cutter bit penetrated 1,300 meters on Leg 23. The same type bit cored 80.5 meters of basalt on Leg 24 after penetrating 506 meters of sediments. Hard facing had been added to the shirttails, and this helped prevent premature bearing failure.

On Leg 25, the core forming guides were badly bent inward. (Figure 23). Recently a strong core guide has been developed and is now being evaluated. (Figure 24).

The journal bearing which had proven satisfactory on Legs 21 and 27 was given general useage. The four-cutter type 94 journal bearing core bit is now considered to have the best overall performance and is gradually becoming the accepted standard.

In areas of considerable clay, the longer toothed type 93 performs better and in areas of extensive chert, the type 9 C "button" core bit is preferred.

Experience has shown that the three-cutter core recovery rate is as high as with the fourcutter design and will achieve a faster rate of penetration. As might be expected, however, its bearings will not stand up as long.

SUMMARY

General

The development of roller insert core bits capable of penetrating the hard chert layers of the deep ocean sediments has been a rewarding one. These bits have allowed most of the scientific objectives of the Deep Sea Drilling Project's sediment coring program to be achieved without the need for time consuming multiple bit runs. Compromises have been required, however, and some scientific objectives have only partially been met. Continued improvement are needed.

Core Quality

In the soft oozes of the deep ocean, the recovery rate has been quite high regardless of the core bit type. These cores, when compared to cores taken by standard oceanographic piston corers, are of poor quality. Bedding planes, if remaining at all, are badly distorted. Paleontologists report that sections are often repeated. Improvement in core quality will probably require:

(1) A More Favorable Ratio Between Cutter and Core

The extended inner barrel system (Figure 20) offers this potential. The system used on Leg 18 had a $3-1 / 2^{\prime \prime} \times 2-1 / 2^{\prime \prime}$ core head as compared to the Project's usual $10-1 / 8^{\prime \prime} \times 2-1 / 2^{\prime \prime}$ core bit. (As the inner barrel actually does the cutting of the core, considerable disturbance is created. A non-rotating inner-inner could be fitted to overcome this)

\Rightarrow

Figure 23

Core guides often became flared and would actually impinge on the cutter. New, stronger guides are being evaluated.

Figure 24

This photograph shows the new, stronger core-forming guide now being used to overcome flaring. (See Figure 23): It is a Smith 4-cone type 94 with journal bearings.

(2) Constant Variable Weight

The use of bumper subs in the bottomhole assembly to compensate for vessel heave appears to give large weight fluctuations. Often it appears that the bit is lifted off bottom. In these situations, the inner barrel acts much like a pump. (The inner barrel is fitted with an upper check valve; the core catcher acts as the lower check valve). At best, the bumper subs provide only two coring weights.

A hydraulic Heave Compansation System is to be provided in the near future. This will allow the constant variable weights required.

In the extremely soft oozes at the ocean floor that do not require rotation, a piston corer system could be developed. A similar system is now under evaluation in conjunction with a pinger to locate the ocean floor.

Recovery

In the upper sediments (oozes) of the deep ocean, coring is accomplished without circulation and recovery is quite high. Once circulation is required, recovery drops from nearly 90% to approximately 40%. This lower recovery is caused by the core being washed away. Recovery improves as the sediments become indurated.

Present core bit designs allow nearly half of the circulation to be directed on to the core. The extended inner barrel system overcomes this problem and has demonstrated its ability to improve the recovery rate.

As discussed above, the extended inner barrel system, however, leads to core disturbance, and alternate methods are required. An encouraging concept would provide a pack-off at the core bit to direct circulation away from the core.

In interbedded formations (particularly when the thin chert streaks are found in soft chalk), recovery is very poor, less than 10\%. Constant weights that should be possible with a hydraulic heave compensation system along with the recent improvements in the core guide, should be an assist.

Penetration Rate

Usually this has not been a major concern since the use of the extended insert core bit came into general use. Compromises have been made on the amount of drilling weight used to avoid costly tool failures during the "spud-in" operations. Circulation rates have been kept to a minimum to improve bumper sub action.

With the greater interest now being shown by the scientific community in the recovery of basement rock, greater emphasis will be required in improving the hydraulics and weight/rotary programs used.

Improved hydraulics will probably require some type of pack-off between the core bit and inner barrel. This will allow the development of replaceable jet nozzles.

Weight/rotary programs will be helped by the development of the hydraulic heave compensation system.

Bit Life

The development of a core bit that used standard rock bit components has allowed the Deep Sea Drilling Project to enjoy the many recent bearing improvements being made by the rock bit industry.

Dull roller bearing core bits have usually shown severe brinelling of the bearing races. This only confirms the generally poor performance of bumper subs in compensating for vessel motion. A hydraulic heave compensation system should minimize the resultant weight fluctuations and lead to greatly increased bit life. The use of replaceable nozzles along with a good hydraulics program should also extend bit life.

Other

Innovations to meet the particular needs of various scientific programs will be required. The Deep Sea Drilling Project plans to maintain a close working relationship with the drilling industry: operator, contractor, service company and manufacturer.

An example of innovative tools developed and not yet utilized was a diamond bit with a collet-connected crown. (Figure 25).

Figure 25

Here's a special diamond core bit with removable collet connected crown. This bit will allow the use of standard size logging tools once total depth was reached or allow use of an extended inner barrel system in upper sediments. It was built by Hycalog.

DYNAMIC POSITIONING

AND RE-ENTRY

APPENDICES

SUMMARY OF CRUISE OPERATIONS MANAGERS

I	Galveston - Hoboken	James T. Dean	Mobil
II	Hoboken - Dakar	Dan R. Bullard, Jr.	Tenneco
III	Dakar - Rio	James T. Dean	Mobil
IV	Rio - San Diego	Dan R. Bullard, Jr.	Tenneco
V	San Diego - Honolulu	William F. Allinder	Texaco
VI	Honolulu - Guam	Dan R. Bullard, Jr.	Tenneco
VII	Guam - Honolulu	Valdemar F. Larson	DSDP
VIII	Honolulù - Tahiti	William F. Allinder	Texaco
IX	Tahiti - Galveston	James A. Dawson	Gulf
X	Galveston - Miami	William F. Allinder	Texaco
XI	Miami - Hoboken	James A. Dawson	Gulf
XII	Boston - Lisbon	William F. Allinder	Texaco
XIII	Mediterranean	Roy E. Anderson	Esso
XIV	Lisbon - San Juan	H. D. Redding	Phillips
XV	San Juan - Cristobal	Roy E. Anderson	Esso
XVI	Cristobal - Honolulu	H. D. Redding	Phillips
XVII	Honolulu - Honolulu	Thomas E. Maxwell	Sun
XVIII	Honolulu - Kodiak	Lamar P. Hayes	DSDP
XIX	Kodiak - Yokahama	Thomas E. Maxwell	Sun

XX	Yokahama - Suva
XXI	Suva - Darwin
XXII	Darwin - Colombo
XXIII	Colombo - Diibouti
XIV	Diibouti - Port Louis
XXV	Port Louis - Durban
XXVI	Durban - Fremantle
XXVII	Fremantle - Fremantle
XXVIII	Fremantle - Christchurch
XXIX	Christchurch - Wellington
XXX	Wellington - Guam
XXXI	Guam - Hakodate
XXXII	Hakodate - Honolulu
XXXIII	Honolulu - Tahiti
XXXIV	Tahiti - Callao

Lamar P. Hayes DSDP
Ted C. Bangs Union
Lamar Hayes DSDP
Ted C. Bangs Union
Lamar P. Hayes DSDP
John R. Shore Chevron
Lamar P. Hayes DSDP
Carl M. Morris Marathon
Lamar P. Hayes DSDP
Carl M. Morris Marathon
Valdemar F. Larson DSDP
John R. Shore Chevron
Lamar P. Hayes DSDP
Stan T. Serocki DSDP
Erick Janssson AMOCO

The Development of Rotary Core Drilling Bits for the Deep Sea Drilling Project

By
L. L. Garner, Smith Tool Co., and T. E. Maxwell, Sun Oil Co.
(C) Copyright 1972

Offshore Technology Conference on behalf of the American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc., American Association of Petroleum Geologists, American Institute of Chemical Engineers, American Society of Civil Engineers, American Society of Mechanical Engineers, Institute of Electrical and Electronics Engineers, Inc., Marine Technology Society, Society of Exploration Geophysicists, and Society of Naval Architects \& Marine Engineers.

This paper was prepared for presentation at the Fourth Annual Offshore Technology Conference held in Houston, Tex., May l-3, 1972. Permission to copy is restricted to an abstract of not more than 300 words. Illustrations may not be copied. Such use of an abstract should contain conspicuous acknowledgment of where and by whom the paper is presented.

ABSTRACT

Because of the increased emphasis on offshore drilling and exploration, there has been a need for rapid improvement in the design and development of rotary core drilling bits for deep ocean drilling.

During the last $3 \frac{1}{2}$ years, the Scripps Institution of Oceanography of the U. of California at San Diego has been under contract with the National Science Foundation for the management of the Deep Sea Drilling Project. The Deep Sea Project has entailed the drilling and coring of deep ocean sediments with short sections of basalt and chert basement rocks from the drill ship Glomar Challenger.

Cores of the soft sediments and hard basement rocks have been successfully drilled with excellent core recovery in water depths exceeding $20,000 \mathrm{ft}$. Numerous rotary core drilling bits were tested with varying results.

A variety of core bit cutting structure designs were required to drill and core both the unconsolidated soft sediments and the hard chert and basalt sections.

To date, 12 rotary core drilling bit designs have been tested on the Glomar Challenger. This paper will discuss the result of each design tested. The paper will also References and illustrations at end of paper.
review the present state of the art in rotary core drilling bit design and discuss the major areas of needed improvement. Areas of improved design that are needed are stabilization, improved sintered tungsten carbide insert cutting structures, sealed bearings, and general rotary core drilling bit design.

INTRODUCTION
The art of core drilling subsurface formations for the exploration of minerals, oil and scientific knowledge has progressed sporadically for over 100 years. Rotary roller core bit design has not changed much since the mid 1920's. This lack of development of rotary core bit design has been caused by a number of factors that include high coring costs, the development of improved diamond coring bits, improved logging techniques, and improved methods of obtaining small cores.

Because of the increased emphasis on offshore drilling and exploration, there has been a recent need for rapid improvement in the design and development of rotary core drilling bits for deep ocean drilling.

During the last $3 \frac{1}{2}$ years, the Scripps Institution of Oceanography of the U. of Califormia at San Diego has been under contract with the National Science Foundation for the management of the Deep Sea Drilling Project.

The operational objective of the Deep Sea Drilling Project is the sampling of deep ocean sediments along with a short section of basement formation at various worldwide sites for scientific purposes. The drill ship Glomar Challenger has been utilized for $3 \frac{1}{2}$ years to drill approximately 158 holes at 109 different sites. ${ }^{1-3}$

This paper discusses the various coring methods, the sequence of coring problems, and the development of roller-type, tungsten carbide insert, rotary core bits.

DEVELOPMENT HISTORY OF CORE BITS

Early Core Bit Development - 1863 to 1969
Leschat, a French engineer who was using a rotary drilling method for wells in 1861, probably developed the first rotary core bit in 1863.4 Leschat's rotary core bit was patterned after Kind's cable tool core barrel that was invented in 1854.4 Core barrels with diamond set bits were used with good success in the mining industry about this same period, but they were not introduced to the oil industry until 1921.4 One of the earliest rotary core bits was the "poor-boy", or "Texastype". This bit was made from a piece of pipe with saw teeth, either torch cut or hacksawed, to increase the rate of penetration (Fig. 1). General usage of this bit was reported around 1905.5

One of the first oil companies to work on the development of rotary coring tools was Shell Oil Co. Their first work was with a diamond core bit to obtain samples of coal in Holland. In 1919 Shell used a double barrel core tool to core in the Santa Fe Springs, Calif., oil field. 6 Rotary core drag bits with tungsten carbide teeth were first used in the oil fields about 1923.6

In 1926 Hughes Tool Co. and Reed Roller Bit Co. introduced the first roller core bits for hard rock formations. The wire-line core barrel was introduced by Reed Roller Bit Co. during the same period. ${ }^{6}$

During the period from 1930 to 1969, the development of rolling cutter core bits did not progress nearly as fast as the development of diamond core bits for oilwell drilling. The most popular hard formation rotary coring bits with roller cutters that were developed had six cutters. Three cutters cut the core and three cutters cut the gauge (Fig. 2).

Recent Rotary Core Bit Development
1969 to 1972
To better understand the why's and wherefore's of recent rotary core bit development,
perhaps a review of the operational objectives and procedures of the Deep Sea Drilling Project is in order.

The operational objective of the Deep Sea Drilling Project is the sampling of deep ocean sediments along with a short section of basement at various worldwide sites for scientific purposes. A highly efficient wire-line coring system is utilized which takes a nominal $2 \frac{1}{2}-\mathrm{in}$. diameter core up to 9 m (30 ft) in length. Work in the deep oceans prior to the beginning of the project in Aug., 1968, indicated that the sediments would, for the most part, be extremely soft and easy to penetrate. Therefore, a variety of drag (both tungsten carbide and diamond-faced) and long-tooth milled cutter roller core bits were provided. A few massive set (600 to 800 k) diamond core bits were also provided for coring harder formations and/or basement.

One of the scientific (and operational) findings of the early voyages in both the Atlantic and Pacific Oceans was the widespread occurrence of cherts in the sediments of the Eocene and older ages. Coring at many of the sites was terminated due to the early dulling of the core bits in these cherts. The diamond core bits, which had been in the project's contingency planning for the harder formations, performed somewhat better than the drag and soft formation roller bits; however, premature dulling was frequent. It appeared that chert fragments were breaking loose and destroying the matrix that held the diamonds.

An engineering study was prepared by the DSD project staff. 9 The basic conclusion of this study was that a re-entry system utilizing sonic techniques was the least expensive and most reliable method that would extend the drilling capabilities of the Glomar Challenger. The report investigated the improvement of core bits and concluded that "a bit that will core and drill both the soft unconsolidated formations and the very hard formations is not now commercially available and establishing a source for such bits in the quantity used on the DSDP (low by rock bit manufacturers' standards) is, at this time, economically unfeasible." The report did recommend, "evaluate as soon as possible the performance of the carbide insert roller core bits." and, "if the tests are promising, continue a search for a manufacturer." This study and report initiated the most recent developments in the rotary core drilling bits.

DESCRIPTION OF DEEP-SEA DRILLING PROJECT

 OPERATIONSCoring operations in the deep ocean basins differ from normal land coring operations primarily due to two reasons: (1) the physical
characteristics of the sediments penetrated and (2) mechanical limitations imposed by operating without the penetrated sediments being cased or having an annulus to provide a closed circulating system.

The typical drilling assembly (Fig. 3), including the basic wire-line core barrel assembly (Fig. 4), consists of some 330 ft of $8 \frac{1}{4}$-in. drill collars and four bumper subs with a total travel of 20 ft . The assembly weighs approximately $45,000 \mathrm{lb}$ in air and provides some $35,000 \mathrm{lb}$ effective weight at the bottom of the hole for the $10-1 / 8 \times 2 \frac{1}{2}$-in. OD bit.

In most areas of operation the sediments near the sea floor consist of soft unconsolidated oozes that become firmer as the depth increases. In many areas relatively thin layers of very dense, hard chert, 1 to 6 in. thick, are found interbedded in firm to hard clays, chalks and limestone. Occasionally the chert layers occur very near (within 100 ft) the ocean flood. These variances in types of sediments imposed mechanical limitations and dictated the use of varied techniques within the same hole.

Typical operations consist of taking punch cores; that is, lowering the drill string and penetrating the sediments by the application of weight only until firm sediments are encountered, usually at a depth of about 100 ft . During this phase of the operation, neither circulation of fluid nor rotation of the string is utilized. When firm to fairly firm sediments are encountered, the drill string is rotated 25 to 50 RPM and circulation is used as necessary to prevent excessive torque. As the sediments grade to firm and hard with depth, the drill string is rotated at 50 to 75 RPM and raw sea water used as a circulating medium as required. Typical drilling weights for the core bits vary from 10,000 to $30,000 \mathrm{lb}$.

When chert layers are encountered at such shallow depths that the hole above cannot provide lateral support for the bottom-hole assembly, they are penetrated by using low bit weight (less than 10,000 lb), low rpm (25 to 35), and maximum circulation rates. When the chert is encountered at deeper depths, maximum weight, rotational speeds of 50 to 75 rpm , and maximum circulation are used. Maximum weight and circulation rates and 75 rpm are used for the penetration of basalt and basement rock.

TUNGSTEN CARBIDE INSERT ROLLER CORE-BIT DEVELOPMENT FOR THE DSDP

The first tungsten carbide rotary core bit used on the DSD project was run on Leg 7. This core bit was a six-cutter design (Fig. 5). Core drill results during Leg 7, using the tungsten
carbide insert bit, indicated a tungsten carbide insert roller cutter would penetrate the ocean sediments. In cooperation with V. F. Larson of the DSDP, Smith Tool started a tungsten carbide core-bit development program in Oct., 1969.

Leg 7 (Aug.-Sept., 1969, Guam-Honolulu)
An insert roller core bit that had been procured for test work on Project Mohole was obtained and run on Leg 7 in the Western Pacific.

In preparation for Leg 9, a four-cone TCI core bit was developed (Fig. 6). This design concept was primarily the idea of V. F. Larson of the DSDP. The new core bit consisted of using a three-cone, proven oilfield Type 9 (hard formation) cutting structure and converting it for use as a core bit. The idea was to increase the bearing capacity over the six-cutter design used on Leg. 7. The 7-7/8-in. three-cone bearing size was selected, making the core bit $10-1 / 8-i n$. in diameter and the core size $2 \frac{1}{2}-i n$. in diameter. The 7-7/8-in. rock bit components were modified from proven parts and adapted to a specially manufactured core-bit body using a Hycolog connection for mating with the corebarrel assembly.

$$
\frac{\text { Leg } 9 \text { (Dec., 1969, and Jan., 1970, }}{\frac{\text { Tahiti-Galveston) }}{} \text { (}}
$$

Results indicated the new TCI Type 9 roller cutter core bit would successfully penetrate and core the soft oozes. Penetration rate was slowed at times because of bit balling in soft chalk and limestone. Due to the bit balling problems during Leg 9, it was decided to add extended jet nozzles in preparation for Leg 10. The flow from the extended jet nozzles was directed across the cone face (Fig. 7) to eliminate the core-bit balling problem.

Leg 10 (Feb.-March, 1970, Galveston-Miami)

Results with the bits with extended nozzles indicated the bit balling problem was corrected. Leg 10 core recoveries further indicated the need to concentrate on designing for better core recovery. The core guide (Fig. 7) was extended closer to bottom to provide more support and protection for the core while entering the inner barrel.

$$
\text { Leg } 11 \text { (May, 1970, Miami-Hoboken) }
$$

Using the core bits with extended core recovery. Extensive use of the TCI roller core bits was made, and this resulted in the recovery of several thick limestone sections that included the oldest cores found to date. In an attempt to increase penetration rates, several three-cone core bits were evaluated along with the four-cone core bits. Bit wobble from lack of stabilization contributed to recovery of undersized cores. It was agreed to add stabilizer lugs to the core-bit body (Fig. 7) to help
prevent undersized cores. To gain better penetration through the clays and ooze, a Type 5 three-cutter design was proposed. It was believed that the Type 5, which uses a chiselshaped carbide insert, would more effectively penetrate the softer sediments than the conventional double-cone inserts used on the Type 9 cutters. In order to increase the unit load per insert on the Type 5, it was agreed to try a three-cutter design. One additional advantage gained in using three-cutter vs the fourcutter design was that it allowed room for additional core guide support or protection for the core.

$$
\text { Leg } 12 \text { (June-July, 1970, Boston-Lisbon) }
$$

Bits with Type 9 cutters and bits with Type 5 shaped inserts were alternated. No noticeable change in rate of penetration was noted. Improved rates were needed. Erratic core diameters were experienced.

Leg 13 (Aug.-Sept., 1970, Mediterranean)

Many sites had large amounts of clay, and milled cutter bits were used to improve penetration. Rapid dulling of the cutting structure in hard formations made their use far from satisfactory. Extended inserts were investigated. It was decided to try the Type 4 extended chisel insert structure. The Type 4 insert structure differs from the Type 5 structure in that the major chisel-shaped insert rows extend 0.245 in . from the cone shell, as opposed to 0.178 in . of insert extension on the Type 5 cutting structure. Special cutters would be required as the cones of normal rock bits with extended inserts are not of equal size.

$$
\frac{\text { Leg } 14 \frac{(\text { Oct, }, 1970 \text { to Jan., } 1971,}{\frac{\text { South Atlantic })}{\text { and }}}}{\text {, }}
$$

Leg 15 (Oct., 1970 to Jan., 1971, Caribbean)
Extensive use of Type 94 TCI roller core bits was satisfactory in the deep ccean pelagic sediments. Penetration rates in soft limestones suffered. Stabilizer lugs were added to the bit body and helped maintain core size.

$$
\frac{\text { Leg } 16 \text { (Jan.-March, 1971, }}{\text { Colon-Panama-Honolulu) }}
$$

Type 94 rotary core bits with extended inserts saw general use, resulting in improved penetration and core recovery in all formations cored. Core recovery being the prime goal, the next program set up was to try sealed-bearing core cutters. Regular or nonsealed bearings, it was felt, could affect core size and recovery due to bearing wear. The sealed-bearing design selected for trial was the same as that used successfully in the oil fields (Fig. 8). The design consists of a Belleville spring seal,
with a compensating system or equalizer to displace pressure buildups that occur in the system. The standard design and seal size availability made it possible to try the first sealed-bearing roller cutter core bit on Leg 17.

In addition to testing sealed bearings for Leg 17, it was requested that the Type 4 cutting structure be used.

Leg 17 (March-May, 1971, Mid-Pacific)

Results with the sealed-bearing cutters indicated an increase in the average hours on bottom. Penetration rates again increased using the Type 4 structure. Inner row tungsten carbide insert wear (Fig. 9) was noticeable for the first time on the Type 4 structure.

In order to test the complete range of carbide structures that could be made available, the Type 3 structure was requested for tests on Leg 19. The Type 3 structure incorporates chisel-shaped inserts with $0.370-\mathrm{in}$. extension vs the $0.245-\mathrm{in}$. extension as used on the Type 4 (Fig. 10). (See Table 1, Leg 17 Bit Summary.)

Leg 19 (July-Aug., 1971, Bering Sea)

Drilling results on Leg 19 indicated yet another increase in coring rates by using the Type 3 cutting structure over the Types 4 and 5. Sealed-bearing cutters again indicated substantial increases in coring time on bottom over the nonsealed-cutter types. The leg shirttail (Fig. 11) during Leg 19 experienced considerable wear or the eroding away of the applied hardmetal protection to the core bit leg, thus exposing the seal and bearings to the formation.

Of particular interest was the absence of any noticeable parent metal wear on the Type 3 cutter (Fig. 11) as opposed to the Type 9. Parent metal wear is the wearing away of the rolling cutter cone outer-base metal between inserts.

Leg 19 results indicated a need to proceed with testing sealed friction bearings against the sealed roller bearings. The severe up-anddown motion experienced with drilling-ship drilling operations can cause shock loading to the bit even if bumper subs are employed. This shock causes the roller bearings in a cutter to "brinell" the cone and leg bearing races. This brinelling causes bearing journal spalling, which is the failure of the carburized bearing surfaces by fatigue. Laboratory test data published in 1969 (Fig. 12) indicates the advantage of friction bearings over roller bearings. 8 The use of sealed friction bearing cutters may reduce the brinelling action and result in longer cutter-bearing life.

Fig. 13 illustrates a cost per foot/cored
summary of various type coring bits as used on the DSD project (Table 2, Leg 19 Bit Summary).

SUMMARY

It was demonstrated that either a threeor four-cutter roller core bit would effectively core the ocean sediments, thus establishing a new precedent in cutter designs for rotary coring bits. Larger bearings, as used on the new three- and four-roller cutter designs when compared with the older six-cutter designs, resulted in greater bearing life.

Tungsten carbide inserted roller cutter core bits, Types 9, 5 and 4, all effectively core ocean sediments. The Type 4, and especially the Type 3 with extended chisel inserts, demonstrated the ability to core at a faster penetration, the oozes as well as the harder basement sections encountered. On Leg 17 it was demonstrated that as hours on bottom are increased, insert wear occurs on the inner insert tows. If this particular problem continues, an insert grade change will be tested on the inner row inserts.

Bit balling was corrected by adding extended nozzles directed at the cutters. Bit stabilizer lugs, sealed bearings and an improved core sleeve design all helped increase core recovery. The Type 3 with extended chisel inserts of 0.370 of an in. as compared to the Type 9 double-cone insert with 0.110 of an in. extension, indicated the Type 3 had little parent metal wear or damage on the rolling cutter external surface.

Leg 17 and Leg 19 drilling results indicated sealed-bearing roller core bits averaged 26 hours per bit vs 14.8 hours per bit for nonsealed roller TCI core bits.

A lesser cost per foot cored was demonstrated using extended insert roller core bits over other type core bits tried to date.

A core recovery analysis of three-cutter vs four-cutter roller bit designs was made by the DSDP. It was determined there is no significant difference in recovery rates, to date, between three-cutter vs four-cutter core bits.

CONCLUSIONS

Preliminary findings indicate the extended insert cutter designs with $0.370-\mathrm{in}$. extension evidenced less bearing failures due to brinelling as is usually the case with the double-cone Type 9 insert structure with a $0.110-\mathrm{in}$. extension. This phenomenon may in some way explain the inability of diamond bits to core effectively the soft and hard interspersed sections. Evidently the longer extended inserts help absorb or compensate for
uneven bit loading. Diamond bits in these sections demonstrated matrix destruction.

Roller cutter core-bit development will continue on the Deep Sea Drilling Project. Present plans call for the testing of various types of friction bearings. Future test legs will undoubtedly see new seal designs tried. Cutting structure improvements will continue; insert grade changes will be tested as hours on bottom are increased. Additional inserts may be tested on the nose rows of cutters.

To improve core recovery, extended, nonrotating inner core barrels have been used at several sites. This system does allow circulation while coring very soft material; however, it has been unable to achieve penetration in harder formation. More work is planned. Futur design considerations include a more true roll cutter profile to reduce the amount of inner row insert drag. This would reduce inner-row insert wear and permit better core-trimming ability.

The re-entry system was developed in 1970 and was used in conjunction with insert core bits to complete the evaluation of a site that had been terminated on an earlier voyage due to chert. This site in the Caribbean was completed in Dec., 1970. Since that time, due primarily to the improvements made in tungsten carbide rotary core bits during the last 2 years, multiple bits (re-entry) have not been required to meet the scientific objective of the project.

ACKNOWLFDGMENTS

The authors wish to thank Sun Oil Co. and Smith Tool Co. for the time and assistance required in the preparation of this paper. The authors are particularly grateful to the National Science Foundation and Scripps Institution of Oceanography at San Diego for their assistance and the use of photographs and information in Figs. 3, 4, 9, 11 and 13, and Tables 1 and 2.

Invaluable assistance and guidance were received from V. F. Larson, Acting Head, Engineering and Operations, Deep Sea Drilling Project.

REFERENCES

1. Eberhart, J. R.: "The Challenger's First Year of Operations", Ocean Industry (Dec., 1969) 4, No. 12.
2. "Reentry Tools Help Deep Sea Probe", Offshore (May, 1971) 31, No. 5 .
3. "Glomar Challenger Samples Seafloor Off Alaska", Offshore (Sept., 1971) 31, No. 10.
4. Brantly, J. E.: Rotary Drilling Handbook, 5 th ed., Palmer Publications, New York (1952) $224-225$.
5. McGray, Arthur W. and Cole, Frank W.: Oil Well Drilling Technology, 1st ed., U. of Oklahoma Press, Norman, Okla. (1958) 359370.
6. History of Petroleum Engineering, API

Publication, Washington, D. C. (1961) 364370, 793.
7. Eberhart, J. R., Sims, D. L. and Edgar, M. T.: "Methods to Penetrate Hard Formation in Deep Ocean Basins", Deep Sea Drilling Project (June 30, 1969).
8. Garner, L. L.: "New Concepts in Rotary Drilling Bits", Pacific Coast District, API Div. of Prod. (May, 1969).

TABLE 1 - LEG 17 - BIT SUMMARY, MID-PACIFIC

SUMMARY OF BITS USED

5-NEW SMITH $101 / 8 \times 27 / 16$ TYPE 94
(1) SEALED BEARING
4 CONE SEALED BEARING
(2) NON-SEALED BEARING
4 CONE NON-SEALED BEARING
1-NEW SMITH $101 / 8 \times 27 / 16$ TYPE 9
(3) 3-CUTTER
3 CONE NON-SEALED BEARING
(4) 4-CUTTER

TABLE 2 - LEG 19 - BIT SUMMARY, BERING SEA

SITE	$\begin{aligned} & \text { BIT DESCRIPTION } \\ & \text { SIZE } \\ & \hline \end{aligned}$	TYPE	SER, NO.	DISTANCE CORED CORE RECOVERY			ROT TIME Hr .	$\begin{gathered} \text { PENET. } \\ \text { RATE } \\ \hline \end{gathered}$	$\begin{aligned} & \text { BIT } \\ & \text { CONDITION } \\ & \hline \end{aligned}$	REMARKS
				M	M	\%		M / Hr.		
183	$101 / 8 \times 27 / 16$	$\text { (2) } 94 \mathrm{C}$	HC 757	361	150	41.5	8.38	61.5	$\begin{aligned} & \mathrm{T}-1, \mathrm{~B}-4 \text { IG } \\ & 1 \text { Broken Insert } \end{aligned}$	$\begin{aligned} & \text { Cored llm } \\ & \text { Basalt } \end{aligned}$
184	$97 / 8 \times 215 / 32$	Diamond	- 962	186	123.2	66.2	8.05	75.0	20\% Salvage	
184A	$101 / 8 \times 27 / 16$	$\begin{aligned} & 93 \text { cJs } \\ & \text { (1) (3) } \\ & \text { Center } \\ & \text { Bit } \end{aligned}$	HM 619 2371				2.63	254.0	$\mathrm{T}-1, \mathrm{~B}-1$ OK F/Rerun OK F/Rerun	Siltstone And Hard Mudstone
184B	$101 / 8 \times 27 / 16$ MULATIVE	$\begin{aligned} & 93 \mathrm{CJS} \\ & \text { (1) (3) } \end{aligned}$	HM 619 RERUN HM 619	121 121	$\begin{array}{r} 50.2 \\ 50.2 \\ \hline \end{array}$	41.6 41.6	$\begin{aligned} & 17.80 \\ & 20.43 \\ & \hline \end{aligned}$	$\begin{aligned} & 54.5 \\ & 80.0 \\ & \hline \end{aligned}$	$\mathrm{T}-2, \mathrm{~B}-8$ Cones Loose	Siltstone And Hard Mudstone Shirttail Cut Off Bearings Exposed
185	$101 / 8 \times 27 / 16$	$\begin{aligned} & 93 \mathrm{CJs} \\ & \text { (1) (3) } \end{aligned}$	HM 621	216	97.6	45.1	8.05	90.5	$\mathrm{T}-1, \mathrm{~B}-1 \mathrm{IG}$ OK F/Rerun	Drilled Soft To Firm Sediments - No Chert
186	$101 / 8 \times 27 / 16$	$\begin{gathered} 93 \mathrm{CJS} \\ \text { (1) (3) } \end{gathered}$	HM 620	245	140.7	57.6	11.58	80.0	Pull To Mud Line Move To Site 187	
187	$101 / 8 \times 27 / 16$ MULATIVE	$\begin{gathered} 93 \mathrm{c} \sqrt{s} \\ \text { (1)(3) } \end{gathered}$	HM 620 RERUN HM 620	$\begin{array}{r}36 \\ 281 \\ \hline\end{array}$	$\begin{array}{r} 6.8 \\ 147.5 \\ \hline \end{array}$	78.9 52.5	$\begin{array}{r} 2.92 \\ 14.50 \\ \hline \end{array}$	$\begin{array}{r}126.7 \\ 89.5 \\ \hline\end{array}$	T-1, B-2 IG	Bright Wear On Shirttail OK F/Rerun
188	$101 / 8 \times 27 / 16$	$\begin{aligned} & 93 \mathrm{cJs} \\ & \text { (1)(3) } \end{aligned}$	HM 621 RERUN	146	57.4	39.3	4.58	139.5	T-1, B-3 IG	OK F/Rerun
189	$101 / 8 \times 27 / 16$ MULATIVE	$\begin{aligned} & 93 \mathrm{CJs} \\ & \text { (1)(3) } \end{aligned}$	HM 621 RERUN HM 621	$\begin{array}{r}174 \\ 536 \\ \hline\end{array}$	$\begin{array}{r} 74.2 \\ 229.2 \\ \hline \end{array}$	42.6 42.7	$\begin{aligned} & 26.40 \\ & 39.03 \end{aligned}$	$\begin{array}{r} 33.0 \\ 57.3 \\ \hline \end{array}$	T-2, B-8 IG	Hard Sandstone And Mudstone
190	11 1/2	$\text { (1) }{ }^{93}$	0	142	85	59.9	4.37	143.5	$\mathrm{T}-1, \mathrm{~B}-1 \mathrm{IG}$ OK F/Rerun	
191	$101 / 8 \times 27 / 16$	$\text { (1) }{ }^{9 \mathrm{C}}$	GT 644	130	44.1	34	28.73	32.0	Pulled To Mud Line Move To Site 191A	Cored Mudstone \& $11 / 2 \mathrm{M}$ Basalt
191A	$101 / 8 \times 27 / 16$	$\text { (1) }^{9 \mathrm{C}}$	GT 644 RERUN	36	21.5	59.6	0.17	300.0	Not Pulled	Moved 400 Ft . East of 191
191B	$101 / 8 \times 27 / 16$ MULATIVE	${ }^{9 \mathrm{C}} \mathrm{C}^{(4)}$	GT 644 RERUN GT 644	$\begin{array}{r}9 \\ 175 \\ \hline\end{array}$	$\begin{array}{r}8.5 \\ 74.1 \\ \hline\end{array}$	94.5 42.3	$\begin{array}{r} 0.033 \\ 28.93 \\ \hline \end{array}$	$\begin{array}{r} 270.0 \\ 33.8 \\ \hline \end{array}$	T-3, B-5 OG	Site 191B Is 500 Ft . East of 191 Inserts Missing On Cone Nose
192	$101 / 8 \times 27 / 16$	$\begin{aligned} & 93 \mathrm{CJS} \\ & \text { (1) (3) } \end{aligned}$	HM 617	308	152.4	49.5	13.05	72.2	Pulled Above Mud Line - Moved To 192A	
192A	$101 / 8 \times 27 / 16$ MULATIVE	$\begin{aligned} & 93 \mathrm{CJs} \\ & \text { (1) (3) } \end{aligned}$	HM 617 RERUN HM 617	$\begin{array}{r}47 \\ 355 \\ \hline\end{array}$	$\begin{array}{r} 38.2 \\ 190.6 \\ \hline \end{array}$	81.3 53.6	$\begin{aligned} & 16.82 \\ & 29.87 \\ & \hline \end{aligned}$	$\begin{aligned} & 63.0 \\ & 66.8 \\ & \hline \end{aligned}$	T-2, B-8 OG Shirttails Cut Off Cone Missing	Mudstone 13M Basalt
193	$101 / 8 \times 27 / 16$	$\stackrel{9 C}{(2)(3)}$	FK 945	29	12.3	42.4	0.40	177.5	$\begin{aligned} & \mathrm{T}-1, \mathrm{~B}-1 \\ & \text { OK F/Rerun } \end{aligned}$	

SUMMARY OF BITS USED

1-SMITH $101 / 8 \times 2$ 7/16 TYPE 94C 4-CONE NON-SEALED BEARING
4-SMITH $101 / 8 \times 2$ 7/16 TYPE 93CJS 3-CONE SEALED BEARING
1-SMITH $101 / 8 \times 2$ 7/16 TYPE 9C 4-CONE SEALED BEARING
1-SMITH $101 / 8 \times 2$ 7/16 TYPE 9C 3-CONE NON-SEALED BEARING
1-RSS $111 / 2$ TYPE 93 4-CONE SEALED BEARING
1-WILLLAMS $97 / 8 \times 215 / 32$ DLAMOND BIT
(1) SEALED BEARING
(2) NON-SEALED BEARING
(3) 3-CUTTER
(4) 4-CUTTER

Fig. 5 - Six cutter tungsten carbide insert core bit (first tungsten carbide insert roller core bit used on DSDP.

Fig. 6 - Type 9 developed for Leg 9.

Fig. 7 - Three cone tungsten carbide roller core bit.

Fig. 8 - Sealed bearing assembly.

Fig. 9 - Four cone tungsten carbide roller core bit, Type 4.

Fig. II - Type 3 core bit used on Leg 19.

Fig. 10 - Insert extension comparison.

$\begin{aligned} & \text { WEIGHT } \\ & \text { LBS. } \end{aligned}$	RPM	HOURS					
		ROLLER BEARING				SEGMENT	BEARING
40,000	60	60	HRS	TO	SPALL	200 HRS	NO WEAR
50,000	60	35	HRS	T. 0	SPALL	200 HRS	NO WEAR
75,000	60		HRS	TO	SPALL	$\begin{aligned} & 30 \\ & \text { SEGMENT } \end{aligned}$	004 WEAR
100,000	60	7	HRS	TO	SPALL	$\frac{10}{\text { SEGMENT }}$.006 WEAR

Fig. 12-7-7/8 three-cone bearing test, roller vs segment bearing, compiled from 144 controlled laboratory tests.

CORE BIT SUMMARY

The following pages contain a performance record of every bit used by the Deep Sea Drilling Project from Leg 1 through Leg 32.

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT		CORES		TOTAL	UNT CORED		REMARKS	
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S / N	$\begin{aligned} & \text { n } \\ & \text { E } \\ & \frac{0}{4} \\ & \frac{1}{4} \end{aligned}$							
1	$\begin{aligned} & 25^{\circ} 51.5^{\prime} \mathrm{N} \quad 2^{\circ} 11.0^{\prime} \mathrm{W} \\ & \text { August } 12-16,1968 \\ & 2822 \mathrm{~m} \quad\left(9,259^{\prime}\right) \end{aligned}$	$9-1 / 4$ Christensen Diamond Drag Unknown	9	8	89	$\begin{gathered} 78 \mathrm{~m} \\ 256^{\prime} \end{gathered}$	$\begin{gathered} 49 \mathrm{~m} \\ 161^{1} \end{gathered}$	64	$\begin{array}{r} 770 \mathrm{~m} \\ 2,526^{\prime} \end{array}$	
2	$\begin{aligned} & 23^{\circ} 27.3^{\prime} \mathrm{N} \quad 92^{\circ} 35.2^{\prime} \mathrm{W} \\ & \text { August } 19-21,1968 \\ & 3572 \mathrm{~m} \quad\left(11,720^{\prime}\right) \end{aligned}$	$9-1 / 4$ Christensen Diamond Drag Unknown	6	6	100	$\begin{gathered} 35 \mathrm{~m} \\ 115^{\prime} \end{gathered}$	$\begin{aligned} & 14 \mathrm{~m} \\ & 46^{\prime} \end{aligned}$	38	144 m 472^{\prime}	
3	$\begin{aligned} & 23^{\circ} 01.0^{\prime} \mathrm{N} \quad 92^{\circ} \mathrm{O1} .4^{\prime} \mathrm{W} \\ & \text { August } 21-23,1968 \\ & 3747 \mathrm{~m} \quad\left(12,294^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-1 / 4 \\ & \text { Hycalog } \\ & \text { Diamond Drag } \\ & \text { \#9756 } \end{aligned}$	11	11	100	$\begin{gathered} 99 \mathrm{~m} \\ 325^{\prime} \end{gathered}$	$\begin{gathered} 48 \mathrm{~m} \\ 157 \end{gathered}$	42	$\begin{array}{r} 628 \mathrm{~m} \\ 2,060^{\prime} \end{array}$	
4	$\begin{aligned} & 24^{\circ} 28.68^{\prime} \mathrm{N} \quad 73^{\circ} 47.52^{\prime} \mathrm{W} \\ & \text { August } 29-31 \\ & \text { 5319m }\left(17,452^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-1 / 4 \\ & \text { Hycalog } \\ & \text { Roller, Milled Cutter } \\ & \text { " } 18 \end{aligned}$	5	5	100	$\begin{gathered} 45 \mathrm{~m} \\ 148^{\prime} \end{gathered}$	$\begin{aligned} & 14 m \\ & 46^{\prime} \end{aligned}$	31	259m $849{ }^{\prime}$	
4 A	$24^{\circ} 28.68^{\prime} \mathrm{N} \quad 73^{\circ} 47.52^{\prime} \mathrm{W}$ September 1-2, 1968 $5319 \mathrm{~m}\left(17,452^{\prime}\right)$	$\begin{aligned} & 9-1 / 4 \\ & \text { Hycalog } \\ & \text { Diamond Drag } \\ & \text { H9756 } \end{aligned}$	3	3	100	$\begin{aligned} & 18 \mathrm{~m} \\ & 59^{\prime} \end{aligned}$	$\begin{gathered} 62 m \\ 203^{\prime} \end{gathered}$	34	$\begin{aligned} & 207 \mathrm{~m} \\ & 680^{\prime} \end{aligned}$	
5	$24^{\circ} 43.59^{\prime} \mathrm{N} \quad 73^{\circ} 38.46^{\prime} \mathrm{W}$ September 4-5, 1968 $5354 \mathrm{~m}\left(17,567^{\prime}\right)$	9-1/4 Hycalog Diamond \#9757	3	3	100	$\begin{aligned} & 25 \mathrm{~m} \\ & 83^{\prime} \end{aligned}$	$\begin{gathered} 6 \mathrm{~m} \\ 20^{\prime} \end{gathered}$	25	$\begin{array}{r} 79 \mathrm{~m} \\ 259^{\prime} \end{array}$	

HOLE NO.	POSITION	CORE BIT	CORES			TOTAL AMOUNT CORED				REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S/N	$\begin{aligned} & \text { n } \\ & \frac{\vdots}{E} \\ & \stackrel{y}{4} \\ & \frac{9}{4} \end{aligned}$							
5A	$\begin{aligned} & 24^{\circ} 43.59^{\prime} \mathrm{N} \quad 73^{\circ} 38.46^{\prime} \mathrm{W} \\ & \text { September 6-10, } 1968 \\ & 5354 \mathrm{~m} \quad\left(17,567^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-1 / 4 \\ & \text { Hycalog } \\ & \text { Diamond } \\ & \text { \#9757 } \\ & \hline \end{aligned}$	7	3	43	$\begin{gathered} 34 \mathrm{~m} \\ 111 \end{gathered}$	$1 \mathrm{~m}$ 3^{\prime}	5	$274 m$ 900^{\prime}	
6	$30^{\circ} 50.39^{\prime} \mathrm{N} \quad 67^{\circ} 38.86^{\prime} \mathrm{W}$ September 12-14, 1968 $5124 \mathrm{~m}\left(16,812^{\prime}\right)$	$9-1 / 4$ Christensen Diamond Drag Unknown	6	6	100	$\begin{gathered} 46 \mathrm{~m} \\ 151^{\prime} \end{gathered}$	$\begin{aligned} & 26 \mathrm{~m} \\ & 85^{\prime} \end{aligned}$	56	$\begin{aligned} & 256 \mathrm{~m} \\ & 840^{\prime} \end{aligned}$.
6 A	$\begin{aligned} & 30^{\circ} 50.39^{\prime} \mathrm{N} \quad 67^{\circ} 38.86^{\prime} \mathrm{W} \\ & \text { September } 14-15,1968 \\ & 5124 \mathrm{~m} \quad\left(16,812^{\prime}\right) \end{aligned}$	$9-1 / 4$ Christensen Diamond Drag Unknown	1	1	100	$\begin{gathered} 8 \mathrm{~m} \\ 26^{\prime} \end{gathered}$	$\begin{gathered} 9 \mathrm{~m} \\ 29 \end{gathered}$	104	$\begin{aligned} & 24 m \\ & 78^{\prime} \end{aligned}$	Rerun
7	$30^{\circ} 08.04^{\prime} \mathrm{N} \quad 68^{\circ} 17.80^{\prime} \mathrm{W}$ September 16-17, 1968 $5181 \mathrm{~m} \quad\left(17,000^{\prime}\right)$	$9-1 / 4$ Clyistensen Diamond "Y2821	2	2	100	10 m 32^{\prime}	10 m 32'	100	$\begin{aligned} & 224 \mathrm{~m} \\ & 735^{\prime} \end{aligned}$	
7A	$30^{\circ} 08.04^{\prime} \mathrm{N} \quad 68^{\circ} 17.80^{\prime} \mathrm{W}$ September 18-19, 1968 5181 m ($17,000^{\prime}$)	$9-1 / 4$ Christensen Diamond \#Y2821	3	3	100	18 m $59{ }^{1}$	$\begin{gathered} 5 m \\ 16^{\prime} \end{gathered}$	26	$296 \mathrm{~m}$ 9711	Rerun

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT CORES				TOTAL AMOUNT CORED				REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S/N								
8	$35^{\circ} 23.01^{\prime} \mathrm{N} \quad 67^{\circ} 33.2^{\prime} \mathrm{W}$ October 4-6, 1968 5183m (17,006')	$9-1 / 4$ Hycalog Diamond DJ8 \#10083	3	2	66	$\begin{aligned} & 27 \mathrm{~m} \\ & 89^{\prime} \end{aligned}$	$\begin{gathered} 5 m \\ 16^{\prime} \end{gathered}$	17	$\begin{aligned} & 258 \mathrm{~m} \\ & 847^{\prime} \end{aligned}$	
8A	$\begin{aligned} & 35^{\circ} 23.0^{\prime} \mathrm{N} \quad 67^{\circ} 33.2^{\prime} \mathrm{W} \\ & \text { October 6-8, } 1968 \\ & 5183 \mathrm{~m} \quad\left(17,006^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-1 / 4 \\ & \text { Hycalog } \\ & \text { Diamond DJ8 } \\ & \text { \#10083 } \\ & \hline \end{aligned}$	4	3	75	$\begin{aligned} & 35 \mathrm{~m} \\ & 115^{\prime} \end{aligned}$	$\begin{gathered} 3 \mathrm{~m} \\ 10^{\prime} \end{gathered}$	8	$\begin{array}{r} 314 \mathrm{~m} \\ 1,030^{\prime} \end{array}$	Rerun
9	$\begin{aligned} & 32^{\circ} 46.4^{\prime} \mathrm{N} \quad 59^{\circ} 11.7^{\prime} \mathrm{W} \\ & \text { October } 22-25,1968 \\ & 4973 \mathrm{~m} \quad\left(16,316^{\prime}\right) \end{aligned}$	$9-1 / 4$ Christensen - Diamond Tungsten Carbide \#F1369	12	7	58	108 m 354^{\prime}	$\begin{gathered} 36 \\ 118^{\prime} \end{gathered}$	34	$\begin{gathered} 491 \mathrm{~m} \\ 1,613^{\prime} \end{gathered}$	
9 A	$\begin{aligned} & 32^{\circ} 46.4^{\prime} \mathrm{N} \quad 59^{\circ} 11.7^{\prime} \mathrm{W} \\ & \text { October } 25-30,1968 \\ & 4973 \mathrm{~m} \quad\left(16,316^{\prime}\right) \end{aligned}$	$9-1 / 4$ Christensen - Diamond Tungsten Carbide \#F1369	6	6	100	$\begin{gathered} 32 \mathrm{~m} \\ 105 \mathrm{~F} \end{gathered}$	$\begin{aligned} & 11 \mathrm{~m} \\ & 35^{\prime} \end{aligned}$	35	$\begin{array}{r} 834 \mathrm{~m} \\ 2,736^{\prime} \end{array}$	Rerun
10	$32^{\circ} 51.7^{\prime} \mathrm{N} \quad 52^{\circ} 12.9^{\prime} \mathrm{W}$ November 3-7, 1968 $4711 \mathrm{~m}\left(15,458^{\prime}\right)$	$\begin{aligned} & 9-1 / 4 \\ & \text { Hycalog-Diamond } \\ & \text { Tungsten - Blade Bit } \\ & \text { \#10085 } \end{aligned}$	20	20	100	171 m 561^{\prime}	$\begin{gathered} 76 m \\ 249 \end{gathered}$	45	$\begin{array}{r} 459 \mathrm{~m} \\ 1,506^{\prime} \end{array}$	
11	$29^{\circ} 56.6^{\prime} \mathrm{N} \quad 44^{\circ} 44.8^{\prime} \mathrm{W}$ November 9-10, 1968 $3571 \mathrm{~m}\left(11,716^{\prime}\right)$	$\begin{aligned} & 9-1 / 4 \\ & \text { Hycalog-Diamond } \\ & \text { Tungsten Drag } \\ & \text { "10085 } \end{aligned}$	1	1	100	$\begin{gathered} 9 \\ 29 \end{gathered}$	$\begin{gathered} 6 \mathrm{~m} \\ 20^{\prime} \end{gathered}$	66	$\begin{aligned} & 24 m \\ & 79^{\prime} \end{aligned}$	Rerun

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT	CORES			TOTAL A	UNT COR			REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S / N								-
11A	$29^{\circ} 56.6^{\prime} \mathrm{N} \quad 44^{\circ} 44.8^{\prime} \mathrm{W}$ November 10-12, 1968 $3571 \mathrm{~m}\left(11,716^{\prime}\right)$	$9-1 / 4$ Hycalog Tungsten Drag \#10085	8	3	37	$\begin{aligned} & 52 \mathrm{~m} \\ & 171^{\prime} \end{aligned}$	$\begin{gathered} 7 \mathrm{~m} \\ 23^{\prime} \end{gathered}$	13	$\begin{aligned} & 285 \mathrm{~m} \\ & 935^{\prime} \end{aligned}$	Rerun
12	$19^{\circ} 41.01^{\prime} \mathrm{N} \quad 26^{\circ} 02.0^{\prime} \mathrm{W}$ November 17-19, 1968 $4552 \mathrm{~m}\left(14,936^{\prime}\right)$	$\begin{aligned} & 9-1 / 4 \\ & \text { Hycalog } \\ & \text { Diamond Full Face } \\ & \text { \#10084 } \end{aligned}$	0 .	0	0	0	0	0	0	Lost bottomhole assembly.
12A	$19^{\circ} 41.01$ ' $\mathrm{N} \quad 26^{\circ} 02.01^{\prime} \mathrm{W}$ November 20, 1968 4556 m ($14,950^{\prime}$)	$\begin{aligned} & 9-1 / 4 \\ & \text { Hycalog - Sinter Set } \\ & \text { Tungsten Massive } \\ & \# 9754 \end{aligned}$	0	0	0	0	0	0	0	Lost bottomhole assembly.
12B	$19^{\circ} 41.7^{\prime} \mathrm{N} \quad 26^{\circ} 00.0^{\prime} \mathrm{W}$ November 20-21, 1968 4556 m (14,950')	```9-1/4 Hycalog Blade W/Tungsten #9754```	4	3	75	$\begin{aligned} & 26 \mathrm{~m} \\ & 85^{\prime} \end{aligned}$	$\begin{aligned} & \text { 2m } \\ & 7 \end{aligned}$	11	$\begin{aligned} & 218 \mathrm{~m} \\ & 715^{\prime} \end{aligned}$	
12 C	$19^{\circ} 41.7^{\prime} \mathrm{N} \quad 26^{\circ} 00.0^{\prime} \mathrm{W}$ November 21-22, 1968 $4556 \mathrm{~m} \quad\left(14,950^{\prime}\right)$	$\begin{aligned} & 9-1 / 4 \\ & \text { Hy calog } \\ & \text { Blade W/Tungsten } \\ & \text { "9754 } \end{aligned}$	12	10	83	$\begin{aligned} & 118 \mathrm{~m} \\ & 387 \end{aligned}$	$\begin{aligned} & 30 \mathrm{~m} \\ & 98^{\prime} \end{aligned}$	26	$\begin{aligned} & 115 \mathrm{~m} \\ & 377^{\prime} \end{aligned}$	
12D	$19^{\circ} 41.7^{\prime} \mathrm{N} \quad 26^{\circ} 00.0^{\prime} \mathrm{W}$ November 22-23, 1968 4556 m ($14,950^{\prime}$)	```9-1/4 Hycalog Blade W/Tungsten #9754```	5	4	80	$\begin{gathered} 58 \mathrm{~m} \\ 190^{\prime} \end{gathered}$	$\begin{gathered} 39 \mathrm{~m} \\ 128^{\prime} \end{gathered}$	68	$\begin{gathered} 58 \mathrm{~m} \\ 190^{\prime} \end{gathered}$	

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT CORES				TOTAL AMOUNT CORED				REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S/N	$\begin{aligned} & \frac{n}{0} \\ & \frac{1}{E} \\ & \frac{\Phi}{4} \end{aligned}$					$\begin{aligned} & \hline \lambda \\ & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 20 \\ & \hline 0 \\ & \hline \end{aligned}$		
17A	$28^{\circ} 02.74^{\prime} \mathrm{S} \quad 6^{\circ} 36.15^{\prime} \mathrm{W}$ Dec 31, 1968 - Jan 2, 1969 4272m $(14,017)$	```9-1/4 Hycalog Roller Milled Collar #22```	4	4	100	$\begin{gathered} 35 \mathrm{~m} \\ 115^{\prime} \end{gathered}$	$\begin{gathered} 35 \mathrm{~m} \\ 114^{\prime} \end{gathered}$	100	$\begin{aligned} & 101 \mathrm{~m} \\ & 3311 \end{aligned}$	
178	$\begin{aligned} & 28^{\circ} 02.7^{\prime} \mathrm{S} \quad 6^{\circ} 36.15^{\prime} \mathrm{W} \\ & \text { Dec 31, } 1968-\operatorname{Jan} 2,1969 \\ & 4272 \mathrm{~m} \quad\left(14,017^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-1 / 4 \\ & \text { Hycalog } \\ & \text { Rolled Milled Collar } \\ & \text { \#22 } \end{aligned}$	5	4	80	$\begin{gathered} 37 \mathrm{~m} \\ 121^{1} \end{gathered}$	$\begin{gathered} 36 \mathrm{~m} \\ 118^{\prime} \end{gathered}$	96	$\begin{aligned} & 124 \mathrm{~m} \\ & 407 \end{aligned}$	
18	2758.72'S $08^{\circ} 00.70^{\prime} \mathrm{W}$ January 3-4, 1969 $4014 \mathrm{~m} \quad\left(13,172^{\prime}\right)$	$\begin{aligned} & 9-1 / 4 \\ & \text { Christensen } \\ & \text { Diamond Drag } \\ & \text { \#61805 } \end{aligned}$	7	7	100	$\begin{gathered} 53 \mathrm{~m} \\ 174^{\prime} \end{gathered}$	$\begin{gathered} 53 \mathrm{~m} \\ 174^{\prime} \end{gathered}$	99	$\begin{aligned} & 178 \mathrm{~m} \\ & 584^{\prime} \end{aligned}$	Basalt
19	$\begin{aligned} & 28^{\circ} 32.08^{\prime} \mathrm{S} \quad 23^{\circ} 40.63^{\prime} \mathrm{W} \\ & \text { January } 7-9,1969 \\ & 4674 \mathrm{~m} \quad\left(15,337^{\prime}\right) \end{aligned}$	$9-1 / 4$ Christensen Diamond \#PE61536	12	12	100	$\begin{aligned} & 103 \mathrm{~m} \\ & 338^{\prime} \end{aligned}$	$\begin{gathered} 98 \mathrm{~m} \\ 321^{1} \end{gathered}$	94	$\begin{aligned} & 148 \mathrm{~m} \\ & 486 \end{aligned}$	Basalt
20	$\begin{aligned} & 28^{\circ} 31.57^{\prime} \mathrm{S} \quad 26^{\circ} 50.58^{\prime} \mathrm{W} \\ & \text { January } 10-14,1969 \\ & 4480 \mathrm{~m} \quad\left(14,700^{\prime} \mathrm{W}\right) \end{aligned}$	$9-1 / 4$ Christensen Diamond 61536 \#F2872	1	1	100	$\begin{gathered} 6 \mathrm{~m} \\ 20^{\prime} \end{gathered}$	$\begin{gathered} 6 m \\ 20^{\prime} \end{gathered}$	95	$\begin{gathered} 6 m \\ 20^{\prime} \end{gathered}$	
20A	$\begin{aligned} & 28^{\circ} 31.47^{\prime} \mathrm{S} \quad 26^{\circ} 50.73^{\prime} \mathrm{W} \\ & \text { January } 10-14,1969 \\ & 4516 \mathrm{~m} \quad\left(14,819^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-1 / 4 \\ & \text { Christensen } \\ & \text { Diamond } 61536 \\ & \text { F2872 } \end{aligned}$	4	4	100	$\begin{aligned} & 25 m \\ & 83^{\prime} \end{aligned}$	$\begin{aligned} & 11 \mathrm{~m} \\ & 35^{\prime} \end{aligned}$	42	$\begin{gathered} 64 m \\ 210^{\prime} \end{gathered}$	Rerun

HOLE NO.	POSITION	CORE BIT CORES				TOTAL AMOUNT CORED				REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S/N	$\begin{aligned} & \frac{n}{0} \\ & \frac{\pi}{E} \\ & \frac{ \pm}{4} \end{aligned}$							
20B	$\begin{aligned} & 28^{\circ} 31.47^{\prime} \mathrm{S} \quad 26^{\circ} 50.73^{\prime} \mathrm{W} \\ & \text { January } 10-14,1969 \\ & 4516 \mathrm{~m} \quad\left(14,8199^{\prime}\right) \end{aligned}$	$9-1 / 4$ Christensen Diamond 61536 \#F2872	1	1	100	$\begin{gathered} 9 \mathrm{~m} \\ 29^{\prime} \end{gathered}$	$\begin{gathered} 9 \mathrm{~m} \\ 29^{\prime} \end{gathered}$	100	$\begin{aligned} & 15 \mathrm{~m} \\ & 49^{\prime} \end{aligned}$	Rerun
20C	$28^{\circ} 31.47^{\prime} \mathrm{S} \quad 26^{\circ} 50.73^{\prime} \mathrm{W}$ January 10-14, 1969 4505 m (14,780')	$\begin{aligned} & 9-7 / 8 \\ & \text { Hycalog } \\ & \text { Diamond OB5FD-R WC } \\ & \text { \#10190 } \end{aligned}$	6	6	100	$\begin{aligned} & 50 \mathrm{~m} \\ & 164^{\prime} \end{aligned}$	$\begin{gathered} 49 \mathrm{~m} \\ 161^{1} \end{gathered}$	98	$\begin{gathered} 70 \mathrm{~m} \\ 230^{\prime} \end{gathered}$	Basalt - bit in good condition.
21	$28^{\circ} 35.10^{\prime} \mathrm{S} \quad 30^{\circ} 35.85^{\prime} \mathrm{W}$ January 15-17, 1969 $2111 m\left(6,928^{\prime}\right)$	```9-7/8 Hycalog Diamond OB5FD-R WC #10190```	9	9	100	$\begin{gathered} 71 \mathrm{~m} \\ 232^{\prime} \end{gathered}$	$\begin{gathered} 73 \mathrm{~m} \\ 240^{\prime} \end{gathered}$	100	130 m 427^{\prime}	Rerun
21A	$\begin{aligned} & 28^{\circ} 35.10^{\prime} \mathrm{S} \quad 30^{\circ} 35.85^{\prime} \mathrm{W} \\ & \text { January } 15-17,1969 \\ & 211 \mathrm{~lm} \quad\left(6,928^{\prime}\right) \end{aligned}$	9-7/8 Hycalog Diamond ${ }^{\#} 10190$	3	3	100	$\begin{aligned} & 27 \mathrm{~m} \\ & 89^{1} \end{aligned}$	$\begin{aligned} & 27 m \\ & 89^{\prime} \end{aligned}$	99	$\begin{gathered} 81 \mathrm{~m} \\ 266^{\prime} \end{gathered}$	Rerun. Combination tungsten and diamond bit in good condition. Hole bad - no cores.
22	$30^{\circ} 00.35^{\prime} \mathrm{S} \quad 35^{\circ} 15.00^{\prime} \mathrm{W}$ January 18-20, 1969 $650 \mathrm{~m} \quad\left(2,134^{\prime}\right)$	9-7/8 Hycalog Diamond \#10190	5	5	100	$\begin{gathered} 45 \mathrm{~m} \\ 147 \mathrm{r} \end{gathered}$	$\begin{gathered} 39 \mathrm{~m} \\ 128^{\prime} \end{gathered}$	87	$\begin{aligned} & 242 \mathrm{~m} \\ & 794^{\prime} \end{aligned}$	Rerun. Hole bad - no cores. Bit in good condition.

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT	CORES			TOTAL AMOUNT CORED				REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S / N	$\begin{aligned} & \text { n } \\ & E \\ & \frac{E}{2} \\ & \frac{9}{4} \end{aligned}$							
23	$\begin{aligned} & 6^{\circ} 08.75 \text { 'S } \quad 31^{\circ} 02.60^{\prime} \mathrm{W} \\ & \text { February } 1-4,1969 \\ & 5079 \mathrm{~m} \quad\left(16,664^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-1 / 4 \\ & \text { Hycalog } \\ & \text { Diamond DJ8P } \\ & \text { \#10291 } \end{aligned}$	9	7	77	72 m 236^{\prime}	$\begin{aligned} & 23 \mathrm{~m} \\ & 75^{\prime} \end{aligned}$	31	207m 6791	
24	$6^{\circ} 16.30^{\prime} \mathrm{S} \quad 30^{\circ} 53.53^{\prime} \mathrm{W}$ February 4-6, 1969 5148 m ($16,889^{\prime}$)	$\begin{aligned} & 9-1 / 4 \\ & \text { Hycalog } \\ & \text { Diamond DJ8P } \\ & \text { \#10291 } \end{aligned}$	4	2	50	$\begin{gathered} 36 m \\ 118^{\prime} \end{gathered}$	$\begin{gathered} 6 \mathrm{~m} \\ 20^{\prime} \end{gathered}$	14	$\begin{aligned} & 234 \mathrm{~m} \\ & 768^{1} \end{aligned}$	Rerun
24A	$6^{\circ} 16.58^{\prime} \mathrm{S} \quad 30^{\circ} 53.46^{\circ} \mathrm{W}$ February 6-8, 1969 $5148 \mathrm{~m}(16,889$)	9-1/4 Hycalog Tungsten SS6WC \#10239	4	4	100	$\begin{gathered} 35 \mathrm{~m} \\ 115^{\prime} \end{gathered}$	$\begin{gathered} 4 m \\ 13^{\prime} \end{gathered}$	9	$\begin{array}{r} 551 \mathrm{~m} \\ 1,808^{1} \end{array}$	
25	$0^{\circ} 31.00^{\prime} \mathrm{S} \quad 39^{\circ} 14.40^{\prime} \mathrm{W}$ February 10-11, 1969 $1916 \mathrm{~m}\left(6,286^{\prime}\right)$	$\begin{aligned} & 9-1 / 4 \\ & \text { Hycalog } \\ & \text { Tungsten SS6WC } \\ & \text { \#10240 } \end{aligned}$	9	5	55	$\begin{gathered} 64 m \\ 210^{\prime} \end{gathered}$	26 m 85^{\prime}	40	$\begin{gathered} 65 \mathrm{~m} \\ 212^{\prime} \end{gathered}$	
25A	$\begin{aligned} & 0^{\circ} 31.00^{\prime} \mathrm{S} \quad 39^{\circ} 14.14^{\prime} \mathrm{W} \\ & \text { February } 11,1969 \\ & 1916 \mathrm{~m} \quad\left(6,286^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-1 / 4 \\ & \text { Hycalog } \\ & \text { Tungsten SS6WC } \\ & \text { \#10305 } \end{aligned}$	3	1	33	$20 \mathrm{~m}$ 65^{\prime}	$\begin{gathered} 3 \mathrm{~m} \\ 10^{\prime} \end{gathered}$	14	$\begin{array}{r} 77 \\ 253^{\prime} \end{array}$	Rerun
26	$10^{\circ} 53.55^{\prime} \mathrm{N} \quad 44^{\circ} 02.57^{\prime} \mathrm{W}$ February 14-16, 1969 $5169 \mathrm{~m}\left(16,954^{\prime}\right)$	$\begin{aligned} & 9-1 / 4 \\ & \text { Hycalog } \\ & \text { Tungsten SS6WC } \\ & \text { \#10305 } \end{aligned}$	1	0	0	$\begin{aligned} & 10 \mathrm{~m} \\ & 32^{\prime} \end{aligned}$	0	0	$\begin{gathered} 9 \mathrm{~m} \\ 29 \end{gathered}$	

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT	CORES			TOTAL A	UNT CORED			REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S / N	$\begin{aligned} & \frac{n}{0} \\ & E \\ & \text { E } \\ & \frac{\Phi}{4} \end{aligned}$							
26A	$10^{\circ} 53.55^{\prime} \mathrm{N} \quad 44^{\circ} 02.57^{\prime} \mathrm{W}$ February 16-20, 1969 5185m ($17,014^{\prime}$)	9-1/4 Hycalog - Tungsten SS6WC \#10305	5	5	100	$\begin{gathered} 44 \mathrm{~m} \\ 144^{\prime} \end{gathered}$	$\begin{aligned} & 14 \mathrm{~m} \\ & 46^{\prime} \end{aligned}$	31	$\begin{gathered} \text { 48m } \\ 157^{\prime} \end{gathered}$	Rerun
27	$15^{\circ} 51.39^{\prime} \mathrm{N} \quad 56^{\circ} 52.76^{\prime} \mathrm{W}$ February 24-26, 1969 $5521 \mathrm{~m}\left(17,223^{\prime}\right)$	$\begin{aligned} & 9-1 / 4 \\ & \text { Hycalog } \\ & \text { Diamond DJ8P } \\ & \text { \#10292 } \end{aligned}$	7	7	100	$\begin{gathered} 56 \mathrm{~m} \\ 184^{\prime} \end{gathered}$	$\begin{aligned} & 30 \mathrm{~m} \\ & 98^{\prime} \end{aligned}$	52	$\begin{aligned} & 170 \mathrm{~m} \\ & 558^{\prime} \end{aligned}$	
27A	$15^{\circ} 51.39^{\prime} \mathrm{N} \quad 56^{\circ} 52.76^{\prime} \mathrm{W}$ February 26-27, 1969 $5521 \mathrm{~m}\left(17,223^{\prime}\right)$	$\begin{aligned} & 9-1 / 4 \\ & \text { Hycalog } \\ & \text { Diamond DJ8P } \\ & \text { \#10292 } \end{aligned}$	5	5	100	$\begin{gathered} 46 \mathrm{~m} \\ 151^{1} \end{gathered}$	$\begin{gathered} 32 \mathrm{~m} \\ 105^{\prime} \end{gathered}$	68	$\begin{gathered} 81 \mathrm{~m} \\ 266^{\prime} \end{gathered}$	
28	$\begin{aligned} & 20^{\circ} 35.19^{\prime} \mathrm{N} \quad 65^{\circ} 37.33^{\prime} \mathrm{W} \\ & \text { March } 3-7,1969 \\ & 5521 \mathrm{~m} \quad\left(18,109{ }^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-1 / 4 \\ & \text { Hycalog } \\ & \text { Diamond DJ8P } \\ & \text { 10291 } \end{aligned}$	9	7	77	$\begin{gathered} 65 \mathrm{~m} \\ 212^{\prime} \end{gathered}$	$\begin{aligned} & 15 \mathrm{~m} \\ & 49^{\prime} \end{aligned}$	21	$\begin{array}{r} 405 m \\ 1,329 \end{array}$	Rerun
29	$14^{\circ} 47.11^{\prime} \mathrm{N} \quad 69^{\circ} 19.36^{\prime} \mathrm{W}$ March 9-10, 1969 $4247 \mathrm{~m} \quad\left(13,933^{\prime}\right)$	$\begin{aligned} & 9-1 / 4 \\ & \text { Hycalog } \\ & \text { Tungsten SS6WC } \\ & \text { \#10242 } \\ & \hline \end{aligned}$	20	19	95	$\begin{aligned} & 163 \mathrm{~m} \\ & 535 \end{aligned}$	$\begin{gathered} 85 m \\ 279 \end{gathered}$	52	$\begin{aligned} & 228 \mathrm{~m} \\ & 748^{\prime} \end{aligned}$	
29A	$14^{\circ} 47.11^{\prime} \mathrm{N} \quad 69^{\circ} 19.36^{\prime} \mathrm{W}$ March 10-11, 1969 $4247 \mathrm{~m}(13,933)$	$\begin{aligned} & 9-1 / 4 \\ & \text { Hycalog } \\ & \text { Tungsten SS6WC } \\ & \text { \#10242 } \end{aligned}$	5	5	100	$\begin{gathered} 45 \mathrm{~m} \\ 148^{\prime} \end{gathered}$	$\begin{gathered} 4 \mathrm{~m} \\ 13^{\prime} \end{gathered}$	7	$\begin{gathered} 86 \mathrm{~m} \\ 282 \end{gathered}$	Rerun

CORE BIT SUMMARY - LEG 4

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT	CORES			TOTAL A	UNT CORE		REMARKS	
	Latitude／Longitude Dates of Operation Water Depth－Meters（Ft）	Size Make Type S／N	$\begin{aligned} & n \\ & \frac{n}{⿳ 亠 口} \\ & \frac{ \pm}{4} \\ & \frac{ \pm}{4} \end{aligned}$							
32	$37^{\circ} 07.63^{\prime} \mathrm{N} \quad 127^{\circ} 33.38^{\prime} \mathrm{W}$ April 15－18， 1969 4758 m （ $15,605^{\prime}$ ）	$9-5 / 8$ Hycalog Diamond DB SD \＃10419	14	13	92	$\begin{aligned} & 112 \mathrm{~m} \\ & 367 \mathrm{r} \end{aligned}$	$\begin{gathered} 86 \mathrm{~m} \\ 282 \end{gathered}$	77	$\begin{aligned} & 215 \mathrm{~m} \\ & 705^{\prime} \end{aligned}$	Rerun
33	$39^{\circ} 28.48^{\prime} \mathrm{N} \quad 127^{\circ} 29.81^{\prime} \mathrm{W}$ April 20－22， 1969 $4284 m$（ $14,051^{\prime}$ ）	$\begin{aligned} & 9-7 / 8 \\ & \text { Hycalog } \\ & \text { Diamond DBSD } \\ & \text { \#10455 } \end{aligned}$	15	15	100	$\begin{aligned} & 121 \mathrm{~m} \\ & 398^{\prime} \end{aligned}$	111 m 364^{\prime}	92	$\begin{aligned} & 295 \mathrm{~m} \\ & 967 \end{aligned}$	Rerun
34	$39^{\circ} 28.21^{\prime} \mathrm{N} \quad 127^{\circ} 16.54^{\prime} \mathrm{W}$ April 23－28， 1969 4322 m （ $14,175^{\prime}$ ）	$\begin{aligned} & 9-7 / 8 \\ & \text { Hycalog } \\ & \text { Diamond - DSFD-8P } \\ & \text { \#10386 } \end{aligned}$	18	18	100	$\begin{aligned} & 135 \mathrm{~m} \\ & 443^{\prime} \end{aligned}$	$\begin{gathered} 105 \mathrm{~m} \\ 345^{\prime} \end{gathered}$	78	$\begin{array}{r} 384 \mathrm{~m} \\ 1,260^{\prime} \end{array}$	Rerun
35	$40^{\circ} 40.42^{\prime} \mathrm{N} \quad 127^{\circ} 28.48^{\prime} \mathrm{W}$ April 28－May 6， 1969 3373 m （ $11,063^{\prime}$ ）	$\begin{aligned} & 9-7 / 8 \\ & \text { Hy calog } \\ & \text { Diamond - DBFD } \\ & \text { \#10460 } \\ & \hline \end{aligned}$	17	17	100	$\begin{aligned} & 140 \mathrm{~m} \\ & 459 \end{aligned}$	$\begin{gathered} 95 \mathrm{~m} \\ 312^{\prime} \end{gathered}$	68	$\begin{array}{r} 389 m \\ 1,276^{\prime} \end{array}$	＊
36	$\begin{aligned} & 40^{\circ} 59.08^{\prime} \mathrm{N} \quad 130^{\circ} 06.58^{\prime} \mathrm{W} \\ & \text { May 6-9, } 1969 \\ & 3273 \mathrm{~m} \quad\left(10,735^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-7 / 8 \\ & \text { Hycalog } \\ & \text { Diamond - DBFD } \\ & \text { \#10460 } \\ & \hline \end{aligned}$	14	14	100	113 m 371	$\begin{aligned} & 112 \mathrm{~m} \\ & 367 \mathrm{r} \end{aligned}$	99	$\begin{aligned} & 115 \mathrm{~m} \\ & 377 \mathrm{r} \end{aligned}$	Kerun
37	$\begin{aligned} & 40^{\circ} 58.74^{\prime} \mathrm{N} \quad 140^{\circ} 43.11^{\prime} \mathrm{W} \\ & \text { May } 9-12,1969 \\ & 4682 \mathrm{~m} \quad\left(15,356^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-7 / 8 \\ & \text { Hycalog } \\ & \text { Diamond - DBFD-5K } \\ & \text { \#10459 } \end{aligned}$	5	4	80	$\begin{gathered} 31 \mathrm{~m} \\ 102^{\prime} \end{gathered}$	$\begin{aligned} & 30 \mathrm{~m} \\ & 98^{\prime} \end{aligned}$	98	$\begin{gathered} 31 \mathrm{~m} \\ 102^{\prime} \end{gathered}$	

70

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT	CORES			TOTAL A	UNT CORED			REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S/N	$\begin{aligned} & \text { n } \\ & \frac{0}{\theta} \\ & \frac{9}{4} \\ & \frac{9}{4} \end{aligned}$							
44	$19^{\circ} 18.5^{\prime} \mathrm{N} \quad 169^{\circ} 00.0^{\prime} \mathrm{W}$ June 14-15, 1969 $1478 \mathrm{~m}\left(4,848^{\prime}\right)$	$\begin{aligned} & 9-7 / 8 \\ & \text { Hycalog } \\ & \text { Diamond DBPD-5R } \\ & \text { \#10581 } \end{aligned}$	5	5	100	$\begin{gathered} 32 \mathrm{~m} \\ 105^{\prime} \end{gathered}$	28 m 92^{\prime}	87	$\begin{gathered} 76 \mathrm{~m} \\ 249^{\prime} \end{gathered}$	
45	$\begin{aligned} & 24^{\circ} 15.9^{\prime} \mathrm{N} \quad 178^{\circ} 30.5^{\prime} \mathrm{W} \\ & \text { June } 17-20,1969 \\ & 5507 \mathrm{~m} \quad\left(18,063^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-7 / 8 \\ & \text { Hycalog } \\ & \text { Diamond DBPD-5R } \\ & \$ 10456 \\ & \hline \end{aligned}$	1	0	0	$\begin{gathered} 9 m \\ 299^{\prime} \end{gathered}$	0	0	$\begin{gathered} 97 \mathrm{~m} \\ 318^{\prime} \end{gathered}$	
45A	$\begin{aligned} & 24^{\circ} 15.9^{\prime} \mathrm{N} \quad 178^{\circ} 30.5^{\prime} \mathrm{W} \\ & \text { June } 19-20,1969 \\ & 5507 \mathrm{~m} \quad\left(18,063^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-7 / 8 \\ & \text { Hycalog } \\ & \text { Tungsten SS6WC } \\ & \text { \#10585 } \\ & \hline \end{aligned}$	4	3	75	$\begin{gathered} 35 \mathrm{~m} \\ 115^{\prime} \end{gathered}$	$\begin{gathered} 7 \mathrm{~m} \\ 23^{\prime} \end{gathered}$	19	$\begin{aligned} & 117 \mathrm{~m} \\ & 385^{\prime} \end{aligned}$	
46	$\begin{aligned} & 27^{\circ} 58.8^{\prime} \mathrm{N} \quad 171^{\circ} 26.3^{\prime} \mathrm{E} \\ & \text { June } 25,1969 \\ & 5773 \mathrm{~m} \quad\left(18,935^{\prime}\right) \end{aligned}$	9-7/8 Hycalog Diamond \#10580	1	1	100	$\begin{gathered} 9 \mathrm{~m} \\ 29{ }^{\prime} \end{gathered}$	$\begin{gathered} 9 \\ 99 \\ 291 \end{gathered}$	100	$10 \mathrm{~m}$ 32^{\prime}	
47	$\begin{aligned} & 32^{\circ} 26.9^{\prime} \mathrm{N} \quad 157^{\circ} 42.7^{\prime} \mathrm{E} \\ & \text { June } 28-30,1969 \\ & 2689 \mathrm{~m} \quad\left(8,820^{\circ}\right) \end{aligned}$	$\begin{aligned} & 9-5 / 8 \\ & \text { Hycalog } \\ & \text { Diamond DJFD-8P } \\ & \text { \#i0577 } \\ & \hline \end{aligned}$	1	1	100	$\begin{gathered} 9 \mathrm{~m} \\ 29^{\prime} \end{gathered}$	$\begin{gathered} 9 m \\ 29 \end{gathered}$	100	129m 423^{\prime}	
47A	$\begin{aligned} & 32^{\circ} 26.9^{\prime} \mathrm{N} \quad 157^{\circ} 42.7^{\mathrm{I} \mathrm{E}} \\ & \text { June } 28-30,1969 \\ & \text { 2689m } \quad\left(8,820^{\prime}\right) \end{aligned}$	```9-5/8 Hycalog Diamond DJFD-8P #10517```	2	1	50	$\begin{aligned} & 10 \mathrm{~m} \\ & 32^{\prime} \end{aligned}$	$\begin{aligned} & 2 m \\ & 7 \end{aligned}$	23	$\begin{aligned} & 123 \mathrm{~m} \\ & 405^{\prime} \end{aligned}$	

CORE BIT SUMMARY - LEG 6

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT	CORES			TOTAL A	UNT CORE			REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S / N	$\begin{aligned} & \frac{n}{0} \\ & E \\ & \frac{0}{4} \\ & \frac{0}{4} \end{aligned}$							
47B	$\begin{aligned} & 32^{\circ} 26.9^{\prime} \mathrm{N} \quad 157^{\circ} 42.7^{\prime} \mathrm{E} \\ & \text { June } 28-30,1969 \\ & 2689 \mathrm{~m} \quad\left(8,820^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-5 / 8 \\ & \text { Hycalog } \\ & \text { Diamond-DJFD-8P } \\ & \text { \#10517 } \end{aligned}$	14	14	100	$\begin{aligned} & 120 \mathrm{~m} \\ & 394^{\prime} \end{aligned}$	103 m 340^{\prime}	86	140 m 460^{\prime}	
48	$\begin{aligned} & 32^{\circ} 24.5^{\prime} \mathrm{N} \quad 158^{\prime} 01.3^{\prime} \mathrm{E} \\ & \text { June } 30-\text { July } 1,1969 \\ & 2619 \mathrm{~m} \quad\left(8,590^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-5 / 8 \\ & \text { Hycalog } \\ & \text { Diamond DJFD-8P } \\ & \text { \#10515 } \end{aligned}$	1	0	0	$\begin{gathered} 9 \mathrm{~m} \\ 291 \end{gathered}$	0 0	0	$\begin{gathered} 84 \mathrm{~m} \\ 310^{\prime} \end{gathered}$	
48A	$\begin{aligned} & 32^{\circ} 24.5^{\prime} \mathrm{N} \quad 158^{\circ} 01.3^{\prime} \mathrm{E} \\ & \text { June } 30-\text { July } 1,1969 \\ & 2619 \mathrm{~m} \quad\left(8,590^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-5 / 8 \\ & \text { Hycalog } \\ & \text { Diamond DJFD-8P } \\ & \text { \#10515 } \end{aligned}$	1	1	100	$\begin{aligned} & 1 \mathrm{~m} \\ & 3^{\prime} \end{aligned}$	$\begin{aligned} & 1 \mathrm{~m} \\ & 3^{\prime} \end{aligned}$	66	$\begin{gathered} 59 \mathrm{~m} \\ 195{ }^{\prime} \end{gathered}$	
48B	$\begin{aligned} & 32^{\circ} 24.5^{\prime} \mathrm{N} \quad 158^{\circ} 01.3^{\prime} \mathrm{E} \\ & \text { June } 30-\text { July } 1,1969 \\ & 3619 \mathrm{~m} \\ & \left(8,590^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-5 / 8 \\ & \text { Hycalog } \\ & \text { Diamond DJFD-8P } \\ & \text { \#10515 } \\ & \hline \end{aligned}$	3	3	100	$21 \mathrm{~m}$ 69'	$21 m$ 69'	100	$\begin{gathered} 62 \mathrm{~m} \\ 203 \text { ' } \end{gathered}$	
49	$\begin{aligned} & 32^{\circ} 24.1^{\prime} \mathrm{N} \quad 156^{\circ} 35.01^{\prime} \mathrm{E} \\ & \text { July } 2-3,1969 \\ & 4282 \mathrm{~m} \quad\left(14,045^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-7 / 8 \\ & \text { Hycalog } \\ & \text { Diamond DBFD-7 } \\ & \text { \#10462 } \end{aligned}$	2	2	100	$\begin{gathered} 9 \mathrm{~m} \\ 29^{\prime} \end{gathered}$	$\begin{gathered} 9 \mathrm{~m} \\ 29^{\prime} \end{gathered}$	100	$\begin{aligned} & 18 \mathrm{~m} \\ & 599^{\prime} \end{aligned}$	
49A	$\begin{aligned} & 32^{\circ} 24.1^{\prime} \mathrm{N} \quad 156^{\circ} 35.0^{\circ} \mathrm{E} \\ & \text { July } 2-3,1969 \\ & 4282 \mathrm{~m} \quad\left(14,045^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-7 / 8 \\ & \text { Hycalog } \\ & \text { Diamond DBFD-7 } \\ & \text { \#10462 } \end{aligned}$	2	2	100	$\begin{aligned} & 14 \mathrm{~m} \\ & 46^{\prime} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~m} \\ & 32^{\prime} \end{aligned}$	69	$\begin{aligned} & 15 \mathrm{~m} \\ & 49 \end{aligned}$	Rerun

CORE BIT SUMMARY - LEG 6

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT		CORES		TOTAL AMOUNT CORED				REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S/N	$\begin{aligned} & \text { n } \\ & \frac{\vdots}{E} \\ & \frac{\pi}{4} \\ & \frac{\pi}{4} \end{aligned}$							
50	$\begin{aligned} & 32^{\circ} 24.3^{\prime} \mathrm{N} \quad 156^{\circ} 36.01^{\prime} \mathrm{E} \\ & \text { July 3, } 1969 \\ & 4487 \mathrm{~m} \quad\left(14,717^{\prime}\right) \end{aligned}$	```9-7/8 Hycalog Tungsten Carbide #10583```	2	1	50	$\begin{array}{r} 7 \mathrm{~m} \\ 23^{\prime} \end{array}$	$\begin{aligned} & 2 m \\ & 7 \end{aligned}$	39	$\begin{gathered} 45 \mathrm{~m} \\ 148^{\prime} \end{gathered}$	
50A	$\begin{aligned} & 32^{\circ} 24.3^{\prime} \mathrm{N} \quad 156^{\circ} 36.0^{\prime} \mathrm{E} \\ & \text { July 3-4, } 1969 \\ & 4487 \mathrm{~m} \quad\left(14,717^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-7 / 8 \\ & \text { Hycalog } \\ & \text { Tungsten Carbide } \\ & \text { \#10583 } \\ & \hline \end{aligned}$	4	4	100	$\begin{gathered} 31 \mathrm{~m} \\ 102^{\prime} \end{gathered}$	$\begin{aligned} & 25 m \\ & 83^{\prime} \end{aligned}$	82	$\begin{gathered} 36 \mathrm{~m} \\ 118^{\prime} \end{gathered}$	Rerun
51	$\begin{aligned} & 33^{\circ} 28.5^{\prime} \mathrm{N} \quad 153^{\circ} 24.3^{\prime} \mathrm{E} \\ & \text { July 4-5, } 1969 \\ & 5980 \mathrm{~m} \quad\left(19,614^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-7 / 8 \\ & \text { Christensen } \\ & \text { Diamond } 4580 \\ & \#_{110586} \\ & \hline \end{aligned}$	3	2	66	$17 m$ 56^{\prime}	$\begin{gathered} 9 m \\ 29^{\prime} \end{gathered}$	54	$\begin{aligned} & 132 \mathrm{~m} \\ & 433^{\prime} \end{aligned}$	
51A	$\begin{aligned} & 33^{\circ} 28.5^{\prime} \mathrm{N} \quad 153^{\circ} 24.3^{\prime} \mathrm{E} \\ & \text { July 5-6, } 1969 \\ & 5980 \mathrm{~m} \quad\left(19,614^{\prime}\right) \end{aligned}$	$9-7 / 8$ Christensen Diamond 4580 \#110586	2	2	100	$\begin{aligned} & 15 \mathrm{~m} \\ & 49^{\prime} \end{aligned}$	$\begin{aligned} & 11 \mathrm{~m} \\ & 35^{\prime} \end{aligned}$	75	$\begin{aligned} & 111 \mathrm{~m} \\ & 364^{\prime} \end{aligned}$	Rerun
52	$\begin{aligned} & 27^{\circ} 46.3^{\prime} \mathrm{N} \quad 147^{\circ} 07.8^{\prime} \mathrm{E} \\ & \text { July } 9-10,1969 \\ & 5744 \mathrm{~m} \quad\left(18,840^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-5 / 8 \\ & \text { Hycalog } \\ & \text { Tungsten SSPD } 3 \mathrm{WV} \\ & \text { \#10582 } \end{aligned}$	10	10	100	$\begin{gathered} 68 \mathrm{~m} \\ 223^{\prime} \end{gathered}$	$\begin{gathered} 45 m \\ 148^{\prime} \end{gathered}$	66	$\begin{gathered} 69 \mathrm{~m} \\ 226^{\prime} \end{gathered}$	
53	$\begin{aligned} & 18^{\circ} 02.0^{\prime} \mathrm{N} \quad 141^{\circ} 11.5^{\prime} \mathrm{E} \\ & \text { July } 13-16,1969 \\ & 4690 \mathrm{~m} \quad\left(15,383^{\prime}\right) \end{aligned}$	```9-7/8 Hycalog Diamond DBFD5R #10579```	8	8	100	$\begin{gathered} 35 \mathrm{~m} \\ 115^{\prime} \end{gathered}$	$\begin{aligned} & 14 \mathrm{~m} \\ & 46^{\prime} \end{aligned}$	41	$\begin{aligned} & 100 \mathrm{~m} \\ & 328^{\prime} \end{aligned}$	

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT	CORES			TOTAL A	UNT CORED			REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S/N	$\begin{aligned} & \frac{n}{0} \\ & E \\ & \frac{ \pm}{4} \\ & \hline \end{aligned}$							
53A	$\begin{aligned} & 18^{\circ} 02.02^{\prime} \mathrm{N} \quad 141^{\circ} 11.5^{\circ} \mathrm{E} \\ & \text { July } 16-17,1969 \\ & 4639 \mathrm{~m} \quad\left(15,221^{\prime}\right) \end{aligned}$	9-7/8 Hycalog Diamond DBPD-5R \#10579	3	3	100	$\begin{aligned} & 27 \mathrm{~m} \\ & 89^{\prime} \end{aligned}$	$\begin{aligned} & 25 m \\ & 83^{\prime} \end{aligned}$	92	$\begin{gathered} 62 \mathrm{~m} \\ 205^{\prime} \end{gathered}$	Rerun
53B	$\begin{aligned} & 18^{\circ} 02.02^{\prime} \mathrm{N} \quad 141^{\circ} 11.5^{\prime} \mathrm{E} \\ & \text { July } 17,1969 \\ & 4651 \mathrm{~m} \quad\left(15,262^{\circ}\right) \end{aligned}$	$\begin{aligned} & 9-7 / 8 \\ & \text { Hycalog } \\ & \text { Diamond DBFD-5R } \\ & \text { \#10579 } \\ & \hline \end{aligned}$	1	1	100	$\begin{gathered} 9 m \\ 29^{\prime} \end{gathered}$	$\begin{gathered} 9 \mathrm{~m} \\ 291 \end{gathered}$	100	$\begin{aligned} & 21 \mathrm{~m} \\ & 71 \end{aligned}$	Rerun
54	$\begin{aligned} & 15^{\circ} 36.6^{\prime} \mathrm{N} \quad 140^{\circ} 18.1^{\prime} \mathrm{E} \\ & \text { July } 17-19,1969 \\ & 4990 \mathrm{~m} \quad\left(16,367^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-5 / 8 \\ & \text { Hycalog } \\ & \text { Tungsten SSFD-3W } \\ & \# 10584 \end{aligned}$	9	9	100	$\begin{gathered} 65 \mathrm{~m} \\ 212^{\prime} \end{gathered}$	$\begin{aligned} & 28 \mathrm{~m} \\ & 92^{\prime} \end{aligned}$	43	$\begin{aligned} & 294 \mathrm{~m} \\ & 963^{1} \end{aligned}$	Basalt
55	$\begin{aligned} & 09^{\circ} 18.1^{\prime} \mathrm{N} \quad 142^{\circ} 32.9^{\prime} \mathrm{E} \\ & \text { July } 21-22,1969 \\ & 2850 \mathrm{~m} \quad\left(9,348^{\prime}\right) \end{aligned}$	9-7/8 Hycalog Diamond \#10579	14	14	100	$\begin{aligned} & 128 \mathrm{~m} \\ & 420^{\prime} \end{aligned}$	$\begin{aligned} & 122 \mathrm{~m} \\ & 400^{\prime} \end{aligned}$	95	$\begin{aligned} & 131 \mathrm{~m} \\ & 430^{\prime} \end{aligned}$	
56	$\begin{aligned} & 08^{\circ} 22.4^{\prime} \mathrm{N} \quad 143^{\circ} 33.6^{\prime} \mathrm{E} \\ & \text { July } 23-25,1969 \\ & 2508 \mathrm{~m} \quad\left(8,226^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-7 / 8 \\ & \text { Hycalog } \\ & \text { Diamond DBFD-5R } \\ & \$ 10579 \\ & \hline \end{aligned}$	0	0	0	0	0	0	0	Rerun - no cores - lost beacon.
56A	$\begin{aligned} & 08^{\circ} 22.4^{\prime} \mathrm{N} \quad 143^{\circ} 33.6^{\prime} \mathrm{E} \\ & \text { July } 23-25,1969 \\ & 2508 \mathrm{~m} \quad\left(8,226^{\prime}\right) \end{aligned}$	$9-7 / 8$ Hycalog Diamond DBFD-5R \#10579	0	0	0	0	0	0	0	Rerun

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT	CORES			TOTAL A	UNT CORED			REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S/N	$\begin{aligned} & n \\ & \frac{n}{\theta} \\ & \frac{0}{4} \\ & \frac{1}{4} \end{aligned}$							
56B	$\begin{aligned} & 08^{\circ} 22.4^{\prime} \mathrm{N} \quad 143^{\circ} 33.6^{\prime} \mathrm{E} \\ & \text { July } 25,1969 \\ & 2508 \mathrm{~m} \quad\left(8,226^{\prime}\right) \end{aligned}$	$9-7 / 8$ Hycalog - Diamond BDFD-5R \#10579	10	10	100	$\begin{gathered} 91 \mathrm{~m} \\ 299 \end{gathered}$	$\begin{aligned} & 88 \mathrm{~m} \\ & 289 \end{aligned}$	96	$\begin{aligned} & 270 \mathrm{~m} \\ & 886^{\prime} \end{aligned}$	Rerun
57	$\begin{aligned} & 08^{\circ} 40.9^{\prime} \mathrm{N} \quad 143^{\circ} 32.0^{\prime} \mathrm{E} \\ & \text { July } 25-28,1969 \\ & 3310 \mathrm{~m} \quad\left(10,857^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-5 / 8 \\ & \text { Hycalog } \\ & \text { Diamond DJFD- } 8 \text { P } \\ & \text { \#10576 } \end{aligned}$	3	3	100	$\begin{gathered} 9 m \\ 29 \end{gathered}$	$\begin{gathered} 39 \mathrm{~m} \\ 128^{\prime} \end{gathered}$	39	$\begin{aligned} & 335 \mathrm{~m} \\ & 1,099 \end{aligned}$	Basalt 10 feet.
57A	$\begin{aligned} & 08^{\circ} 40.9^{\prime} \mathrm{N} \quad 143^{\circ} 32.9^{\circ} \mathrm{E} \\ & \text { July 28, } 1969 \\ & 3310 \mathrm{~m} \quad\left(10,857^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-5 / 8 \\ & \text { Hycalog } \\ & \text { Diamond DJFD-8P } \\ & \text { \#10576 } \\ & \hline \end{aligned}$	4	4	100	$\begin{gathered} 31 \mathrm{~m} \\ 103^{\prime} \end{gathered}$	$\begin{aligned} & 23 \mathrm{~m} \\ & 75^{\prime} \end{aligned}$	73	$\begin{array}{r} 329 \mathrm{~m} \\ 1,079 \end{array}$	Basalt - rerun.
57B	$\begin{aligned} & 08^{\prime} 40.9^{\prime} \mathrm{N} \quad 143^{\prime} 32.0^{\prime} \mathrm{E} \\ & \text { July } 28,1969 \\ & 3310 \mathrm{~m} \quad\left(10,857^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-5 / 8 \\ & \text { Hycalog } \\ & \text { Diamond DJFD-8P } \\ & \text { \#i0576 } \\ & \hline \end{aligned}$	1	1	100	$\begin{gathered} 9 \mathrm{~m} \\ 29 \end{gathered}$	$\begin{gathered} 9 \mathrm{~m} \\ 29^{\prime} \end{gathered}$	100	$\begin{gathered} 9 m \\ 29^{\prime} \end{gathered}$	Rerun
58	$\begin{aligned} & 09^{\circ} 14.1^{\prime} \mathrm{N} \quad 144^{\circ} 25.1^{\prime} \mathrm{E} \\ & \text { July 28-30, } 1969 \\ & 4496 \mathrm{~m} \quad\left(14,747^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-5 / 8 \\ & \text { Hycalog } \\ & \text { Diamond DJPD-8P } \\ & \text { \#10576 } \\ & \hline \end{aligned}$	1	1	100	$\begin{gathered} 5 \mathrm{~m} \\ 15^{\prime} \end{gathered}$	$\begin{array}{r} 0 \\ 1 / 4^{\prime} \end{array}$	$\begin{array}{r} 6 \\ 20^{\prime} \end{array}$	$\begin{aligned} & 24 m \\ & 79 \end{aligned}$	Rerun
58A	$\begin{aligned} & 09^{\circ} 14.1^{\prime} \mathrm{N} \quad 144^{\circ} 25.1^{\prime} \mathrm{E} \\ & \text { July } 29,1969 \\ & 4496 \mathrm{~m} \quad\left(14,747^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-5 / 8 \\ & \text { Hycalog } \\ & \text { Diamond DJFD-8P } \\ & \text { \# } 10576 \end{aligned}$	2	1	50	$\begin{gathered} 9 \mathrm{~m} \\ 291 \end{gathered}$	$\begin{gathered} 4 \mathrm{~m} \\ 13^{\prime} \end{gathered}$	50	$\begin{aligned} & 141 \mathrm{~m} \\ & 463^{\prime} \end{aligned}$	Rerun

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT	CORES			TOTAL A	UNT CORED			REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S / N	$\begin{aligned} & \frac{n}{0} \\ & E \\ & \frac{\Phi}{4} \\ & \frac{0}{4} \end{aligned}$							
61	$\begin{aligned} & 12^{\circ} 05.02^{\prime} \mathrm{N} \quad 147^{\circ} 03.70^{\prime} \mathrm{E} \\ & \text { August } 11,1969 \\ & 5570 \mathrm{~m} \quad\left(18,270^{\prime}\right) \end{aligned}$	$9-5 / 8$ Hughes - Roller Insert Tungsten Carbide \# Unknown	2	2	100	$\begin{aligned} & 13 \mathrm{~m} \\ & 43^{\mathrm{r}} \end{aligned}$	$\begin{gathered} 3 \mathrm{~m} \\ 10^{\prime} \end{gathered}$	23	$\begin{aligned} & 101 \mathrm{~m} \\ & 330^{\prime} \end{aligned}$	7 basalt.
61A	$\begin{aligned} & 12^{\circ} 05.02^{\prime} \mathrm{N} \quad 147^{\circ} 03.70^{\prime} \mathrm{E} \\ & \text { August } 12,1969^{\prime} 18 \quad\left(18,270^{\prime}\right) \\ & 5570 \mathrm{~m} \end{aligned}$	$9-5 / 8$ Hughes - Roller Insert Tungsten Carbide \# Unknown	1	1	100	$\begin{aligned} & 13 \mathrm{~m} \\ & 43^{\prime} \end{aligned}$	$\begin{gathered} 3 \\ 10^{1} \end{gathered}$	26	$\begin{gathered} 99 \mathrm{~m} \\ 325^{\prime} . \end{gathered}$	Rerun - T-1, B-3.
62	$1^{\circ} 52.2^{\prime} \mathrm{N} \quad 141^{\circ} 56.3^{\prime} \mathrm{E}$ August 15-18, 1969 $2602 \mathrm{~m} \quad\left(8,533^{\prime}\right)$	$\begin{aligned} & 9-7 / 8 \\ & \text { Hycalog } \\ & \text { DBFD-5-R } \\ & \text { \#10457 } \end{aligned}$	8	8	100	$\begin{gathered} 51 \mathrm{~m} \\ 168^{\prime} \end{gathered}$	$\begin{gathered} 44 \mathrm{~m} \\ 144 \end{gathered}$	87	$\begin{array}{r} 574 \mathrm{~m} \\ 1,883^{\prime} \end{array}$	Rerun
62A	$1^{\circ} 52.2^{\prime} \mathrm{N} \quad 141^{\circ} 56.3^{\prime} \mathrm{E}$ August 19-21, 1969 2607m $\quad\left(8,553^{\prime}\right)$	$\begin{aligned} & 9-7 / 8 \\ & \text { Hycalog } \\ & \text { DBFD-5R } \\ & \text { \#10457 } \\ & \hline \end{aligned}$	39	39	100	$\begin{array}{r} 345 \mathrm{~m} \\ 1,132^{\prime} \end{array}$	$\begin{array}{r} 311 \mathrm{~m} \\ 1,020^{\prime} \end{array}$	90	$\begin{array}{r} 358 \mathrm{~m} \\ 1,175^{\prime} \end{array}$	Rerun
63	$\begin{aligned} & 0^{\circ} 50.13^{\prime} \mathrm{N} \quad 147^{\circ} 53.39^{\prime} \mathrm{E} \\ & \text { August 23-26, } 1969 \\ & 4486 \mathrm{~m} \quad\left(14,714^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-5 / 8 \\ & \text { Hughes - Insert Roller } \\ & \text { Tungsten Carbide } \\ & \text { \#Unknown } \end{aligned}$	11	11	100	$\begin{gathered} 86 m \\ 282^{\prime} \end{gathered}$	$\begin{gathered} 62 m \\ 203^{\prime} \end{gathered}$	73	$\begin{aligned} & 566 m \\ & 1,857 \end{aligned}$	Rerun
63A	$\begin{aligned} & 0^{\circ} 50.13^{\prime} \mathrm{N} \quad 147^{\circ} 53.39^{\prime} \mathrm{E} \\ & \text { August 27, } 1969 \\ & 4486 \mathrm{~m} \quad\left(14,714^{\prime}\right) \end{aligned}$	$9-5 / 8$ Hughes - Insert Roller Tungsten Carbide \#Unknown	14	14	109	$\begin{aligned} & 130 \mathrm{~m} \\ & 428^{\prime} \end{aligned}$	$\begin{aligned} & 90 \mathrm{~m} \\ & 294^{\prime} \end{aligned}$	68	$\begin{aligned} & 193 \mathrm{~m} \\ & 634^{\prime} \end{aligned}$	

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT	CORES			TOTAL AMOUNT CORED				REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S/N	$\begin{aligned} & \text { n } \\ & \frac{0}{E} \\ & \frac{\Phi}{4} \\ & \hline \end{aligned}$							
63B	$\begin{aligned} & 0^{\circ} 50.13^{\prime} \mathrm{N} \quad 147^{\circ} 53.39^{\prime} \mathrm{E} \\ & \text { August 28, } 1969 \\ & 4486 \mathrm{~m} \quad\left(14,714^{\prime}\right) \end{aligned}$	$9-5 / 8$ Hughes - Insert Roller - Tungsten Carbide Unknown	3	3	100	$\begin{aligned} & 28 \mathrm{~m} \\ & 92^{\prime} \end{aligned}$	$\begin{aligned} & 22 \mathrm{~m} \\ & 72^{\prime} \end{aligned}$	76	$\begin{gathered} 39 \mathrm{~m} \\ 128^{\prime} \end{gathered}$	T-8, B-8
64	$\begin{aligned} & 1^{\circ} 44.53^{\prime} \mathrm{S} \quad 158^{\circ} 36.58^{\prime} \mathrm{E} \\ & \text { August } 31-\text { September } 2,1969 \\ & 2060 \mathrm{~m} \quad\left(6,758^{\prime}\right) \end{aligned}$	9-7/8 Hycalog DBFD-5R \#10461	10	10	100	$\begin{aligned} & 81 \mathrm{~m} \\ & 266^{\prime} \end{aligned}$	$\begin{gathered} 75 \mathrm{~m} \\ 247 \end{gathered}$	93	$\begin{array}{r} 853 \mathrm{~m} \\ 2,798^{\prime} \end{array}$	80\% salvage .
64A	$1^{\circ} 44.53$ 'S $\quad 158^{\circ} 36.58^{\prime} \mathrm{E}$ September 3-6, 1969 2060 m ($6,758^{\prime}$)	$\begin{aligned} & 9-7 / 8 \\ & \text { Christensen } \\ & 110927-25 \\ & { }_{\text {R }} \text { R460 } \\ & \hline \end{aligned}$	11	11	100	$\begin{aligned} & 67 \mathrm{~m} \\ & 220^{\prime} \end{aligned}$	$\begin{gathered} 68 \mathrm{~m} \\ 223 \end{gathered}$	100		
65	$4^{\circ} 21.21^{\prime} \mathrm{N} \quad 176^{\circ} 59.14^{\prime} \mathrm{E}$ September 12-14, 1969 $6142 \mathrm{~m}\left(20,146^{\prime}\right)$	$\begin{aligned} & 9-7 / 8 \\ & \text { Hycalog } \\ & \text { DBFD-5R } \\ & \text { \#10461 } \\ & \hline \end{aligned}$	16	16	100	145 m 476^{\prime}	$\begin{aligned} & 132 \mathrm{~m} \\ & 433 \end{aligned}$	91	$\begin{aligned} & 145 m \\ & 476^{\prime} \end{aligned}$	Rerun
65A	$4^{\circ} 21.21^{\prime} \mathrm{N} \quad 176^{\circ} 59.16^{\prime} \mathrm{E}$ September 15, 1969 $6142 \mathrm{~m} \quad\left(20,146^{\prime}\right)$	$\begin{aligned} & 9-7 / 8 \\ & \text { Hycalog } \\ & \text { DBFD-5R } \\ & \hline 10461 \end{aligned}$	8	8	100	$\begin{aligned} & 52 \mathrm{~m} \\ & 170^{\prime} \end{aligned}$	$\begin{aligned} & 17 \mathrm{~m} \\ & 56^{\prime} \end{aligned}$	32	$\begin{aligned} & 187 \mathrm{~m} \\ & 614^{\prime} \end{aligned}$	Rerun-60\% salvage.
66	$2^{\circ} 23.61{ }^{\prime} \mathrm{N} \quad 166^{\circ} 7.31{ }^{\prime} \mathrm{W}$	9-7/8	11	11	100	72m	49m	68	193m	
	$\begin{aligned} & \text { September 19-21, } 1969 \\ & 5310 \mathrm{~m}\left(17,417^{\prime}\right) \end{aligned}$	$\begin{aligned} & \text { Christensen } \\ & 110927 \\ & \text { \#R3663 } \end{aligned}$				236	1611		6331	

HOLE

NO.	POSITION	CORE BIT	CORES			TOTAL AMOUNT CORED				REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S / N						$$		-
68	$16^{\circ} 43.32^{\prime} \mathrm{N} \quad 165^{\circ} 10.36^{\prime} \mathrm{W}$ October 10-12, 1969 5466 m $\left(17,936^{\prime}\right)$	$\begin{aligned} & 9-7 / 8 \\ & \text { Hycalog } \\ & \text { Diamond - SSFD3 } \\ & \text { \#10864 } \end{aligned}$	2	2	100	15 m 49^{\prime}	$\begin{aligned} & 15 \mathrm{~m} \\ & 49^{\prime} \end{aligned}$	100	15 m 49^{\prime}	Lost in hole.
68A	$\begin{aligned} & 16^{\circ} 43.32^{\prime} \mathrm{N} \quad 164^{\circ} 10.36^{\prime} \mathrm{W} \\ & \text { October } 13,1969 \\ & 5476 \mathrm{~m} \quad\left(17,969^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-7 / 8 \\ & \text { Hycalog } \\ & \text { MHJ-8P }-500 \mathrm{~K} \\ & \text { \#10920 } \end{aligned}$	0	0	0	0	0	0	12 m 39^{\prime}	U'nsuccessful due to heave of the ship. Turbocorer would not tum.
69	$\begin{aligned} & 6^{\circ} 0.0^{\prime} \mathrm{N} \quad 152^{\circ} 51.93^{\prime} \mathrm{W} \\ & \text { October } 17-20,1969 \\ & 4978 \mathrm{~m} \quad\left(16,332^{\prime}\right) \end{aligned}$	```9-7/8 Hycalog Tungsten - Sinter Set #10863```	7	6	86	$\begin{aligned} & 60 \mathrm{~m} \\ & 196^{\prime} \end{aligned}$	$\begin{gathered} 46 \mathrm{~m} \\ 151^{\prime} \end{gathered}$	77	$232 \mathrm{~m}$ 762'	
69A	$\begin{aligned} & 6^{\circ} 0.0^{\prime} \mathrm{N} \quad 152^{\circ} 51.93^{\prime} \mathrm{W} \\ & \text { October } 20,1969 \\ & 4988 \mathrm{~m} \quad\left(16,365^{\prime}\right) \end{aligned}$	```9-7/8 Hycalog Tungsten - Sinter Set #10863```	13	12	92	108 m 354^{\prime}	$\begin{gathered} 93 \mathrm{~m} \\ 305^{\prime} \end{gathered}$	86	230m 755^{\prime}	Rerun
70	$\begin{aligned} & 6^{\circ} 20.08^{\prime} \mathrm{N} \quad 140^{\circ} 21.72^{\prime} \mathrm{W} \\ & \text { October } 23-27,1969 \\ & 5059 \mathrm{~m} \quad\left(16,596^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-7 / 8 \\ & \text { Christensen - } 520 \mathrm{~K} \\ & \text { Diamond -Circle Set } \\ & \text { \#R3476 } \end{aligned}$	12	12.	100	$\begin{aligned} & 108 \mathrm{~m} \\ & 355^{\prime} \end{aligned}$	$\begin{aligned} & 69 \mathrm{~m} \\ & 226^{\prime} \end{aligned}$	91	$\begin{aligned} & 113 \mathrm{~m} \\ & 371^{\prime} \end{aligned}$	
70A	$6^{\circ} 20.08^{\prime} \mathrm{N} \quad 140^{\circ} 21.72^{\prime} \mathrm{W}$	9-7/8	30	29	97	218 m	145 m	67	331 m	Rerun - 90% salvage
	$\begin{aligned} & \text { October } 27-29,1969 \\ & 5068 \mathrm{~m} \quad\left(16,629^{\prime}\right) \end{aligned}$	Christensen - 520 K Diamond - Circle Set \#R3476				715^{\prime}	$476{ }^{1}$		1,085	

HOLE NO.

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT CORES				TOTAL AMOUNT CORED				REMARKS
	Latitude／Longitude Dates of Operation Water Depth－Meters（Ft）	Size Make Type S／N	$\begin{aligned} & \frac{n}{⿳ 亠 口} \\ & \frac{1}{E} \\ & \stackrel{y}{4} \end{aligned}$							
76	$\begin{aligned} & 14^{\circ} 05.90^{\prime} \mathrm{S} \quad 145^{\circ} 37.04^{\prime} \mathrm{W} \\ & \text { December } 9,1969 \\ & 4598 \mathrm{~m} \quad\left(15,085^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-7 / 8 \\ & \text { Williams } \quad 250 \mathrm{~K} \\ & \text { Diamond - WP-8H } \\ & \text { \#Z958 } \end{aligned}$	1	1	100	$\begin{gathered} 9 \mathrm{~m} \\ 29^{\prime} \end{gathered}$	$\begin{gathered} 9 \mathrm{~m} \\ 29^{\prime} \end{gathered}$	100	$\begin{gathered} 32 \mathrm{~m} \\ 105^{\prime} \end{gathered}$	Chert
76A	140ㅇ․90＇s $\quad 145^{\circ} 37.04^{\prime} \mathrm{W}$ December 10， 1969 $4598 \mathrm{~m} \quad\left(15,085^{\prime}\right)$	$\begin{aligned} & 9-7 / 8 \\ & \text { Williams - 250K } \\ & \text { Diamond - WP-8H } \\ & \text { \#Z958 } \end{aligned}$	2	2	100	18 m 59^{\prime}	$\begin{aligned} & 17 \mathrm{~m} \\ & 56^{\prime} \end{aligned}$	92	$27 \mathrm{~m}$ 89＇	Rerun－lost in hole．
77	$00^{\circ} 28.90^{\prime} \mathrm{N} \quad 133^{\circ} 13.71$＇W December 16， 1969 4291m（ 14,077 ）	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { Tungsten -9C-4CTR } \\ & \text { "CM9385 } \end{aligned}$	1	1	100	$\begin{gathered} 9 m \\ 29^{\prime} \end{gathered}$	$\begin{aligned} & 1 \mathrm{~m} \\ & 3^{\prime} \end{aligned}$	13	$\begin{gathered} 9 m \\ 29 \end{gathered}$	
77A	$00^{\circ} 28.90^{\prime} \mathrm{N} \quad 133^{\circ} 13.71^{\prime} \mathrm{W}$ December 16， 1969 4291 m （ 14,077 ）	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { Tungsten - } 9 \mathrm{C}-4 \mathrm{CTR} \\ & \text { \#CM9385 } \\ & \hline \end{aligned}$	2	2	100	18 m 59^{\prime}	$\begin{gathered} 9 \mathrm{~m} \\ 291 \end{gathered}$	50	18 m 59^{\prime}	Rerun
77B	$00^{\circ} 28.90^{\prime} \mathrm{N} \quad 133^{\circ} 13.71^{\prime} \mathrm{W}$ December 17－22， 1969 4291 m （ 14,077 ）	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { Tungsten -9C - 4CTR } \\ & \text { \#CM9385 } \end{aligned}$	54	53	98	$\begin{array}{r} 472 \mathrm{~m} \\ 1,549^{\prime} \end{array}$	$\begin{array}{r} 438 \mathrm{~m} \\ 1,436^{\prime} \end{array}$	93		Rerun
77C	$00^{\circ} 28.90^{\prime} \mathrm{N} \quad 133^{\circ} 13.71^{\prime} \mathrm{W}$ December 22， 1969 4291m（14，077＇）	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { Tungsten - } 9 \mathrm{C}-4 \mathrm{CTR} \\ & \text { "CM9385 } \end{aligned}$	1	1	100	$\begin{gathered} 9 \mathrm{~m} \\ 29^{\prime} \end{gathered}$	$\begin{gathered} 8 \mathrm{~m} \\ 26^{\prime} \end{gathered}$	83	$\begin{aligned} & 101 \mathrm{~m} \\ & 331 \mathrm{I} \end{aligned}$	Rerun－inserts show little wear．

HOLE

NO.	POSITION	CORE BIT		CORES		TOTAL AMOUNT CORED				REMARKS
	Latitude／Longitude Dates of Operation Water Depth－Meters（ Ft ）	Size Make Type S／N	$\begin{aligned} & \text { n } \\ & \frac{⿳ 亠 二 口 丿}{E} \\ & \frac{\Phi}{4} \end{aligned}$							
78	$07^{\circ} 57.00^{\prime} \mathrm{N} \quad 127^{\circ} 21.35^{\prime} \mathrm{W}$ December 26－29， 1969 $4378 \mathrm{~m}\left(14,363^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { Tungsten -9C-4CTR } \\ & \text { "CM9385 } \end{aligned}$	37	37	100	$\begin{array}{r} 320 \mathrm{~m} \\ 1,051^{\prime} \end{array}$	$\begin{aligned} & \text { 302m } \\ & 991 \text { 1 } \end{aligned}$	94	302m	Rerun - T-1, B-6, IG.
79	$02^{\circ} 33.02^{\prime} \mathrm{N} \quad 121^{\circ} 34.00^{\circ} \mathrm{W}$ January 1－2， 1970 $4574 \mathrm{~m}\left(15,006^{\prime}\right)$	$\begin{aligned} & 9-7 / 8 \\ & \text { Varel } \\ & \text { Diamond-250K } \\ & \text { \# } 7905 \\ & \hline \end{aligned}$	17	17	100	133m 437^{\prime}	$\begin{aligned} & 121 \mathrm{~m} \\ & 397 \mathrm{r} \end{aligned}$	90	$\begin{gathered} 417 \mathrm{~m} \\ 1,363^{\prime} \end{gathered}$	
79A	$02^{\circ} 33.02^{\prime} \mathrm{N} \quad 121^{\circ} 34.00^{\prime} \mathrm{W}$ January 3－4， 1970 $4574 \mathrm{~m}\left(15,006^{\prime}\right)$	$\begin{aligned} & 9-7 / 8 \\ & \text { Varel } \\ & \text { Diamond - } 250 \mathrm{~K} \\ & \text { \# } 7905 \end{aligned}$	4	4	100	$\begin{gathered} 37 \mathrm{~m} \\ 121 \end{gathered}$	$\begin{gathered} 35 \mathrm{~m} \\ 115^{\prime} \end{gathered}$	95	$\begin{aligned} & 288 \mathrm{~m} \\ & 944^{\prime} \end{aligned}$	Rerun－salvage 95\％．
80	$\begin{aligned} & 00^{\circ} 57.72^{\prime} \mathrm{S} \quad 121^{\circ} 33.22^{\prime} \mathrm{W} \\ & \text { January 5, } 1970 \\ & 441 \mathrm{~lm} \quad\left(14,472^{\prime}\right. \end{aligned}$	$\begin{aligned} & 9-7 / 8 \\ & \text { Varel } \\ & \text { Diamond - } 250 \mathrm{~K} \\ & \text { \#7905 } \end{aligned}$	6	6	100	$\begin{gathered} 42 \mathrm{~m} \\ 138^{\prime} \end{gathered}$	$\begin{gathered} 40 \mathrm{~m} \\ 131 \end{gathered}$	94	$\begin{aligned} & 200 \mathrm{~m} \\ & 656^{\prime} \end{aligned}$	Rerun
80A	$00^{\circ} 57.72$ S $\quad 121^{\circ} 33.22^{\prime} \mathrm{W}$ January 6－7， 1970 $4411 m$（ $14,472^{\prime}$ ）	$\begin{aligned} & 9-7 / 8 \\ & \text { Varel } \\ & \text { Diamond - } 250 \mathrm{~K} \\ & \text { \#7905 } \end{aligned}$	5	5	100	$\begin{gathered} 88 \mathrm{~m} \\ 289 \end{gathered}$	$\begin{gathered} 85 \mathrm{~m} \\ 279 \end{gathered}$	97	156 m 511	Rerun
81	$01^{\circ} 26.49^{\prime} \mathrm{N} \quad 113^{\circ} 48.54^{\prime} \mathrm{W}$	9－7／8	7	7	100	39m	39m	100	409m	
	$\begin{aligned} & \text { January } 9-11,1970 \\ & 3865 \mathrm{~m}\left(12,681^{\prime}\right) \end{aligned}$	Varel Diamond－ 250 K ＂7902				128^{\prime}	$128{ }^{\prime}$		1，343 ${ }^{\text {a }}$	

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT		CORES		TOTAL A	UNT COR			REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S/N	$\begin{aligned} & n \\ & \frac{n}{\partial} \\ & E \\ & \frac{0}{4} \end{aligned}$							
82	$02^{\circ} 35.48^{\prime} \mathrm{N} \quad 106^{\circ} 56.52^{\prime} \mathrm{W}$ January 14-15, 1970 3707 m ($12,161^{\prime}$)	$\begin{aligned} & 9-7 / 8 \\ & \text { Varel } \\ & \text { Diamond - } 250 \mathrm{~K} \\ & \text { \#7902 } \end{aligned}$	7	7	100	$\begin{gathered} 50 \mathrm{~m} \\ 165^{\prime} \end{gathered}$	$\begin{gathered} 46 \mathrm{~m} \\ 151^{1} \end{gathered}$	91	$\begin{aligned} & 217 \mathrm{~m} \\ & 713^{\prime} \end{aligned}$	Rerun
82A	$02^{\circ} 35.48^{\prime} \mathrm{N} \quad 106^{\circ} 56.52^{\prime} \mathrm{W}$ January 15, 1970 $3707 \mathrm{~m}\left(12,161^{\prime}\right)$	9/7/8 Varel Diamond - 250 K \#7902	3	3	100	$\begin{gathered} 36 \mathrm{~m} \\ 118^{\prime} \end{gathered}$	$\begin{aligned} & 27 m \\ & 89^{\prime} \end{aligned}$	71		Rerun-5\% salvage.
83	$\begin{aligned} & 04^{\circ} 02.8^{\prime} \mathrm{N} \quad 95^{\circ} 44.25^{\prime} \mathrm{W} \\ & \text { January } 18,1970 \\ & 3646 \mathrm{~m} \quad\left(11,961^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-7 / 8 \\ & \text { Varel } \\ & \text { Diamond - } 500 \mathrm{~K} \\ & \text { \# } 7901 \end{aligned}$	9	9	100	$\begin{gathered} 62 \mathrm{~m} \\ 203^{\prime} \end{gathered}$	$\begin{gathered} 47 \mathrm{~m} \\ 155^{\prime} \end{gathered}$	77	$\begin{aligned} & 241 \mathrm{~m} \\ & 790^{\prime} \end{aligned}$	
83A	$\begin{aligned} & 04^{\circ} 02.8^{\prime} \mathrm{N} \quad 95^{\circ} 44.25^{\prime} \mathrm{W} \\ & \text { January } 19-20,1970 \\ & 3646 \mathrm{~m} \quad\left(11,961^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-7 / 8 \\ & \text { Varel } \\ & \text { Diamond - } 500 \mathrm{~K} \\ & \text { \# } 7901 \end{aligned}$	16	16	100	$\begin{aligned} & 177 \mathrm{~m} \\ & 580^{\prime} \end{aligned}$	172 m 564^{\prime}	97	$251 \mathrm{~m}$ 823'	Rerun - soft basalt - 95% salvage .
84	$05^{\circ} 44.92^{\prime} \mathrm{N} \quad 82^{\circ} 53.29^{\prime} \mathrm{W}$ January 24-26, 1970 3097 m $(10,591$)	$\begin{aligned} & 9-7 / 8 \\ & \text { Varel } \\ & \text { Diamond - } 500 \mathrm{~K} \\ & \text { \#7901 } \\ & \hline \end{aligned}$	30	30	100	$\begin{aligned} & 254 m \\ & 833^{\prime} \end{aligned}$	$\begin{aligned} & 214 \mathrm{~m} \\ & 702^{\prime} \end{aligned}$	85	$\begin{aligned} & 254 \mathrm{~m} \\ & 833^{\prime} \end{aligned}$	Rerun - 90% salvage .

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT CORES				TOTAL AMOUNT CORED				REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S / N								
85	$\begin{aligned} & 22^{\circ} 50.49^{\prime} \mathrm{N} \quad 91^{\circ} 25.37^{\prime} \mathrm{W} \\ & \text { February 22, } 1970 \\ & 3749 \mathrm{~m} \quad\left(12,300^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-7 / 8 \\ & \text { Williams } \\ & \text { Diamond } \\ & { }^{\#} 2963 \\ & \hline \end{aligned}$	5	5	100	$\begin{gathered} 39 \mathrm{~m} \\ 128^{\prime} \end{gathered}$	27 m 89^{\prime}	68	210 m 690^{\prime}	No salvage.
85A	$\begin{aligned} & 22^{\circ} 50.49^{\prime} \mathrm{N} \quad 91^{\circ} 25.37^{\prime} \mathrm{W} \\ & \text { February } 24,1970 \\ & 3749^{\prime} \mathrm{m} \quad\left(12,300^{\prime}\right) \end{aligned}$	$9-7 / 8$ Smith-4 Cone Roller Tungsten "DF023E	0	0	0	0	0	0	$\begin{array}{r} 305 \mathrm{~m} \\ 1,000^{\prime} \end{array}$	
86	$22^{\circ} 52.48^{\prime} \mathrm{N} \quad 90^{\circ} 57.75^{\prime} \mathrm{W}$ February 25-26, 1970 $1481 \mathrm{~m}\left(4,859^{\prime}\right)$	$9-7 / 8$ Smith - 4 Cone Roller Tungsten "DF023E	13	9	69	$\begin{aligned} & 100 \mathrm{~m} \\ & 328^{\prime} \end{aligned}$	$\begin{gathered} 43 \mathrm{~m} \\ 141^{\prime} \end{gathered}$	43	$\begin{array}{r} 673 \mathrm{~m} \\ 2,208^{\prime} \end{array}$	Rerun - hard dolomite.
87	$\begin{aligned} & 23^{\circ} 00.90^{\prime} \mathrm{N} \quad 92^{\circ} 05.16^{\prime} \mathrm{W} \\ & \text { March } 1-2,1970 \\ & 3761 \mathrm{~m} \quad\left(12,340^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-7 / 8 \\ & \text { Varel } \\ & \text { Diamond - } 500 \mathrm{~K} \\ & \text { \#7922 } \end{aligned}$	1	1	100	$\begin{gathered} 8 \mathrm{~m} \\ 26^{\prime} \end{gathered}$	$\begin{aligned} & 2 m \\ & 7 \end{aligned}$	30	$\begin{array}{r} 701 \mathrm{~m} \\ 2,300^{1} \end{array}$	Lost in hole.
88	$\begin{aligned} & 21^{\circ} 22.93^{\prime} \mathrm{N} \quad 94^{\circ} 00.21^{\prime} \mathrm{W} \\ & \text { March 4, 1970 } \\ & 2532 \mathrm{~m} \quad\left(8,3077^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-7 / 8 \\ & \text { Varel } \\ & \text { Diamond - } 140 \\ & \text { \#7918 } \\ & \hline \end{aligned}$	5	5	100	$\begin{gathered} 35 \mathrm{~m} \\ 115^{\prime} \end{gathered}$	$\begin{gathered} 33 \mathrm{~m} \\ 108 \end{gathered}$	94	$\begin{aligned} & 139 \mathrm{~m} \\ & 456^{\prime} \end{aligned}$	100\% salvage
89	$\begin{aligned} & 20^{\circ} 53.41^{\prime} \mathrm{N} \quad 95^{\circ} 06.73^{\prime} \mathrm{W} \\ & \text { March 6-7, } 1970 \\ & 3067 \mathrm{~m} \quad\left(10,063^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-7 / 8 \\ & \text { Varel } \\ & \text { Diamond - } 140 \\ & \text { "7918 } \end{aligned}$	6	6	100	39 m 128	$26 m$ 85	67	$\begin{array}{r} 430 \mathrm{~m} \\ 1,410^{\prime} \end{array}$	Rerun - 99% salvage .

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT	CORES			TOTAL A	UNT COR			REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S / N	$\begin{aligned} & n \\ & \frac{n}{a} \\ & \frac{1}{む} \\ & \frac{ \pm}{4} \end{aligned}$							
90	$\begin{aligned} & 23^{\circ} 47.80^{\prime} \mathrm{N} \quad 94^{\circ} 46.09^{\prime} \mathrm{W} \\ & \text { March } 9-11,1970 \\ & 3713 \mathrm{~m} \quad\left(12,182^{\prime}\right) \end{aligned}$	9-7/8 Williams Diamond "Z966	13	11	85	$\begin{gathered} 85 \mathrm{~m} \\ 279 \end{gathered}$	$\begin{gathered} 52 \mathrm{~m} \\ 171 \text { י' } \end{gathered}$	61	$\begin{array}{r} 664 \mathrm{~m} \\ 2,179 \end{array}$	30% salvage .
91	$23^{\circ} 46.40^{\prime} \mathrm{N} \quad 93^{\circ} 20.77^{\prime} \mathrm{W}$ March 12-15, 1970 $3763 \mathrm{~m}\left(12,346^{\prime}\right)$	9-7/8 Williams Diamond \#Z968	25	25	100	$206 m$ 675^{\prime}	148 m 487'	72	$\begin{array}{r} 896 \mathrm{~m} \\ 2,940^{\prime} \end{array}$	45% salvage .
92	$\begin{aligned} & 25^{\circ} 50.69^{\prime} \mathrm{N} \quad 91^{\circ} 49.29^{\prime} \mathrm{W} \\ & \text { March } 16-17,1970 \\ & 2573 \mathrm{~m} \quad\left(8,442^{\prime}\right) \end{aligned}$	9-7/8 Williams Diamond "Z969	11	10	91	$\begin{gathered} 70 \mathrm{~m} \\ 229 \end{gathered}$	$\begin{gathered} 41 \mathrm{~m} \\ 135^{\prime} \end{gathered}$	59	$\begin{aligned} & 281 \mathrm{~m} \\ & 922^{\prime} \end{aligned}$	95\% salvage.
92A	$\begin{aligned} & 25^{\circ} 50.71^{\prime} \mathrm{N} \quad 92^{\circ} 49.33^{\prime} \mathrm{W} \\ & \text { March } 19,1970 \\ & 2573 \mathrm{~m} \quad\left(8,442^{\prime}\right) \end{aligned}$	9-7/8 Williams Diamond \#Z969	0	0	0	0	0	0	$\begin{aligned} & 131 \mathrm{~m} \\ & 430^{\prime} \end{aligned}$	Rerun - 95% salvage .
93	$\begin{aligned} & 22^{\circ} 37.25^{\prime} \mathrm{N} \quad 91^{\circ} 28.78^{\prime} \mathrm{W} \\ & \text { March } 20,1970^{\prime} \\ & 3090 \mathrm{~m} \quad\left(10,138^{\prime}\right) \end{aligned}$	$9-7 / 8$ Varel Mis. Diamond \#7918	1	1	100	$\begin{aligned} & 2 m \\ & 7 \end{aligned}$	$\begin{gathered} 2 m \\ 7 \end{gathered}$	100	$\begin{aligned} & 20 \mathrm{~m} \\ & 65^{\prime} \end{aligned}$	
93A	$\begin{aligned} & 22^{\circ} 37.25^{\prime} \mathrm{N} \quad 91^{\circ} 28.78^{\prime} \mathrm{W} \\ & \text { March } 20,1970 \\ & 3090 \mathrm{~m} \quad\left(10,138^{\prime}\right) \end{aligned}$	$9-7 / 8$ Varel Mis. Diamond \#7920	0	0	0	0	0	0	8 m 26	

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT	CORES			TOTAL A	UNT CORED		REMARKS	
	Latitude／Longitude Dates of Operation Water Depth－Meters（ Ft ）	Size Make Type S / N	$\begin{aligned} & \frac{n}{⿳ 亠 口} \\ & E \\ & \frac{\#}{4} \\ & \frac{\#}{4} \end{aligned}$							
94	$\begin{aligned} & 24^{\circ} 31.64^{\prime} \mathrm{N} \quad 88^{\circ} 28.16^{\prime} \mathrm{W} \\ & \text { March } 22-26,1970 \\ & 1793 \mathrm{~m} \quad\left(5,883^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-7 / 8 \\ & \text { Varel } \\ & \text { Mis. Diamond } \\ & \text { \#7917 } \end{aligned}$	40	38	95	$\begin{aligned} & 287 m \\ & 9411^{\prime} \end{aligned}$	177m $581{ }^{1}$	61	$\begin{array}{r} 664 m \\ 2,178^{\prime} \end{array}$	
95	$\begin{aligned} & 24^{\circ} 09.00^{\prime} \mathrm{N} \quad 86^{\circ} 23.85^{\prime} \mathrm{W} \\ & \text { March } 27-30,1970 \\ & 1633 \mathrm{~m} \quad\left(5,358^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-7 / 8 \\ & \text { Varel } \\ & \text { Mis. Diamond } \\ & \# 7904 \end{aligned}$	22	22	100	$\begin{aligned} & 166 \mathrm{~m} \\ & 544^{\prime} \end{aligned}$	$\begin{aligned} & 120 \mathrm{~m} \\ & 394^{\prime} \end{aligned}$	72	$\begin{array}{r} 463 \mathrm{~m} \\ 1,520 \end{array}$	
96	$23^{\circ} 44.56^{\prime} \mathrm{N} \quad 85^{\circ} 45.80^{\prime} \mathrm{W}$ March 30－31， 1970 $3439 \mathrm{~m}\left(11,283^{\prime}\right)$	$\begin{aligned} & 9-7 / 8 \\ & \text { Varel } \\ & \text { Mis. Diamond } \\ & \text { \#7919 } \end{aligned}$	5	5	100	$\begin{gathered} 38 \mathrm{~m} \\ 125^{\prime} \end{gathered}$	$\begin{aligned} & 28 \mathrm{~m} \\ & 92^{\prime} \end{aligned}$	74	$\begin{gathered} 323 \mathrm{~m} \\ 1,060^{\prime} \end{gathered}$	
97	$\begin{aligned} & 23^{\circ} 53.05^{\prime} \mathrm{N} \quad 84^{\circ} 26.74^{\prime} \mathrm{W} \\ & \text { April } 1-3,1970 \\ & 2930 \mathrm{~m} \quad\left(9,613^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-7 / 8 \\ & \text { Varel } \\ & \text { Mis. Diamond } \\ & \# 7917 \end{aligned}$	12	12	100	$\begin{gathered} 62 \mathrm{~m} \\ 203^{\prime} \end{gathered}$	$\begin{gathered} 36 \mathrm{~m} \\ 118^{\prime} \end{gathered}$	58	$\begin{gathered} 339 \mathrm{~m} \\ 1,112^{\prime} \end{gathered}$	

HOLE

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT		CORES		TOTAL AMOUNT CORED				REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S/N	$\begin{aligned} & \frac{n}{0} \\ & \frac{0}{E} \\ & \frac{\Phi}{4} \end{aligned}$							
102	$\begin{aligned} & 30^{\circ} 43.56^{\prime} \mathrm{N} \quad 74^{\circ} 27.05^{\prime} \mathrm{W} \\ & \text { May } 1-4,1970 \\ & 3436 \mathrm{~m} \quad\left(11,274^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-7 / 8 \\ & \text { Varel } \\ & \text { Diamond }-250 \mathrm{~K} \\ & \text { \#7906 } \end{aligned}$	19	19	100	$109 \mathrm{~m}$ 358^{\prime}	105m 344^{\prime}	96	$\begin{array}{r} 661 \mathrm{~m} \\ 2,168^{\prime} \end{array}$	95\% salvage
103	$\begin{aligned} & 30^{\circ} 27.08^{\prime} \mathrm{N} \quad 74^{\circ} 34.99^{\prime} \mathrm{W} \\ & \text { May 6, } 1970 \\ & 3974 \mathrm{~m} \quad\left(13,039^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-7 / 8 \\ & \text { Williams } \\ & \text { Diamond - TC Drag } \\ & \text { \#Z961 } \end{aligned}$	7	7	100	$\begin{gathered} 62 \mathrm{~m} \\ 204^{\prime} \end{gathered}$	$\begin{gathered} 39 \mathrm{~m} \\ 128^{\prime} \end{gathered}$	63	$\begin{array}{r} 449 \mathrm{~m} \\ 1,473^{\prime} \end{array}$	90% salvage 90% salvage
104	$\begin{aligned} & 30^{\circ} 49.65^{\prime} \mathrm{N} \quad 74^{\circ} 19.64^{\prime} \mathrm{W} \\ & \text { May 7, 1970 } \\ & 3841 \mathrm{~m} \quad\left(12,537^{\prime}\right) \end{aligned}$	$10-1 / 8$ Smith-Roller Type Tungsten-9C-3 Cone "EA116	10	9	90	$\begin{gathered} 83 \mathrm{~m} \\ 272^{\prime} \end{gathered}$	$\begin{gathered} 56 \mathrm{~m} \\ 184^{\prime} \end{gathered}$	68	$\begin{array}{r} 617 m \\ 2,024^{\prime} \end{array}$	Rerun - T-2, B-8
105	$\begin{aligned} & 34^{\circ} 53.72^{\prime} \mathrm{N} \quad 69^{\circ} 10.41^{\prime} \mathrm{W} \\ & \text { May } 13-19,1970 \\ & 5261 \mathrm{~m} \quad\left(17,261^{\prime}\right. \end{aligned}$	$10-1 / 8$ Smith - 4 Cone Tungsten - 9C \#CM938E	43	42	93	$\begin{array}{r} 341 \mathrm{~m} \\ 1,119 \end{array}$	$\begin{aligned} & 196 \mathrm{~m} \\ & 643^{\prime} \end{aligned}$	57	$\begin{array}{r} 633 \mathrm{~m} \\ 2,076 \end{array}$	
106	$36^{\circ} 26.05^{\prime} \mathrm{N} \quad 69^{\circ} 27.69^{\prime} \mathrm{W}$ May 20-22, 1970 $4510 \mathrm{~m} \quad\left(14,797^{\prime}\right.$	$\begin{aligned} & 9-7 / 8 \\ & \text { Williams } \\ & \text { Diamond } \\ & \text { ZZ961 } \\ & \hline \end{aligned}$	6	6	100	$\begin{gathered} 48 \mathrm{~m} \\ 157^{\prime} \end{gathered}$	$\begin{aligned} & 25 \mathrm{~m} \\ & 83^{\prime} \end{aligned}$	53	$\begin{array}{r} 360 \mathrm{~m} \\ 1,181 \end{array}$	Rerun - Lost in hole
106A	$\begin{aligned} & 36^{\circ} 25.28^{\prime} \mathrm{N} \quad 69^{\circ} 25.77^{\prime} \mathrm{W} \\ & \text { May } 23,1970 \\ & 4514 \mathrm{~m} \quad\left(14,810^{\prime}\right) \end{aligned}$	$\begin{aligned} & \text { 9-7/8 } \\ & \text { Williams } \\ & \text { Diamond } \\ & \text { \#Z961 } \end{aligned}$	0	0	0	0	0	0	0	Rerun

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT	CORES			TOTAL AMOUNT CORED				REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S/N	$\begin{aligned} & \text { n } \\ & \frac{0}{2} \\ & \frac{9}{4} \\ & \frac{9}{4} \end{aligned}$							
106B	$\begin{aligned} & 36^{\circ} 25.28^{\prime} \mathrm{N} \quad 69^{\circ} 25.77^{\prime} \mathrm{W} \\ & \text { May } 24-26,1970 \\ & 4514 \mathrm{~m} \quad\left(14,810^{\prime}\right) \end{aligned}$	9-7/8 Williams Diamond "Z967	8	8	100	$\begin{gathered} 55 \mathrm{~m} \\ 181^{\prime} \end{gathered}$	$\begin{gathered} 39 \mathrm{~m} \\ 128^{\prime} \end{gathered}$	70	$\begin{array}{r} 1015 \mathrm{~m} \\ 3,330^{\prime} \end{array}$	
107	$\begin{aligned} & 38^{\circ} 39.71^{\prime} \mathrm{N} \quad 72^{\circ} 28.74^{\prime} \mathrm{W} \\ & \text { May } 28,1970 \\ & 2581 \mathrm{~m} \quad\left(8,468^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith - Roller Type } \\ & \text { Tungsten - } 9 \mathrm{C}-\text { Insert } \\ & \text { \#EH584 } \end{aligned}$	2	1	50	$\begin{aligned} & 11 \mathrm{~m} \\ & 35^{\prime} \end{aligned}$	$\begin{aligned} & 2 m \\ & 7 \end{aligned}$	17	$\begin{gathered} 77 m \\ 252^{\prime} \end{gathered}$	
108	$\begin{aligned} & 38^{\circ} 48.27^{\prime} \mathrm{N} \quad 72^{\circ} 39.21^{\prime} \mathrm{W} \\ & \text { May 29, 1970 } \\ & 1855 \mathrm{~m} \quad\left(6,086^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-7 / 8 \\ & \text { Hycalog } \\ & \text { Diamond - } 500 \mathrm{~K} \\ & { }^{\text {\# }} 10920 \end{aligned}$	3	2	67	$\begin{gathered} 50 \mathrm{~m} \\ 164^{\prime} \end{gathered}$	$\begin{gathered} 8 \mathrm{~m} \\ 26^{\prime} \end{gathered}$	16	$\begin{aligned} & 229 \mathrm{~m} \\ & 751 \end{aligned}$	95\% salvage
109	$\begin{aligned} & 37^{\circ} 59.04^{\prime} \mathrm{N} \quad 71^{\circ} 46.71^{\prime} \mathrm{W} \\ & \text { June } 7-10,1970 \\ & 3053 \mathrm{~m} \quad\left(10,017^{\prime}\right) \end{aligned}$	9-7/8 Varel Diamond \#7906	2	2	100	$\begin{gathered} 5 m \\ 16^{\prime} \end{gathered}$	$\begin{gathered} 3 \mathrm{~m} \\ 10^{1} \end{gathered}$	50	27 m 89'	Rerun - Re-entry
110	$\begin{aligned} & 38^{\circ} 02.92^{\prime} \mathrm{N} \quad 71^{\circ} 45.61^{\prime} \mathrm{W} \\ & \text { June } 11-15,1970 \\ & 3040 \mathrm{~m} \quad\left(9,974^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-1 / 4 \\ & \text { Hycalog } \\ & \text { Tungsten - SS6WC } \\ & \text { \#10241 } \end{aligned}$	1	1	100	$\begin{gathered} 3 \mathrm{~m} \\ 10 \end{gathered}$	$\begin{gathered} 3 \mathrm{~m} \\ 10^{0} \end{gathered}$	100	$\begin{gathered} 3 \mathrm{~m} \\ 10^{1} \end{gathered}$	Re-entry
	-									

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT CORES				TOTAL AMOUNT CORED				REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S/N	$\begin{aligned} & \frac{n}{0} \\ & E \\ & \frac{ \pm}{4} \\ & \frac{1}{4} \end{aligned}$							
111	$50^{\circ} 25.57^{\prime} \mathrm{N} \quad 46^{\circ} 22.05^{\prime} \mathrm{W}$ June 25-26, 1970 $1811 \mathrm{~m}\left(5,942^{\prime}\right)$	$\begin{aligned} & 9-7 / 8 \\ & \text { Christensen } \\ & \text { Diamond - } 500 \mathrm{~K} \\ & \text { \#1927 } \\ & \hline \end{aligned}$	7	6	86	$\begin{gathered} 48 \mathrm{~m} \\ 158^{\prime} \end{gathered}$	$15 m$ 49^{\prime}	31	$\begin{aligned} & 247 \mathrm{~m} \\ & 810^{\prime} \end{aligned}$	TD - hard sand.
111A	$\begin{aligned} & 50^{\circ} 25.57^{\prime} \mathrm{N} \quad 46^{\circ} 22.05^{\prime} \mathrm{W} \\ & \text { June } 26-28,1970 \\ & 181 \mathrm{~lm} \quad\left(5,942^{\prime}\right) \end{aligned}$	$9-7 / 8$ Christensen Diamond \#1927	12	12	100	$\begin{gathered} 94 \mathrm{~m} \\ 308^{\prime} \end{gathered}$	$\begin{gathered} 59 \mathrm{~m} \\ 194^{\prime} \end{gathered}$	63	$\begin{aligned} & 199 \mathrm{~m} \\ & 650^{\prime} \end{aligned}$	Rerun - 5% salvage .
112	$54^{\circ} 01.00^{\prime} \mathrm{N} \quad 48^{\circ} 36.24^{\prime} \mathrm{W}$ June 29-July 1, 1970 3667 m ($12,031^{\prime}$)	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { Jungsten - } 3 \text { Cone } \\ & \text { EH584 } \end{aligned}$	17	17	100	145 m 476'	$\begin{gathered} 75 \mathrm{~m} \\ 246^{\prime} \end{gathered}$	51	$\begin{array}{r} 663 \mathrm{~m} \\ 2,175^{\prime} \end{array}$	Rerun-basalt.
112A	$\begin{aligned} & 54^{\circ} 01.00^{\prime} \mathrm{N} \quad 46^{\circ} 36.24^{\prime} \mathrm{W} \\ & \text { July } 2-3,1970 \\ & 3667 \mathrm{~m} \quad\left(12,031^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { Tungsten - } 3 \text { Cone } \\ & \text { \#EH584 } \end{aligned}$	5	5	100	$\begin{gathered} 45 \mathrm{~m} \\ 148^{\prime} \end{gathered}$	$\begin{gathered} 32 \mathrm{~m} \\ 105^{\prime} \end{gathered}$	71	$\begin{aligned} & 124 \mathrm{~m} \\ & 407 \end{aligned}$	Rerun - T-2, B-6.
113	$\begin{aligned} & 56^{\circ} 47.40^{\prime} \mathrm{N} \quad 48^{\circ} 19.91^{\prime} \mathrm{W} \\ & \text { July 4-8, } 1970 \\ & 3629 \mathrm{~m} \quad\left(11,907^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith - Extended } \\ & \text { Tungsten - } 9 \mathrm{C} \\ & \text { \#EV643 } \end{aligned}$	12	10	83	76 m 249^{\prime}	$\begin{aligned} & 30 \mathrm{~m} \\ & 98^{\prime} \end{aligned}$	39	$\begin{array}{r} 923 \mathrm{~m} \\ 3,028^{\prime} \end{array}$	T-1, B-2 - no basalt.
114	$\begin{aligned} & 59^{\circ} 56^{\prime} \mathrm{N} \quad 26^{\circ} 48^{\prime} \mathrm{W} \\ & \text { July } 11-13,1970 \\ & \text { 1937m } \quad\left(6,335^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { Tungsten-9C-4 Cone } \\ & \text { \#EV638 } \end{aligned}$	9	7	78	60 m 197	46 m 151	76	$\begin{array}{r} 623 m \\ 2,044^{\prime} \end{array}$	TD - basalt.

HOLE NO.	POSITION	CORE BIT		CORES		TOTAL A	UNT COR			REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S/N	$\begin{aligned} & \text { n } \\ & \frac{0}{E} \\ & \frac{0}{4} \\ & \frac{0}{4} \end{aligned}$							
115	$\begin{aligned} & 58^{\circ} 54.4^{\prime} \mathrm{N} \quad 21^{\circ} 07.0^{\prime} \mathrm{W} \\ & \text { July } 14-16,1970 \\ & 2893 \mathrm{~m} \quad\left(9,492^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith - Extended } \\ & \text { Tungsten -9C } \\ & \text { \#EV640 } \\ & \hline \end{aligned}$	8	8	100	$\begin{gathered} 55 \mathrm{~m} \\ 180^{\prime} \end{gathered}$	$\begin{gathered} 9 \mathrm{~m} \\ 29^{\prime} \end{gathered}$	17	$\begin{aligned} & 227 \mathrm{~m} \\ & 745^{\prime} \end{aligned}$	TD - volcanic ash. T-1, B-5
116	$\begin{aligned} & 57^{\circ} 29.7^{\prime} \mathrm{N} \quad 15^{\circ} 55.5^{\prime} \mathrm{W} \\ & \text { July } 17-20,1970 \\ & 1161 \mathrm{~m} \quad\left(3,809^{\prime}\right) \end{aligned}$	$10-1 / 8$ Smith - Extended Tungsten - 9 C "EV644	28	28	100	$\begin{aligned} & 226 \mathrm{~m} \\ & 742^{\prime} \end{aligned}$	$\begin{aligned} & 195 \mathrm{~m} \\ & 640^{\prime} \end{aligned}$	87	$\begin{array}{r} 854 m \\ 2,802 \end{array}$	TD - hard cherty lime.
116A	$\begin{aligned} & 57^{\circ} 29.7^{\prime} \mathrm{N} \quad 15^{\circ} 55.5^{\prime} \mathrm{W} \\ & \text { July 21, } 1970 \\ & 1161 \mathrm{~m} \quad\left(3,809^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith - Extended } \\ & \text { Tungsten - } 9 \mathrm{C} \\ & \text { \#EV644 } \\ & \hline \end{aligned}$	11	11	100	$\begin{gathered} 99 \mathrm{~m} \\ 324^{\prime} \end{gathered}$	$\begin{gathered} 90 \mathrm{~m} \\ 295^{\prime} \end{gathered}$	90	$\begin{gathered} 99 \mathrm{~m} \\ 325^{\prime} \end{gathered}$	Rerun- ${ }^{\text {- }}$ 1, B-6.
117	$\begin{aligned} & 57^{\circ} 19.5^{\prime} \mathrm{N} \quad 15^{\circ} 23.0^{\prime} \mathrm{W} \\ & \text { July } 22,1970 \\ & 1048 \mathrm{~m} \quad\left(3,438^{\prime}\right) \end{aligned}$	$\begin{aligned} & \text { 10-1/8 } \\ & \text { Smith } \\ & \text { Tungsten -9C-4 Cone } \\ & \text { \#EV637 } \\ & \hline \end{aligned}$	3	3	100	20 m 66^{\prime}	$\begin{gathered} 9 m \\ 29^{\prime} \end{gathered}$	44	$\begin{aligned} & 156 \mathrm{~m} \\ & 512^{\prime} \end{aligned}$	T-2, B-6
117A	$\begin{aligned} & 57^{\circ} 19.5^{\prime} \mathrm{N} \quad 15^{\circ} 23.0^{\prime} \mathrm{W} \\ & \text { July } 23-24,1970 \\ & 1048 \mathrm{~m} \quad\left(3,438^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { Tungsten-9C-3 Cone } \\ & \text { "EV641 } \end{aligned}$	11	10	90	$\begin{gathered} 66 \mathrm{~m} \\ 217 \end{gathered}$	$\begin{gathered} 34 m \\ 112^{\prime} \end{gathered}$	52	$\begin{array}{r} 313 m \\ 1,027 \end{array}$	Ok for rerun.
118	$45^{\circ} 02.9^{\prime} \mathrm{N} \quad 9^{\circ} 00.5^{\prime} \mathrm{W}$ July 29 - August 2, 1970 $4901 \mathrm{~m}\left(16,080^{\prime}\right)$	$\begin{aligned} & \text { 10-1/8 } \\ & \text { Smith } \\ & \text { Tungsten -9C- } 3 \text { Cone } \\ & \text { "EV639 } \end{aligned}$	21	21	100	$\begin{aligned} & 147 m \\ & 482^{\prime} \end{aligned}$	$\begin{gathered} 52 \mathrm{~m} \\ 171 \end{gathered}$	36	$\begin{array}{r} 761 \mathrm{~m} \\ 2,497 \end{array}$	T-1, B-7 - basalt.

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT CORES				TOTAL AMOUNT CORED				REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S/N								
119	$48^{\circ} 02.3^{\prime} \mathrm{N} \quad 7^{\circ} 58.8^{\prime} \mathrm{W}$ August 2-8, 1970 4447m $\left(14,591^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { Tungsten -9C } \\ & \text { \#EV642 } \end{aligned}$	40	40	100	$\begin{array}{r} 368 \mathrm{~m} \\ 1,207 \end{array}$	$\begin{aligned} & 192 \mathrm{~m} \\ & 630^{\prime} \end{aligned}$	52	$\begin{array}{r} 71 \mathrm{~lm} \\ 2,333^{\prime} \end{array}$	T-1, B-1
							-			
									-	

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT	CORES			TOTAL A	UNT COR			REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S/N								
120	$\begin{aligned} & 36^{\circ} 41.39^{\prime} \mathrm{N} \quad 11^{\circ} 29.94^{\prime} \mathrm{W} \\ & \text { August } 14-17,1970 \\ & 1721 \mathrm{~m}\left(5,647^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { Tungsten - } 9 \mathrm{C} \\ & \text { \#EV643 } \\ & \hline \end{aligned}$	8	8	100	$\begin{aligned} & 25 m \\ & 83^{\prime} \end{aligned}$	$\begin{gathered} 6 \mathrm{~m} \\ 20^{\prime} \end{gathered}$	23	$\begin{aligned} & 252 \mathrm{~m} \\ & 827 \end{aligned}$	Rerun-T-1, B-8.
121	$36^{\circ} 09.60^{\prime} \mathrm{N} \quad 04^{\prime} 23.00^{\prime} \mathrm{W}$ August 17-21, 1970 $1173 \mathrm{~m}\left(3,849^{\prime}\right)$	$\begin{aligned} & 9-7 / 8 \\ & \text { Reed } \\ & \text { Roller-PD-20 } \\ & \text { \#9117 } \end{aligned}$	23	23	96	$\begin{aligned} & 161 \mathrm{~m} \\ & 528^{\prime} \end{aligned}$	$\begin{gathered} 46 \mathrm{~m} \\ 151^{\prime} \end{gathered}$	29	$\begin{array}{r} 867 m \\ 2,844^{\prime} \end{array}$	T-8, B-8-basalt.
122	$\begin{aligned} & 40^{\circ} 26.87^{\prime} \mathrm{N} \quad 02^{\prime} 37.46^{\prime} \mathrm{E} \\ & \text { August } 21-24,1970 \\ & 2156 \mathrm{~m} \quad\left(7,074^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-7 / 8 \\ & \text { Reed } \\ & \text { Roller - PD-20 } \\ & \text { \#8093 } \\ & \hline \end{aligned}$	4	3	75	$\begin{aligned} & 30 \mathrm{~m} \\ & 98^{\prime} \end{aligned}$	$\begin{gathered} 5 m \\ 16^{\prime} \end{gathered}$	17	$\begin{aligned} & 192 \mathrm{~m} \\ & 630^{\prime} \end{aligned}$	T-1, B-1, IG
123	$\begin{aligned} & 40^{\circ} 37.33^{\prime} \mathrm{N} \quad 02^{\prime} 50.47^{\prime} \mathrm{E} \\ & \text { August } 24-25,1970 \\ & 2300 \mathrm{~m} \quad\left(7,546^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-7 / 8 \\ & \text { Reed } \\ & \text { Roller - PD-20 } \\ & \text { \#8093 } \\ & \hline \end{aligned}$	8	7	88	$\begin{gathered} 71 \mathrm{~m} \\ 233^{\prime} \end{gathered}$	$\begin{aligned} & 19 \mathrm{~m} \\ & 62^{\prime} \end{aligned}$	28	$\begin{array}{r} 398 \mathrm{~m} \\ 1,306^{\prime} \end{array}$	Rerun - T-3, B-3.
124	$\begin{aligned} & 38^{\circ} 52.40^{\prime} \mathrm{N} \quad 04^{\circ} 59.70^{\prime} \mathrm{E} \\ & \text { August } 25-29,1970 \\ & 2736 \mathrm{~m} \quad\left(8,9777^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-7 / 8 \\ & \text { Hycalog } \\ & \text { Tungsten-SS PD 3WC } \\ & \text { \#10865 } \\ & \hline \end{aligned}$	15	14	94	$\begin{gathered} 72 \mathrm{~m} \\ 236^{\prime} \end{gathered}$	$\begin{gathered} 42 \mathrm{~m} \\ 138^{\prime} \end{gathered}$	58	$\begin{array}{r} 423 \mathrm{~m} \\ 1,388^{\prime} \end{array}$	70\% salvage.
125	$\begin{aligned} & 34^{\circ} 37.31^{\prime} \mathrm{N} \quad 20^{\circ} 25.68^{\prime} \mathrm{E} \\ & \text { August } 29-\text { - September } 3,1970 \\ & 2792 \mathrm{~m} \quad\left(9,161^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-7 / 8 \\ & \text { Varel } \\ & \text { Diamond - } 250 \mathrm{~K} \\ & \text { " } 7903 \end{aligned}$	11	8	73	$\begin{gathered} 97 \mathrm{~m} \\ 318^{\prime} \end{gathered}$	$\begin{gathered} 47 \mathrm{~m} \\ 154^{\prime} \end{gathered}$	49	$\begin{gathered} 97 \mathrm{~m} \\ 318^{\prime} \end{gathered}$	

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT	CORES			TOTAL AMOUNT CORED				REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S / N	$\begin{aligned} & \frac{n}{a} \\ & E \\ & \frac{9}{4} \\ & \frac{9}{4} \end{aligned}$		$\begin{aligned} & \text { 돛 } \\ & \begin{array}{c} 30 \\ 3 \\ 0 \\ \circ \\ \circ \\ 0 \end{array} \end{aligned}$					
128	$35^{\circ} 42.58^{\prime} \mathrm{N} \quad 22^{\circ} 28.09^{\prime} \mathrm{E}$ September 10-12, 1970 4650 m (15,257')	$\begin{aligned} & 9-7 / 8 \\ & \text { Varel } \\ & \text { Diamond - } 250 \mathrm{~K} \\ & \text { \# } 7903 \end{aligned}$	11	11	100	$\begin{gathered} 91 \mathrm{~m} \\ 299 \end{gathered}$	$\begin{gathered} 78 \mathrm{~m} \\ 256^{\prime} \end{gathered}$	85	$\begin{array}{r} 480 \mathrm{~m} \\ 1,575^{\prime} \end{array}$	Rerun
129	$34^{\circ} 20.30^{\prime} \mathrm{N} \quad 27^{\circ} 05.08^{\prime} \mathrm{E}$ September 12-14, 1970 3058 m ($10,033^{\prime}$)	$\begin{aligned} & 9-7 / 8 \\ & \text { Varel } \\ & \text { Diamond - } 250 \mathrm{~K} \\ & \text { \# } 7921 \\ & \hline \end{aligned}$	4	3	75	$\begin{aligned} & 13 \mathrm{~m} \\ & 43^{\prime} \end{aligned}$	$\begin{gathered} 3 \mathrm{~m} \\ 10^{\prime} \end{gathered}$	22	$\begin{aligned} & 112 \mathrm{~m} \\ & 367 \end{aligned}$	95% salvage
129A	$\begin{aligned} & 34^{\circ} 20.30^{\prime} \mathrm{N} \quad 27^{\circ} 05.00^{\prime} \mathrm{E} \\ & \text { September } 14-15,1970 \\ & 2842 \mathrm{~m} \quad\left(9,325^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-7 / 8 \\ & \text { Varel } \\ & \text { Diamond - } 250 \mathrm{~K} \\ & \text { \#7921 } \end{aligned}$	3	3	100	$\begin{gathered} 5 m \\ 16^{\prime} \end{gathered}$	$\begin{gathered} 3 \mathrm{~m} \\ 10^{\prime} \end{gathered}$	56	$\begin{gathered} 81 \mathrm{~m} \\ 266^{\prime} \end{gathered}$	Rerun - 85% salvage .
129B	$\begin{aligned} & 34^{\circ} 20.30^{\prime} \mathrm{N} \quad 27^{\circ} 05.00^{\prime} \mathrm{E} \\ & \text { September } 15-16,1970 \\ & 3052 \mathrm{~m} \quad\left(10,014^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-7 / 8 \\ & \text { Varel } \\ & \text { Diamond - } 250 \mathrm{~K} \\ & \text { \# } 7921 \\ & \hline \end{aligned}$	2	2	100	$\begin{aligned} & 17 \mathrm{~m} \\ & 56^{\prime} \end{aligned}$	$\begin{aligned} & 1 \mathrm{~m} \\ & 3^{\prime} \end{aligned}$	9	$\begin{gathered} 42 \mathrm{~m} \\ 138^{\prime} \end{gathered}$	Rerun-75\% salvage.
130	$33^{\circ} 36.30^{\prime} \mathrm{N} \quad 27^{\circ} 52.00^{\prime} \mathrm{E}$ September 16-17, 1970 2989m (9,807)	$9-7 / 8$ Reed Roller Milled Cutter \#8074	7	7	100	$\begin{gathered} 54 \mathrm{~m} \\ 177 \end{gathered}$	$\begin{aligned} & 23 \mathrm{~m} \\ & { }_{75} \end{aligned}$	42	$\begin{aligned} & 563 \mathrm{~m} \\ & 1,847 \mathrm{r} \end{aligned}$	
130A	$\begin{aligned} & 33^{\circ} 36.30^{\prime} \mathrm{N} \quad 27^{\circ} 52.00^{\prime} \mathrm{E} \\ & \text { Sept } 17-18,1970 \\ & 2992 \mathrm{~m} \quad\left(9,817^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-7 / 8 \\ & \text { Reed - PD-2 } \\ & \text { Roller Rolled Cutter } \\ & \text { " } 8074 \end{aligned}$	1	1	100	$\begin{aligned} & 11 \mathrm{~m} \\ & 35^{\prime} \end{aligned}$	$\begin{aligned} & \text { lm } \\ & 3^{\prime} \end{aligned}$	9	11 m 35^{\prime}	Rerun

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT		CORES		TOTAL AMOUNT CORED				REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S/N	$\begin{aligned} & \stackrel{n}{0} \\ & \underset{\text { E }}{4} \\ & \frac{ \pm}{4} \end{aligned}$					$\begin{aligned} & \text { ț } \\ & 0 . \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & 20 \\ & \hline \end{aligned}$		
131	$33^{\circ} 06.33^{\prime} \mathrm{N} \quad 28^{\circ} 52.69^{\prime} \mathrm{E}$ September 18-19, 1970 3045 m ($9,991^{\prime}$)	```9-7/8 Reed - PD-2 Roller Milled Cutter #8157```	1	1	100	$\begin{gathered} 9 \mathrm{~m} \\ 29{ }^{\prime} \end{gathered}$	$\begin{gathered} 8 \mathrm{~m} \\ 26^{\prime} \end{gathered}$	89	49m 161^{\prime}	-
131A	$\begin{aligned} & 33^{\circ} 06.33^{\prime} \mathrm{N} \quad 28^{\circ} 52.69^{\prime} \mathrm{E} \\ & \text { September } 19,1970 \\ & 3047 \mathrm{~m} \quad\left(9,9977^{\prime}\right) \end{aligned}$	```9-7/8 Reed - PD-2 Roller Milled Cutter #8157```	5	5	100	$\begin{gathered} 45 \mathrm{~m} \\ 148^{\prime} \end{gathered}$	$\begin{gathered} 6 \mathrm{~m} \\ 20^{\prime} \end{gathered}$	13	$272 m$ 892^{\prime}	Rerun - 85% salvage .
132	$40^{\circ} 15.67^{\prime} \mathrm{N} \quad 11^{\circ} 26.46^{\prime} \mathrm{E}$ September 20-26, 1970 $2845 \mathrm{~m}\left(9,334^{\prime}\right)$	$\begin{aligned} & 9-7 / 8 \\ & \text { Hycalog- } \\ & \text { Tungsten-Insert } \\ & \$ 10866 \end{aligned}$	27	26	97	$\begin{aligned} & 223 \mathrm{~m} \\ & 732 \end{aligned}$	169 m $554{ }^{\prime}$	75	$\begin{aligned} & 223 \mathrm{~m} \\ & 732 \end{aligned}$	85% salvage
133	$39^{\circ} 11.71^{\prime} \mathrm{N} \quad 07^{\circ} 20.13^{\prime} \mathrm{E}$ September 27-28, 1970 2573m ($8,442^{\prime}$)	$\begin{aligned} & 10-1 / 8 \\ & \text { Varel-Insert Compact } \\ & \text { Tungsten - } 4 \text { Cone } \\ & \text { \#6 } \end{aligned}$	8	6	75	$69 \mathrm{~m}$ 226^{\prime}	$\begin{gathered} 7 \mathrm{~m} \\ 23^{\prime} \end{gathered}$	10	$192 \mathrm{~m}$ 630^{\prime}	
134	$39^{\circ} 11.84^{\prime} \mathrm{N} \quad 07^{\circ} 17.96^{\prime} \mathrm{E}$ September 28-29, 1970 2874 m ($9,430^{\prime}$)	$\begin{aligned} & 10-1 / 8 \\ & \text { Varel-Insert Compact } \\ & \text { Tungsten - } 4 \text { Cone } \\ & \text { \#6 } \end{aligned}$	10	7	70	$\begin{gathered} 73 \mathrm{~m} \\ 240^{\prime} \end{gathered}$	$\begin{aligned} & 23 \mathrm{~m} \\ & 75^{\prime} \end{aligned}$	31	$\begin{array}{r} 364 \mathrm{~m} \\ 1,194^{\prime} \end{array}$	Rerun
134 A	$39^{\circ} 11.84^{\prime} \mathrm{N} \quad 07^{\circ} 17.90^{\prime} \mathrm{E}$ September 29-30, 1970 $2874 \mathrm{~m}\left(9,430^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Varel-Insert Compact } \\ & \text { Tungsten-4 Cone } \\ & \text { \#6 } \end{aligned}$	2	1	50	$\begin{aligned} & 14 m \\ & 46^{\prime} \end{aligned}$	$\begin{aligned} & 2 \mathrm{~m} \\ & 7 \end{aligned}$	129		Rerun

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT		CORES		TOTAL AMOUNT CORED				REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S / N	$\begin{aligned} & \text { n } \\ & \frac{\vdots}{E} \\ & \frac{0}{4} \\ & \frac{1}{4} \end{aligned}$					$\begin{aligned} & \text { ta } \\ & 0.0 \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & \circ \\ & \hline 0 \end{aligned}$		
134B	$39^{\circ} 11.84^{\prime} \mathrm{N} \quad 07^{\circ} 17.96^{\prime} \mathrm{E}$ September 30, 1970 2879 m ($9,446^{\prime}$)	$\begin{aligned} & 10-1 / 8 \\ & \text { Varel-Insert Compact } \\ & \text { Tungsten - } 4 \text { Cone } \\ & \text { \#6 } \\ & \hline \end{aligned}$	1	1	100	$5 \mathrm{~m}$	$1{ }^{\prime}$	4	$72 \mathrm{~m}$ 236^{\prime}	Rerun
134C	$39^{\circ} 11.84^{\prime} \mathrm{N} \quad 07^{\circ} 17.96^{\prime} \mathrm{E}$ September 30, 1970 $2879 \mathrm{~m}\left(9,446^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Varel-Insert Compact } \\ & \text { Tungsten-4 Cone } \\ & \text { \#6 } \end{aligned}$	0	0	0	0	0	0	$\begin{aligned} & 131 \mathrm{~m} \\ & 430^{\prime} \end{aligned}$	Rerun
134D	$39^{\circ} 11.84^{\prime} \mathrm{N} \quad 07^{\circ} 17.98^{\prime} \mathrm{E}$ September 30-October 1,1970 $2881 \mathrm{~m}\left(9,453^{\prime}\right)$	```10-1/8 Varel-Insert Compact Tungsten-4 Cone #6```	3	3	100	15 m 49'	$\begin{aligned} & 1 \mathrm{~m} \\ & 3^{\prime} \end{aligned}$	9	$213 \mathrm{~m}$ 699^{\prime}	Rerun
134E	$\begin{aligned} & 39^{\circ} 11.84^{\prime} \mathrm{N} \quad 07^{\circ} 17.96^{\prime} \mathrm{E} \\ & \text { October } 1,1970 \\ & 2879 \mathrm{~m} \quad\left(9,446^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Varel-Insert Compact } \\ & \text { Tungsten - } 4 \text { Cone } \\ & \text { \#6 } \end{aligned}$	3	2	67	16 m $53 '$	$\begin{array}{r} 6 \mathrm{~m} \\ 20^{\prime} \end{array}$	4	$\begin{aligned} & 222 \mathrm{~m} \\ & 728^{\prime} \end{aligned}$	Rerun

HOLE NO.	POSITION	CORE BIT	CORES			TOTAL A	UNT COR			REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S / N	$\begin{aligned} & \stackrel{n}{0} \\ & E \\ & \frac{\Phi}{4} \\ & \frac{9}{4} \end{aligned}$							
135	$35^{\circ} 20.80^{\prime} \mathrm{N} \quad 10^{\circ} 25.46^{\prime} \mathrm{W}$ October 11-12, 1970 4162 m ($13,656^{\prime}$)	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith - } 4 \text { Cone } \\ & \text { Tungsten-Insert-9C } \\ & \text { \#FK } 903 \end{aligned}$	9	9	100	$\begin{gathered} 57 \mathrm{~m} \\ 187 \end{gathered}$	$\begin{aligned} & 26 \mathrm{~m} \\ & 85^{\prime} \end{aligned}$	45	$\begin{array}{r} 689 \mathrm{~m} \\ 2,260^{\prime} \end{array}$	Basalt
135A	$\begin{aligned} & 35^{\circ} 20.00^{\prime} \mathrm{N} \quad 10^{\circ} 24.00^{\prime} \mathrm{W} \\ & \text { October } 13,1970 \\ & 4162 \mathrm{~m} \quad\left(13,656^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith - } 4 \text { Cone } \\ & \text { Tungsten-Insert-9C } \\ & \text { \#FK903 } \end{aligned}$	1	0	0	$\begin{gathered} 9 m \\ 291 \end{gathered}$	0	0	$\begin{gathered} 49 \mathrm{~m} \\ 161^{1} \end{gathered}$	Rerun - T-1, B-2.
136	$34^{\circ} 10.13^{\prime} \mathrm{N} \quad 16^{\circ} 18.19^{\prime} \mathrm{W}$ October 16-17, 1970 $4179 \mathrm{~m}\left(13,711^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith }-3 \text { Cone } \\ & \text { Tungsten-Insert-9C } \\ & \text { \#FK } 923 \end{aligned}$	9	9	100	$\begin{gathered} 77 \mathrm{~m} \\ 253^{\prime} \end{gathered}$	$\begin{gathered} 35 \mathrm{~m} \\ 115^{\prime} \end{gathered}$	45	$\begin{aligned} & 311 \mathrm{~m} \\ & 1,020 \end{aligned}$	Basalt
137	25º3.64'W $\quad 27^{\circ} 03.64^{\prime} \mathrm{W}$ October 21-23, 1970 $5371 \mathrm{~m}\left(17,622^{\prime}\right)$	$10-1 / 8$ Smith - 3 Cone Tungsten-Insert-9C "FK923	17	17	100	136 m $446{ }^{\prime}$	$\begin{gathered} 68 \mathrm{~m} \\ 223^{\prime} \end{gathered}$	50	$\begin{array}{r} 401 \mathrm{~m} \\ 1,315^{\prime} \end{array}$	Rerun - basalt - T-1, B-3.
138	$25^{\circ} 55.37^{\prime} \mathrm{N} \quad 25^{\circ} 33.79 \mathrm{~W}$ October 25-26, 1970 $5298 \mathrm{~m}\left(17,383^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith - } 4 \text { Cone } \\ & \text { Tungsten-Insert-9C } \\ & \text { \#FK } 903 \end{aligned}$	7	7	100	$\begin{gathered} 54 \mathrm{~m} \\ 177 \end{gathered}$	$\begin{aligned} & 23 \mathrm{~m} \\ & 75^{\prime} \end{aligned}$	43	$\begin{array}{r} 442 \mathrm{~m} \\ 1,450^{\prime} \end{array}$	Rerun - T-2, B-3.
139	$23^{\circ} 31.14^{\prime} \mathrm{N} \quad 18^{\circ} 42.26^{\prime} \mathrm{W}$ October 29, 1970 $3057 \mathrm{~m}\left(10,030^{\prime}\right)$	$10-1 / 8$ Reed - 2C - Insert Tungsten - PD2 \#Unknown	7	7	100	$\begin{gathered} 56 \mathrm{~m} \\ 184^{\prime} \end{gathered}$	17 m $56{ }^{\prime}$	30	$\begin{array}{r} 665 \mathrm{~m} \\ 2,182^{\prime} \end{array}$	T-5, B-3

CORE BIT SUMMARY - LEG 14

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT		CORES		TOTAL A	UNT CORED			REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S / N								
143B	$09^{\circ} 28.45^{\prime} \mathrm{N} \quad 54^{\circ} 24.49^{\prime} \mathrm{W}$ November 21, 1970 $3503 \mathrm{~m}\left(11,493^{\prime}\right)$	$10-1 / 8$ Smith-4 Cone Insert Tungsten Carbide- 9 C \#FF706	0	0	0	0	0	0	$\begin{gathered} 36 \mathrm{~m} \\ 118^{\prime} \end{gathered}$	Rerun
$143 C$	$09^{\circ} 28.45^{\prime} \mathrm{N} \quad 54^{\circ} 24.49^{\prime} \mathrm{W}$ November 22, 1970 351 1m (11,520')	$\begin{aligned} & \text { 10-1/8 } \\ & \text { Smith-4 Cone Insert } \\ & \text { Tungsten Carbide-9C } \\ & \text { \#FF706 } \end{aligned}$	1	1	100	$\begin{gathered} 9 \mathrm{~m} \\ 29^{\prime} \end{gathered}$	0	0	49m 161^{\prime}	Rerun - lost bottomhole assembly.
143D	$09^{\circ} 28.45^{\prime} \mathrm{N} \quad 54^{\circ} 24.49^{\prime} \mathrm{W}$ November 23, 1970 $3500 \mathrm{~m}\left(11,484^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith-4 Cone Insert } \\ & \text { Tungsten-9C } \\ & \text { \#FF703 } \end{aligned}$	0	0	0	0	0	0	18 m 59^{\prime}	Lost bottomhole assembly.
144	$09^{\circ} 27.23^{\prime} \mathrm{N} \quad 54^{\circ} 20.52^{\prime} \mathrm{W}$ November 24-25, 1970 2967m ($9,735^{\prime}$)	$\begin{aligned} & \text { 10-1/8 } \\ & \text { Smith }-4 \text { Cone } \\ & \text { Jungsten - Insert -9C } \\ & \text { \#FK } 665 \end{aligned}$	8	8	100	$\begin{gathered} 39 \mathrm{~m} \\ 128^{\prime} \end{gathered}$	$\begin{aligned} & 28 \mathrm{~m} \\ & 92^{\prime} \end{aligned}$	72	$\begin{array}{r} 327 m \\ 1,072^{\prime} \end{array}$	
144A	$09^{\circ} 27.23^{\prime} \mathrm{N} \quad 54^{\circ} 20.52^{\prime} \mathrm{W}$ November 26, 1970 2967m (9,735')	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith - } 4 \text { Cone } \\ & \text { Tungsten - Insert - } 9 \mathrm{C} \\ & \text { \#FK665 } \end{aligned}$	6	6	100	$\begin{gathered} 54 \mathrm{~m} \\ 177 \mathrm{r} \end{gathered}$	$\begin{aligned} & 28 \mathrm{~m} \\ & 92^{\prime} \end{aligned}$	53	$\begin{aligned} & 200 \mathrm{~m} \\ & 656^{\prime} \end{aligned}$	Rerun-T-1, B-1
144B	$09^{\circ} 27.23^{\prime} \mathrm{N} \quad 54^{\circ} 20.52^{\prime} \mathrm{W}$ November 26, 1970 2967m (9,735')	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith - } 4 \text { Cone } \\ & \text { Tungsten - Insert - } 9 \text { C } \\ & \text { "FK665 } \end{aligned}$	3	3	100	$\begin{aligned} & 27 \mathrm{~m} \\ & 89 \end{aligned}$	$\begin{aligned} & 27 \mathrm{~m} \\ & 89^{\prime} \end{aligned}$	100	$\begin{gathered} 36 \mathrm{~m} \\ 118 \end{gathered}$	Rerun-T-1, B-1

CORE BIT SUMMARY - LEG 15

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT CORES				TOTAL AMOUNT CORED				REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S/N	$\begin{aligned} & \stackrel{n}{0} \\ & E \\ & \stackrel{y}{4} \\ & \hline \end{aligned}$							
145	$\begin{aligned} & 16^{\circ} 34.74^{\prime} \mathrm{N} \quad 68^{\circ} 03.37^{\prime} \mathrm{W} \\ & \text { December } 5-6,1970 \\ & 4358 \mathrm{~m} \quad\left(14,299^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & 9-\mathrm{C} \end{aligned}$	0	0	0	0	0	0	0	Hole abandoned due to thruster failure. No penetration made.
146	$15^{\circ} 06.99^{\prime} \mathrm{N} \quad 69^{\circ} 22.67^{\prime} \mathrm{W}$ December 14-27, 1970 $3939 \mathrm{~m}\left(12,924^{\prime}\right)$	$\begin{aligned} & \text { 10-1/8 } \\ & \text { Smith - } 4 \text { Cone } \\ & \text { Tungsten - Insert } \\ & \text { \#FF718 } \end{aligned}$	35	33	94	$\begin{array}{r} 313 \mathrm{~m} \\ 1,026^{\prime} \end{array}$	$\begin{aligned} & 142 \mathrm{~m} \\ & 465^{\prime} \end{aligned}$	45	$\begin{array}{r} 701 \mathrm{~m} \\ 2,300^{\prime} \end{array}$	Re-entry site.
146	$15^{\circ} 06.99^{\prime} \mathrm{N} \quad 69^{\circ} 22.67^{\prime} \mathrm{W}$ December 14-27, 1970 $3939 \mathrm{~m}\left(12,924^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith - } 4 \text { Cone } \\ & \text { Tungsten - Insert - } 9 \text { C } \\ & \text { \#FK666 } \end{aligned}$	9	7	78	$\begin{gathered} 61 \mathrm{~m} \\ 200^{\prime} \end{gathered}$	$\begin{aligned} & 19 \mathrm{~m} \\ & 62^{\prime} \end{aligned}$	31	$\begin{gathered} 61 m \\ 200^{\prime} \end{gathered}$	Lost one cone - 3 cones locked.
146A	$15^{\circ} 07.97^{\prime} \mathrm{N} \quad 69^{\circ} 22.68^{\prime} \mathrm{W}$ December 15-27, 1970 $3939 \mathrm{~m}\left(12,924^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith - } 4 \text { Cone } \\ & \text { Tungsten - Insert - } 9 \mathrm{C} \\ & \text { "FK666 } \end{aligned}$	1	1	100	$\begin{gathered} 9 \mathrm{~m} \\ 29^{\prime} \end{gathered}$	$\begin{gathered} 4 m \\ 13^{\prime} \end{gathered}$	51	$\begin{gathered} 96 \mathrm{~m} \\ 315^{\prime} \end{gathered}$	
147	$10^{\circ} 42.48^{\prime} \mathrm{N} \quad 65^{\circ} 10.48^{\prime} \mathrm{N}$ December 30-31, 1970 $892 \mathrm{~m} \quad(2,927$)	$\begin{aligned} & 9-7 / 8 \\ & \text { Varel } \\ & \text { Diamond - } 250 \mathrm{~K} \\ & \text { " } 7921 \\ & \hline \end{aligned}$	18	17	94	$171 m$ 561^{1}	110 m 361^{\prime}	64	$171 \mathrm{~m}$	Rerun - 73% salvage - clay.
147A	$10^{\circ} 42.48^{\prime} \mathrm{N} \quad 65^{\circ} 10.48^{1} \mathrm{~W}$	9-7/8	2	2	100	13 m	6 m	30	13m	50\% salvage - clay.
	$\begin{aligned} & \text { December 30-31, } 1970 \\ & 892 \mathrm{~m} \quad\left(2,927^{\prime}\right) \end{aligned}$	Varel Diamond - 250 K \#7921				43^{1}	20^{\prime}		43^{\prime}	

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT	CORES			TOTAL AMOUNT CORED				REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S/N	$\begin{aligned} & \text { n } \\ & E \\ & E \\ & \text { E } \\ & \frac{\text { d }}{4} \end{aligned}$							
147B	$10^{\circ} 42.48^{\prime} \mathrm{N} \quad 65^{\circ} 10.48^{\prime} \mathrm{W}$ December 31, 1970 $892 \mathrm{~m}\left(2,927^{\prime}\right)$	$9-7 / 8$ Varel Diamond - 250K \#7921	12	12	100	$\begin{aligned} & 124 \mathrm{~m} \\ & 407 \end{aligned}$	$\begin{gathered} 65 m \\ 212^{\prime} \end{gathered}$	53	$\begin{aligned} & 124 \mathrm{~m} \\ & 407 \end{aligned}$	Rerun - clay.
147C	$10^{\circ} 42.48^{\prime} \mathrm{N} \quad 65^{\circ} 10.48^{\prime} \mathrm{W}$ Dec 31, 1970 - Jan 1, 1971 $892 \mathrm{~m}\left(2,927^{\prime}\right)$	$\begin{aligned} & 9-7 / 8 \\ & \text { Varel } \\ & \text { Diamond - } 250 \mathrm{~K} \\ & \text { \# } 7921 \\ & \hline \end{aligned}$	8	6	88	$\begin{gathered} 73 \mathrm{~m} \\ 240^{\prime} \end{gathered}$	$\begin{aligned} & 24 \mathrm{~m} \\ & 791 \end{aligned}$	33	189 m 620^{1}	Rerun
148	$\begin{aligned} & 13^{\circ} 25.12^{\prime} \mathrm{N} \quad 63^{\circ} 43.25^{\prime} \mathrm{W} \\ & \text { January } 2-4,1971 \\ & 1232 \mathrm{~m} \quad\left(4,042^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-7 / 8 \\ & \text { Hycalog } \\ & \text { Diamond - } 250 \mathrm{~K} \\ & \text { \#10458 } \\ & \hline \end{aligned}$	31	30	97		$\begin{aligned} & 181 \mathrm{~m} \\ & 594^{\prime} \end{aligned}$	66	$\begin{aligned} & 273 \mathrm{~m} \\ & 896^{\prime} \end{aligned}$	95\% salvage.
149	$15^{\circ} 06.25^{\prime} \mathrm{N} \quad 69^{\circ} 21.85^{\prime} \mathrm{W}$ January 5-10, 1971 $3072 \mathrm{~m}\left(13,032^{\prime}\right)$	$\begin{aligned} & 9-7 / 8 \\ & \text { Hycalog } \\ & \text { Diamond }-250 \mathrm{~K} \\ & \text { \#10458 } \end{aligned}$	43	42	98	$\begin{array}{r} 390 \mathrm{~m} \\ 1,280^{\prime} \end{array}$	$\begin{aligned} & 256 \mathrm{~m} \\ & 840^{\prime} \end{aligned}$	65	$\begin{aligned} & 390 \mathrm{~m} \\ & 1,280 \end{aligned}$	Rerun
150	$14^{\circ} 30.69^{\prime} \mathrm{N} \quad 69^{\circ} 21.35^{\prime} \mathrm{W}$ January 10-11, 1971 $4545 \mathrm{~m} \quad\left(14,912^{\prime}\right)$	$\begin{aligned} & \text { 10-1/8 } \\ & \text { Smith - } 4 \text { Cone } \\ & \text { Tungsten - Insert - } 9 \text { C } \\ & \text { \#FK } 665 \end{aligned}$	12	12	100	$\begin{gathered} 89 \mathrm{~m} \\ 292^{\prime} \end{gathered}$	$\begin{gathered} 42 \mathrm{~m} \\ 138^{\prime} \end{gathered}$	47	$\begin{aligned} & 180 \mathrm{~m} \\ & 591^{\prime} \end{aligned}$	Rerun

CORE BIT SUMMARY - LEG 15

HOLE NO.	POSITION	CORE BIT CORES				TOTAL AMOUNT CORED				REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S/N	$\begin{aligned} & \stackrel{n}{0} \\ & E \\ & \frac{N}{4} \\ & \frac{1}{4} \end{aligned}$					$\begin{aligned} & \text { to } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \circ \\ & \circ \end{aligned}$		
150A	$14^{\circ} 30.69^{\prime} \mathrm{N} \quad 69^{\circ} 21.35^{\prime} \mathrm{W}$ January 11-12, 1971 $4545 \mathrm{~m}\left(14,912^{1}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith - } 4 \text { Cone } \\ & \text { Tungsten - Insert - } 9 \mathrm{C} \\ & \text { \#FK665PR } \end{aligned}$	2	2	100	18 m 59^{\prime}	$\begin{aligned} & 2 m \\ & 7 \end{aligned}$	12	136 m $446{ }^{\prime}$	B-1, T-1
151	$15^{\circ} 01.02^{\prime} \mathrm{N} \quad 73^{\circ} 02.58^{\prime} \mathrm{W}$ January 14-15, 1971 2029m (6,657)	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { 3 Cone - } 9 \text { C } \\ & \text { \#FK936 } \\ & \hline \end{aligned}$	15	15	100	113 m 371^{\prime}	$\begin{gathered} 61 \mathrm{~m} \\ 200^{\prime} \end{gathered}$	54	$\begin{array}{r} 379 \mathrm{~m} \\ 1,243^{\prime} \end{array}$	$\begin{aligned} & \mathrm{T}-1, \mathrm{~B}-5 \\ & \mathrm{~T}-1, \mathrm{~B}-5 \end{aligned}$
152	$15^{\circ} 52.72^{\prime} \mathrm{N} \quad 74^{\circ} 36.47^{\prime} \mathrm{W}$ January 17-22, 1971 3899 m ($12,793^{\prime}$)	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith - } 4 \text { Cone } \\ & \text { Tungsten - Insert - } 9 \mathrm{C} \\ & \# \text { FK } 707 \end{aligned}$	24	23	96	210m 689^{\prime}	$\begin{gathered} 58 \mathrm{~m} \\ 190^{\prime} \end{gathered}$	28	$\begin{array}{r} 476 \mathrm{~m} \\ 1,562^{\prime} \end{array}$	
153	$13^{\circ} 58.33^{\prime} \mathrm{N} \quad 72^{\circ} 26.08^{\prime} \mathrm{W}$ January 23-27, 1971 $3932 \mathrm{~m}\left(12,901^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith - } 4 \text { Cone } \\ & \text { Tungsten - Insert - } 9 \text { C } \\ & \text { IFF704 } \end{aligned}$	20	20	100	$\begin{aligned} & 177 \mathrm{~m} \\ & 581^{\prime} \end{aligned}$	$\begin{gathered} 70 \mathrm{~m} \\ 230^{\prime} \end{gathered}$	40	$\begin{array}{r} 776 \mathrm{~m} \\ 2,546^{\prime} \end{array}$	T-8, B-8
154	$11^{\circ} 05.11^{\prime} \mathrm{N} \quad 80^{\circ} 22.75^{\prime} \mathrm{W}$ January 29-31, 1971 $3338 \mathrm{~m} \quad\left(10,952^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith - } 3 \text { Cone } \\ & \text { Tungsten - Insert - } 9 \mathrm{C} \\ & \text { \#FF946 } \end{aligned}$	14	14	100	$\begin{aligned} & 132 \mathrm{~m} \\ & 433^{\prime} \end{aligned}$	$66 \mathrm{~m}$ '	50	$\begin{aligned} & \text { 277m } \\ & 909 \end{aligned}$	T-1, B-8
154A	$1105.11^{\prime} \mathrm{N} \quad 80^{\circ} 22.755^{\prime} \mathrm{W}$ January 29-31, 1971 $3338 \mathrm{~m}\left(10,952^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith - } 3 \text { Cone } \\ & \text { Tungsten - Insert - } 9 \text { C } \\ & \text { \#FF946 } \end{aligned}$	18	18	100	$\begin{aligned} & 170 \mathrm{~m} \\ & 558^{\prime} \end{aligned}$	$\begin{aligned} & 131 \mathrm{~m} \\ & 430^{\prime} \end{aligned}$	77	$\begin{aligned} & 172 \mathrm{~m} \\ & 564^{\prime} \end{aligned}$	Rerun

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT CORES				TOTAL AMOUNT CORED				REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S / N	$\begin{aligned} & \text { n } \\ & \text { E } \\ & \text { 首 } \end{aligned}$							
155	$\begin{aligned} & 06^{\circ} 07.38^{\prime} \mathrm{N} \quad 81^{\circ} 02.62^{\prime} \mathrm{W} \\ & \text { February } 6-8,1971 \\ & 2752 \mathrm{~m} \quad\left(9,029^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { Tungsten-Ext Insert } 94 \\ & \text { \#GC282 } \end{aligned}$	12	12	100	$\begin{aligned} & 102 \mathrm{~m} \\ & 335^{\prime} \end{aligned}$	$\begin{gathered} 57 \mathrm{~m} \\ 186^{\prime} \end{gathered}$	55	$\begin{array}{r} 552 \mathrm{~m} \\ 1,811^{\prime} \end{array}$	T-1, B-4
156	$01^{\circ} 40.80^{\prime} \mathrm{S} \quad 85^{\circ} 24.06^{\prime} \mathrm{W}$ February 11-12, 1971 2369m (7,773')	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { Tungsten-Ext Insert } 94 \\ & \text { "GC282 } \end{aligned}$	1	0	0	$\begin{gathered} 4 \mathrm{~m} \\ 13^{\prime} \end{gathered}$	0	0	$\begin{gathered} 4 m \\ 13^{\prime} \end{gathered}$	Rerun - T-1, B-4.
157	$01^{\circ} 45.70^{\prime} \mathrm{S} \quad 85^{\circ} 54.17^{\prime} \mathrm{W}$ February 12-15, 1971 2591 m $\left(8,501^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith - } 3 \text { CTR } \\ & \text { Tungsten-Ext Insert } 95 \\ & \text { \#GC299 } \end{aligned}$	49	49	100	$\begin{gathered} 427 \mathrm{~m} \\ 1,401^{1} \end{gathered}$	273m 896'	63	$\begin{aligned} & 427 \mathrm{~m} \\ & 1,401 \end{aligned}$	
157A	$01^{\circ} 45.70^{\prime} \mathrm{S} \quad 85^{\circ} 54.17^{\prime} \mathrm{W}$ February 15-16, 1971 2591 m (8,501)	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith - } 3 \text { CTR } \\ & \text { Tungsten-Ext Insert } 95 \\ & \text { \#GC299 } \end{aligned}$	3	3	100	$\begin{aligned} & 27 \mathrm{~m} \\ & 89^{\prime} \end{aligned}$	$\begin{aligned} & 19 \mathrm{~m} \\ & 63^{1} \end{aligned}$	71	$\begin{aligned} & 27 m \\ & 89 \end{aligned}$	Rerun- T-2, B-5.
158	$06^{\circ} 37.36^{\prime} \mathrm{N} \quad 85^{\circ} 14.16^{\prime} \mathrm{W}$ February 18-20, 1971 $1953 \mathrm{~m}\left(6,408^{\prime}\right)$	$10-1 / 8$ Smith-Insert Compact Tungsten-9C-3 CTR \#FR922	36	35	97	$\begin{array}{r} 323 \mathrm{~m} \\ 1,060^{\prime} \end{array}$	$\begin{aligned} & 247 \mathrm{~m} \\ & 810^{\prime} \end{aligned}$	79	$\begin{array}{r} 323 \mathrm{~m} \\ 1,060^{\prime} \end{array}$	Basalt
159	$\begin{aligned} & 12^{\circ} 19.92^{\prime} \mathrm{N} \quad 122^{\circ} 17.27^{\prime} \mathrm{W} \\ & \text { March } 1-3,1971 \\ & 4484 \mathrm{~m} \quad\left(14,712^{\prime}\right) \end{aligned}$	$10-1 / 8$ Smith-Insert Compact Tungsten-9C-3CTR "FR922	14	13	93	$\begin{aligned} & 109 \mathrm{~m} \\ & 358^{\prime} \end{aligned}$		90	$\begin{aligned} & 109 \mathrm{~m} \\ & 358^{\prime} \end{aligned}$	Rerun - T-2, B-6.

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT	CORES			TOTAL A	UNT COR			REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S/N						$\begin{aligned} & \text { 닝 } \\ & \text { ò } \\ & \text { O} \\ & \text { む } \\ & \text { ó } \end{aligned}$		
160	$11^{\circ} 42.27^{\prime} \mathrm{N} \quad 130^{\circ} 52.81^{\prime} \mathrm{W}$ March 5-7, 1971 $4940 \mathrm{~m}\left(16,208^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith-Insert Compact } \\ & \text { Tungsten - } 9 \mathrm{C}-4 \mathrm{CTR} \\ & \text { \#GB783 } \\ & \hline \end{aligned}$	14	14	100	105 m 345^{\prime}	$\begin{gathered} 96 \mathrm{~m} \\ 315^{\prime} \end{gathered}$	92	$\begin{aligned} & 104 \mathrm{~m} \\ & 341^{1} \end{aligned}$	Basalt
161	$10^{\circ} 50.25^{\prime} \mathrm{N} \quad 139^{\circ} 57.21^{\prime} \mathrm{W}$ March 9-11, 1971 $4939 \mathrm{~m}\left(16,205^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith-Insert Compact } \\ & \text { Tungsten -9C - } 3 \text { CTR } \\ & \text { \#GF606 } \end{aligned}$	14	12	85	$126 \mathrm{~m}$ 413^{\prime}	$95 \mathrm{~m}$	75	$126 \mathrm{~m}$ 413^{\prime}	
161A	$10^{\circ} 40.27^{\prime} \mathrm{N} \quad 139^{\circ} 57.27^{\prime} \mathrm{W}$ March 11-13, 1971 $4939 \mathrm{~m} \quad\left(16,205^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith-Insert Compact } \\ & \text { Tungsten -9C-3CTR } \\ & \text { "GF606 } \end{aligned}$	15	15	100	$126 \mathrm{~m}$ 413^{\prime}	$\begin{gathered} 88 \mathrm{~m} \\ 289 \end{gathered}$	70	$245 \mathrm{~m}$ 804^{\prime}	Rerun-basalt.
162	$14^{\circ} 52.19^{\prime} \mathrm{N} \quad 149^{\circ} 02.61^{\prime} \mathrm{W}$ March 15-17, 1971 $4854 m \quad\left(15,926^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith-Insert Compact } \\ & \text { Tungsten -9C-3CTR } \\ & \text { \#GF } 606 \end{aligned}$	18	16	89	$\begin{aligned} & 154 \mathrm{~m} \\ & 505^{\prime} \end{aligned}$	$129 \mathrm{~m}$ $423 '$	84	$154 \mathrm{~m}$ 505^{\prime}	Rerun - basalt - T-1, B-3.
163	$\begin{aligned} & 11^{\circ} 14.66^{\prime} \mathrm{N} \quad 150^{\circ} 17.52^{\prime} \mathrm{W} \\ & \text { March } 20-25 \\ & 5320 \mathrm{~m} \quad\left(17,455^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith-Ext Insert - SB9 } \\ & \text { Tungsten -9C - } 3 \text { CTR } \\ & \text { \#GC298 } \end{aligned}$	29	29	100	$\begin{aligned} & 243 \mathrm{~m} \\ & 797 \end{aligned}$	$\begin{aligned} & 155 \mathrm{~m} \\ & 509 \end{aligned}$	63	$\begin{aligned} & 294 \mathrm{~m} \\ & 965^{\prime} \end{aligned}$	Lost all cones.
163A	$11^{\circ} 14.66^{\prime} \mathrm{N} \quad 150^{\circ} 17.52^{\prime} \mathrm{W}$ March 25-26, 1971 $5320 \mathrm{~m}\left(17,455^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith-Ext Insert -94 } \\ & \text { Tungsten - } 9 \mathrm{C}-3 \mathrm{CTR} \\ & \text { "GF606 } \end{aligned}$	2	2	100	$\begin{gathered} 5 m \\ 16^{\prime} \end{gathered}$	$\begin{gathered} 5 m \\ 16^{\prime} \end{gathered}$	100	$\begin{aligned} & 151 \mathrm{~m} \\ & 495^{\prime} \end{aligned}$	Rerun

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT CORES				TOTAL AMOUNT CORED				REMARKS
	Latitude／Longitude Dates of Operation Water Depth－Meters（Ft）	Size Make Type S／N	$\begin{aligned} & \text { n⿳亠口冋口 } \\ & E \\ & \frac{9}{4} \\ & \frac{1}{4} \end{aligned}$							
164	$\begin{aligned} & 13^{\circ} 12.0^{\prime} \mathrm{N} \quad 161^{\circ} 31.12^{\prime} \mathrm{W} \\ & \text { April 7-11, 1971 } \\ & 5513 \mathrm{~m} \quad\left(18,088^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith-Ext Insert } \\ & \text { Tungsten - } 94 \\ & \text { \#GT331 } \end{aligned}$	28	25	90	$\begin{aligned} & 260 \mathrm{~m} \\ & 853^{\prime} \end{aligned}$	$\begin{gathered} 81 \mathrm{~m} \\ 267 \mathrm{r} \end{gathered}$	32	$\begin{aligned} & 260 \mathrm{~m} \\ & 853^{\prime} \end{aligned}$	T－2，B－7－basalt．
165	$\begin{aligned} & 8^{\circ} 10.49^{\prime} \mathrm{N} \quad 164^{\circ} 51.74^{\prime} \mathrm{W} \\ & \text { April } 12-13,1971 \\ & 5053 \mathrm{~m} \quad\left(16,579^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith-Ext Insert- } \\ & \text { Tungsten - } 4 \text { Cone- } 94 \\ & \text { \#GT332 } \end{aligned}$	2	2	100	$\begin{aligned} & 14 \mathrm{~m} \\ & 46 \end{aligned}$	$\begin{gathered} 8 \mathrm{~m} \\ 26^{\prime} \end{gathered}$	57	$\begin{aligned} & 14 m \\ & 46^{\prime} \end{aligned}$	
165A	$\begin{aligned} & 8^{\circ} 10.49^{\prime} \mathrm{N} \quad 175^{\circ} 04.9^{\prime} \mathrm{W} \\ & \text { April } 13-15,1971 \\ & 5053 \mathrm{~m} \quad\left(16,5799^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith-Ext Insert } \\ & \text { Tungsten - } 4 \text { Cone - } 94 \\ & \text { \#GT332 } \end{aligned}$	27	25	93	$\begin{array}{r} 376 \mathrm{~m} \\ 1,233^{\prime} \end{array}$	$\begin{aligned} & 130 \mathrm{~m} \\ & 426^{\prime} \end{aligned}$	35	$\begin{gathered} 490 \mathrm{~m} \\ 1,607 \end{gathered}$	Rerun－T－1，B－1－basalt．
166	$\begin{aligned} & 3^{\circ} 45.7^{\prime} \mathrm{N} \quad 176^{\circ} 49.5^{\prime} \mathrm{W} \\ & \text { April } 19-22,1971 \\ & 4962 \mathrm{~m} \quad\left(16,280^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith-Ext Insert } \\ & \text { Tungsten - } 4 \text { Cone - } 94 \\ & \text { \#GT332 } \end{aligned}$	29	29	100	$\begin{aligned} & 238 \mathrm{~m} \\ & 780^{\prime} \end{aligned}$	$\begin{aligned} & 154 \mathrm{~m} \\ & 505^{\prime} \end{aligned}$	65	$\begin{array}{r} 310 \\ 1,017 \end{array}$	Rerun
166A	$\begin{aligned} & 3^{\circ} 45.7^{\prime} \mathrm{N} \quad 176^{\circ} 49.5^{\prime} \mathrm{W} \\ & \text { April } 19-22,1971 \\ & 4962 \mathrm{~m} \quad\left(16,280^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith-Ext Insert } \\ & \text { Tungsten - } 4 \text { Cone }-94 \\ & \text { \#GT332 } \end{aligned}$	1	1	100	$\begin{gathered} 9 m \\ 29 \end{gathered}$	$\begin{gathered} 6 \mathrm{~m} \\ 20^{\prime} \end{gathered}$	66	$\begin{gathered} 9 \mathrm{~m} \\ 29 \end{gathered}$	T－4，B－7
167	$\begin{aligned} & 7^{\circ} 04.1^{\prime} \mathrm{N} \quad 176^{\circ} 49.5^{\prime} \mathrm{W} \\ & \text { April } 24-\mathrm{May} \mathrm{3,1971} \\ & 3176 \mathrm{~m} \quad\left(10,420^{\prime}\right) \end{aligned}$	$10-1 / 8$ Smith－Ext Insert Tungsten－4 Cone－94 ＂GT101	95	72	76	$\begin{array}{r} 867 \mathrm{~m} \\ 2,845^{\prime} \end{array}$	298m 978^{\prime}	35	$\begin{array}{r} 1185 \mathrm{~m} \\ 3,888^{\prime} \end{array}$	T－5，B－8

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT CORES				TOTAL AMOUNT CORED				REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S / N								
168	$\begin{aligned} & 10^{\circ} 42.22^{\prime} \mathrm{N} \quad 173^{\circ} 35.5^{\prime} \mathrm{E} \\ & \text { May 6-7, } 1971 \\ & 5430 \mathrm{~m} \quad\left(17,816^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith-Ext Insert } \\ & \text { Tungsten - } 4 \text { Cone - } 94 \\ & \text { \#GI } 956 \end{aligned}$	5	2	40	$\begin{aligned} & 28 \mathrm{~m} \\ & 92^{\prime} \end{aligned}$	$\begin{gathered} 8 \mathrm{~m} \\ 26^{\prime} \end{gathered}$	27	$\begin{array}{r} 73 \mathrm{~m} \\ 240^{\prime} \end{array}$	Lost bottomhole assembly.
169	$\begin{aligned} & 10^{\circ} 40.14^{\prime} \mathrm{N} \quad 173^{\circ} 32.97^{\prime} \mathrm{W} \\ & \text { May } 9-11,1971 \\ & 5415 \mathrm{~m} \quad\left(17,767^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith-Ext Insert } \\ & \text { Tungsten - } 4 \text { Cone -94 } \\ & \text { \#GI. } 957 \end{aligned}$	12	6	50	$\begin{gathered} 96 \mathrm{~m} \\ 315^{\prime} \end{gathered}$	$\begin{aligned} & 12 \mathrm{~m} \\ & 39 \end{aligned}$	13	$\begin{aligned} & 238 \mathrm{~m} \\ & 781^{1} \end{aligned}$	T-8, B-5
170	$11^{\circ} 48.0^{\prime} \mathrm{N} \quad 177^{\circ} 37.02^{\prime} \mathrm{E}$ May 12-15, 1971 $5792 \mathrm{~m}\left(19,004^{\prime}\right)$	$10-1 / 8$ Smith-Insert Compact Tungsten-9C-3 Cone \#GR567	16	7	43	$\begin{aligned} & 134 \mathrm{~m} \\ & 440^{\prime} \end{aligned}$	$\begin{gathered} 31 \mathrm{~m} \\ 102^{\prime} \end{gathered}$	23	196 m 643^{\prime}	T-1, B-5
171	$19^{\circ} 07.9^{\circ} \mathrm{N} \quad 169^{\circ} 27.6^{\prime} \mathrm{W}$ May 20-22, 1971 $2295 \mathrm{~m}\left(7,530^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith-Ext Insert } \\ & \text { Tungsten-9C-3 Cone } \\ & \text { \#GC281 } \end{aligned}$	33	27	82	$\begin{array}{r} 355 m \\ 1,165^{\prime} \end{array}$	$\begin{aligned} & 173 \mathrm{~m} \\ & 568^{\prime} \end{aligned}$	48	$\begin{aligned} & 473 \mathrm{~m} \\ & 1,552^{\prime} \end{aligned}$	T-1, B-5

/109

/110

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT	CORES			TOTAL A	UNT COR			REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S / N	$\begin{aligned} & \text { n } \\ & \text { E } \\ & \text { 妾 } \end{aligned}$							
176	$\begin{aligned} & 45^{\circ} 56.60^{\prime} \mathrm{N} \quad 124^{\circ} 37.00^{\prime} \mathrm{W} \\ & \text { June } 21,1971 \\ & 193 \mathrm{~m} \quad\left(633^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { Tungsten-Ext Insert } \\ & \text { \#GB784 } \\ & \hline \end{aligned}$	5	5	100	$\begin{gathered} 41 \mathrm{~m} \\ 135^{\prime} \end{gathered}$	$\begin{gathered} 41 \mathrm{~m} \\ 135^{\prime} \end{gathered}$	100	$\begin{gathered} 41 \mathrm{~m} \\ 135^{\prime} \end{gathered}$	Rerun - lost bottomhole assembly.
177	$\begin{aligned} & 50^{\circ} 28.18^{\prime} \mathrm{N} \quad 130^{\circ} 12.30^{\prime} \mathrm{W} \\ & \text { June } 24-26,1971 \\ & 2006 \mathrm{~m} \quad\left(6,582^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { Tungsten-Ext Insert } \\ & \text { \#HG646 } \end{aligned}$	1	1	100	$\begin{gathered} 9 \mathrm{~m} \\ 29 \end{gathered}$	$\begin{gathered} 9 \mathrm{~m} \\ 291 \end{gathered}$	100	$\begin{gathered} 9 \mathrm{~m} \\ 291 \end{gathered}$	
177A	$\begin{aligned} & 50^{\circ} 28.18^{\prime} \mathrm{N} \quad 130^{\circ} 12.30^{\prime} \mathrm{W} \\ & \text { June } 24-26,1971 \\ & 2006 \mathrm{~m} \quad\left(6,582^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { Tungsten-Ext Insert } \\ & \text { \#HG646 } \end{aligned}$	26	26	100	$\begin{array}{r} 252 \mathrm{~m} \\ 827 \end{array}$	136 m 447^{\prime}	54	$\begin{aligned} & 507 \mathrm{~m} \\ & 1,663^{\prime} \end{aligned}$	Rerun - lost bottomhole assembly.
178	$\begin{aligned} & 56^{\circ} 57.38^{\prime} \mathrm{N} \quad 147^{\circ} 07.86^{\prime} \mathrm{W} \\ & \text { July } 1-5,1971 \\ & 4218 \mathrm{~m} \quad\left(13,839^{\prime}\right) \end{aligned}$	$\begin{aligned} & \text { 10-1/8 } \\ & \text { Smith } \\ & \text { Tungsten-Ext Insert } \\ & \text { \#HG647 } \end{aligned}$	59	53	90	$\begin{array}{r} 519 \mathrm{~m} \\ 1,703^{\prime} \end{array}$	211 m 692^{\prime}	41	$\begin{array}{r} 794 m \\ 2,605 \end{array}$	T-1, B-2
179	$\begin{aligned} & 56^{\circ} 24.50^{\prime} \mathrm{N} \quad 145^{\circ} 59.32^{\prime} \mathrm{W} \\ & \text { July 6, } 1971 \\ & 3788 \mathrm{~m} \quad\left(12,428^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { Tungsten-Ext Insert } \\ & \text { \#HG645 } \end{aligned}$	13	13	100	$\begin{aligned} & 109 \mathrm{~m} \\ & 358^{\prime} \end{aligned}$	$\begin{gathered} 70 \mathrm{~m} \\ 229 \end{gathered}$	64	$\begin{aligned} & 109 \mathrm{~m} \\ & 358^{\prime} \end{aligned}$	Rerun - T-1, B-7
180	$\begin{aligned} & 47^{\circ} 21.76^{\prime} \mathrm{N} \quad 147^{\circ} 57.37^{\prime} \mathrm{W} \\ & \text { July } 8-10,1971 \\ & 4923 \mathrm{~m} \quad\left(16,152^{\prime}\right) \end{aligned}$	$\begin{aligned} & 11-1 / 4 \\ & \text { Smith } \\ & \text { Tungsten-Ext Insert } \\ & \text { "125480-3 } \end{aligned}$	25	25	100	$\begin{aligned} & 237 \mathrm{~m} \\ & 778^{\prime} \end{aligned}$	$\begin{gathered} 81 \mathrm{~m} \\ 267^{\prime} \end{gathered}$	34	$\begin{array}{r} 470 \mathrm{~m} \\ 1,542^{\prime} \end{array}$	

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT	CORES			TOTAL AMOUNT CORED				REMARKS
	Latitude／Longitude Dates of Operation Water Depth－Meters（Ft）	Size Make Type S／N	$\begin{aligned} & \stackrel{n}{⿳ 亠 口 冖 口 木 ~} \\ & \frac{\Phi}{4} \\ & \frac{9}{4} \end{aligned}$							
181	$\begin{aligned} & 57^{\circ} 26.30^{\prime} \mathrm{N} \quad 148^{\circ} 27.88^{\prime} \mathrm{W} \\ & \text { July } 12-15,1971 \\ & 3086 \mathrm{~m} \quad\left(10,125^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { Tungsten-Ext Insert } \\ & \text { \#HG } 645 \end{aligned}$	30	30	100	$\begin{aligned} & 259 \mathrm{~m} \\ & 850^{\prime} \end{aligned}$	$\begin{aligned} & 106 \mathrm{~m} \\ & 348^{\prime} \end{aligned}$	41	$\begin{array}{r} 369 \mathrm{~m} \\ 1,211^{1} \end{array}$	Rerun
182	$\begin{aligned} & 57^{\circ} 52.96^{\prime} \mathrm{N} \quad 148^{\circ} 42.99^{\prime} \mathrm{W} \\ & \text { July } 16,1971 \\ & 1419 \mathrm{~m} \quad\left(4,656^{\prime}\right) \end{aligned}$	$\begin{aligned} & 9-7 / 8 \\ & \text { Reed - Insert Compact } \\ & \text { Tungsten } \\ & \text { \#8163 } \\ & \hline 8 \end{aligned}$	6	6	100	$\begin{gathered} 54 \mathrm{~m} \\ 177 \end{gathered}$	$\begin{aligned} & 11 \mathrm{~m} \\ & 35^{\prime} \end{aligned}$	21	$123 \mathrm{~m}$ 404'	T－4，B－6

HOLENO.	POSITION	CORE BIT	CORES			TOTAL A	UNT CORED			REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S / N	$\begin{aligned} & \frac{n}{0} \\ & E \\ & \frac{\Phi}{4} \\ & \frac{0}{4} \end{aligned}$							
183	$\begin{aligned} & 52^{\circ} 34.30^{\prime} \mathrm{N} \quad 161^{\circ} 12.33^{\prime} \mathrm{W} \\ & \text { July } 25-28,1971 \\ & 4718 \mathrm{~m} \quad\left(15,480^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & 94 \mathrm{C} \\ & { }^{\text {\# }} \mathrm{C} 757 \\ & \hline \end{aligned}$	40	35	88	$\begin{array}{r} 361 \mathrm{~m} \\ 1,184^{\prime} \end{array}$	$\begin{aligned} & 150 \mathrm{~m} \\ & 492^{\prime} \end{aligned}$	42	$\begin{array}{r} 516 \mathrm{~m} \\ 1,693^{\prime} \end{array}$	T-1, B-4, IG. One broken insert. Cored 11 m basalt.
184	$52^{\circ} 42.64^{\prime} \mathrm{N} \quad 170^{\circ} 55.39^{\prime} \mathrm{W}$ July 30-August 1, 1971 $1920 \mathrm{~m}\left(6,299^{\prime}\right)$	$9-7 / 8$ Williams Diamond \#Z962	23	22	96	$\begin{aligned} & 186 \mathrm{~m} \\ & 610^{\prime} \end{aligned}$	$\begin{aligned} & 123 \mathrm{~m} \\ & 403^{\prime} \end{aligned}$	66	$\begin{gathered} 603 \mathrm{~m} \\ 1,978^{\prime} \end{gathered}$	20\% salvage
184A	$\begin{aligned} & 52^{\circ} 42.64^{\prime} \mathrm{N} \quad 170^{\circ} 55.39^{\prime} \mathrm{W} \\ & \text { August 2, 1971 } \\ & 1920 \mathrm{~m} \quad\left(6,299^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { 93C JS } \\ & \text { "HM619 } \\ & \hline \end{aligned}$	0	0	0	0	0	0	$\begin{array}{r} 669 \mathrm{~m} \\ 2,195^{\prime} \end{array}$	T-1, B-1 - Ok for rerun. Siltstone and hard mudstone.
184A		Hycalog Center Bit \#2371	0	0	0	0	0	0	0	Ok for rerun.
184B	$\begin{aligned} & 52^{\circ} 42.64{ }^{\prime} \mathrm{N} \quad 170^{\circ} 55.39^{\prime} \mathrm{W} \\ & \text { August 2-4, 1971 } \\ & 1920 \mathrm{~m} \quad\left(6,299^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & 93 \mathrm{CJS} \\ & \text { \#HM619 } \\ & \hline \end{aligned}$	14	14	100	$121 \mathrm{~m}$ 397^{\prime}	$\begin{aligned} & 50 \mathrm{~m} \\ & 164^{\prime} \end{aligned}$	41	$\begin{array}{r} 973 \mathrm{~m} \\ 3,192^{\prime} \end{array}$	Rerun - T-2, B-8 - cones loose.
185	$\begin{aligned} & 54^{\circ} 25.70^{\prime} \mathrm{N} \quad 169^{\circ} 14.59^{\prime} \mathrm{W} \\ & \text { August } 5-7,1971 \\ & 2120 \mathrm{~m} \quad\left(6,956^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & 93 \mathrm{C} \text { JS } \\ & \text { \#HM621 } \end{aligned}$	27	25	93	$\begin{aligned} & 216 \mathrm{~m} \\ & 709 \end{aligned}$	$\begin{gathered} 98 \\ 321 \end{gathered}$	45	$\begin{array}{r} 728 \mathrm{~m} \\ \mathbf{2}, 388 \end{array}$	$\mathrm{T}-1, \mathrm{~B}-1, \mathrm{IG} .$ Drilled soft to firm.

HOLE NO.	POSITION	CORE BIT	CORES			TOTAL A	UNT CORED			REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S/N	$\begin{aligned} & \frac{n}{0} \\ & \frac{E}{2} \\ & \frac{ \pm}{4} \end{aligned}$							
186	$52^{\circ} 07.81^{\prime} \mathrm{N} \quad 174^{\circ} 00.34^{\prime} \mathrm{W}$ August 9-12, 1971 4532 m ($14,869^{\prime}$)	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & 93 \mathrm{CJS} \\ & \text { "HM620 } \\ & \hline \end{aligned}$	28	28	100	$\begin{aligned} & 245 \mathrm{~m} \\ & 804^{\prime} \end{aligned}$	$\begin{aligned} & 141 \mathrm{~m} \\ & 463^{\prime} \end{aligned}$	58	$\begin{array}{r} 926 \mathrm{~m} \\ 3,038^{\prime} \end{array}$	Pulled to mudline. Moved to Site 187.
187	$\begin{aligned} & 51^{\circ} 06.32^{\prime} \mathrm{N} \quad 173^{\circ} 57.23^{\prime} \mathrm{W} \\ & \text { August } 12-13,1971 \\ & 4587 \mathrm{~m} \quad(15,050) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & 93 \mathrm{C} \text { JS } \\ & \text { \#HM630 } \end{aligned}$	4	3	75	$\begin{gathered} 36 \mathrm{~m} \\ 118^{\prime} \end{gathered}$	$\begin{gathered} 7 \mathrm{~m} \\ 23^{\prime} \end{gathered}$	19	$\begin{array}{r} 370 \mathrm{~m} \\ 1,214^{\prime} \end{array}$	$\mathrm{T}-1, \mathrm{~B}-2, \mathrm{IG} .$ Bright wear on shirttail.
188	$53^{\circ} 45.21^{\prime} \mathrm{N} \quad 178^{\circ} 39.56^{\prime} \mathrm{E}$ August 15-16, 1971 $2659 \mathrm{~m}\left(8,724^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & 93 \mathrm{C} \text { JS } \\ & \text { \#HM621 } \\ & \hline \end{aligned}$	18	16	89	146 m 479	$\begin{gathered} 57 \mathrm{~m} \\ 187 \end{gathered}$	39	$\begin{array}{r} 638 \mathrm{~m} \\ 2,093^{\prime} \end{array}$	T-1, B-3, IG. Ok for rerun
189	$\begin{aligned} & 54^{\circ} 02.14^{\prime} \mathrm{N} \quad 170^{\circ} 13.38^{\prime} \mathrm{E} \\ & \text { August } 18-22,1971 \\ & 3447 \mathrm{~m} \quad\left(11,210^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & 93 \mathrm{CJS} \\ & \text { \#HM621 } \end{aligned}$	20	19	95	$\begin{aligned} & 175 \mathrm{~m} \\ & 574^{\prime} \end{aligned}$	$\begin{gathered} 74 \mathrm{~m} \\ 243^{\prime} \end{gathered}$	43	$\begin{array}{r} 871 \mathrm{~m} \\ 2,858^{\prime} \end{array}$	T-2, B-8, IG. Hard sandstone and mudstone.
190	$55^{\circ} 33.57^{\prime} \mathrm{N} \quad 171^{\circ} 88.56^{\prime} \mathrm{E}$ August 22-24, 1971 3885m (12,747')	$\begin{aligned} & 11-1 / 2 \\ & \text { RSS } \\ & \text { 4-CTR } \\ & \text { \#Unknown } \\ & \hline \end{aligned}$	16	15	94	$\begin{aligned} & 142 \mathrm{~m} \\ & 466^{\prime} \end{aligned}$	$\begin{gathered} 85 \mathrm{~m} \\ 279 \end{gathered}$	60	$\begin{array}{r} 627 \mathrm{~m} \\ 2,057^{\prime} \end{array}$	T-1, B-1, IG. Ok for rerun.
191	$56^{\circ} 56.70^{\prime} \mathrm{N} \quad 168^{\circ} 10.72^{\prime} \mathrm{E}$ August 25-28, 1971 3864 m ($12,678^{\prime}$)	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { 4-CTR } \\ & \text { "GF644 } \end{aligned}$	16	13	82	$\begin{aligned} & 130 \mathrm{~m} \\ & 426^{\prime} \end{aligned}$	$\begin{gathered} 44 \mathrm{~m} \\ 144^{\prime} \end{gathered}$	34	$\begin{array}{r} 919 \mathrm{~m} \\ 3,015^{\prime} \end{array}$	Pulled to mudline. Cored mudstone and moved to Site 191A. $1-1 / 2 \mathrm{~m}$ basalt.

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT	CORES			TOTAL A	UNT CORED			REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S / N	$\begin{aligned} & \frac{n}{a} \\ & \frac{E}{E} \\ & \frac{9}{4} \\ & \hline \end{aligned}$							
191A	$100 \mathrm{ft} ., 090^{\circ} \mathrm{T}$ from Site 191 August 28, 1971 3870m (12,697)	10-1/8 Smith 9 C \#GF644	4	3	75	$\begin{gathered} 36 \mathrm{~m} \\ 118^{\prime} \end{gathered}$	$\begin{aligned} & 22 \\ & 72^{\prime} \end{aligned}$	60	$\begin{gathered} 50 \mathrm{~m} \\ 164^{\prime} \end{gathered}$	Rerun - not pulled.
191B	$200 \mathrm{ft} ., 090^{\circ} \mathrm{T}$ from Site 191 August 29, 1971 3870 m ($12,697^{\prime}$)	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { 9C } \\ & \text { "GF644 } \\ & \hline \end{aligned}$	1	1	100	$\begin{gathered} 9 \mathrm{~m} \\ 29^{\prime} \end{gathered}$	$\begin{gathered} 9 \mathrm{~m} \\ 29{ }^{\prime} \end{gathered}$	95	$\begin{gathered} 9 \mathrm{~m} \\ 29^{\prime} \end{gathered}$	Rerun-T-3, B-5, OG.
192	$53^{\circ} 00.57^{\prime} \mathrm{N} \quad 164^{\circ} 42.8^{\prime} \mathrm{E}$ August 30 -September 2, 1971 3024 m ($9,922^{\prime}$)	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & 93 \mathrm{CJS} \\ & \text { \#HM617 } \end{aligned}$	35	35	100		$\begin{aligned} & 152 \mathrm{~m} \\ & 499 \end{aligned}$	50	$\begin{array}{r} 942 \mathrm{~m} \\ 3,091 \text { 1 } \end{array}$	Pulled above mudline. Moved to Site 192A.
192A	300 ft ., $200^{\circ} \mathrm{T}$ from Site 192 September 2-4, 1971 $3024 m$ (9,922)	$\begin{aligned} & 10-1 / 8 \\ & S_{\text {mith }} \\ & 93 \mathrm{CJS} \\ & \text { \#HM617 } \end{aligned}$	6	6	100	$\begin{gathered} 47 \mathrm{~m} \\ 154^{\prime} \end{gathered}$	$\begin{gathered} 38 \mathrm{~m} \\ 125^{\prime} \end{gathered}$	81	$\begin{array}{r} 1057 \mathrm{~m} \\ 3,468^{\prime} \end{array}$	T-2, B-8, OG - mudstone. 13 m basalt.
193	$45^{\circ} 48.19^{\prime} \mathrm{N} \quad 155^{\circ} 52.11 \mathrm{E}$ September 6-7, 1971 $4821 \mathrm{~m}\left(15,818^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & 9 \mathrm{C}-3 \mathrm{CTR} \\ & { }^{\text {FKK } 945} \end{aligned}$	4	3	75	$\begin{aligned} & 29 \mathrm{~m} \\ & 95^{\prime} \end{aligned}$	$\begin{aligned} & 12 \mathrm{~m} \\ & 39 \end{aligned}$	42	$\begin{gathered} 71 \mathrm{~m} \\ 233^{\prime} \end{gathered}$	T-1, B-1. Ok for rerun.
					-				,	

$/ 115$

CORE BIT SUMMARY－LEG 20

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT	CORES			TOTAL A	UNT CORE			REMARKS
	Latitude／Longitude Dates of Operation Water Depth－Meters（Ft）	Size Make Type S／N	$\begin{aligned} & \text { n⿳亠口冋冖力口 } \\ & E \\ & \frac{ \pm}{4} \\ & \frac{1}{4} \end{aligned}$							
194	$\begin{aligned} & 33^{\circ} 58.64^{\prime} \mathrm{N} \quad 146^{\circ} 48.64^{\prime} \mathrm{E} \\ & \text { September } 22,1971 \\ & 5754 \mathrm{~m} \quad\left(18,879^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & 94 \mathrm{C} \text { JS } \\ & \text { \#H2022 } \end{aligned}$	5	5	100	$\begin{aligned} & 40 \mathrm{~m} \\ & 131 \end{aligned}$	$\begin{aligned} & 15 \mathrm{~m} \\ & 49^{\prime} \end{aligned}$	38	$\begin{aligned} & 256 \mathrm{~m} \\ & 840^{\prime} \end{aligned}$	B－5，T－2－cut 20 m of chert．
195	$32^{\circ} 46.40^{\prime} \mathrm{N} \quad 146^{\circ} 58.73^{\prime} \mathrm{E}$ September 24， 1971 5968m（19，581＇）	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { SS942 } \\ & \text { \# } \mathrm{H} 2028 \\ & \hline \end{aligned}$	4	4	100	$\begin{gathered} 31 \mathrm{~m} \\ 102 \end{gathered}$	$\begin{aligned} & 14 \mathrm{~m} \\ & 46^{\prime} \end{aligned}$	45	$\begin{aligned} & 307 \mathrm{~m} \\ & 1,007 \end{aligned}$	Shirttail 15\％of buttons gone．
195A	$32^{\circ} 46.40^{\prime} \mathrm{N} \quad 146^{\circ} 58.73^{\prime} \mathrm{E}$ September 26， 1971 $5968 \mathrm{~m}\left(19,581^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { SS942 } \\ & \text { \#H2028 } \end{aligned}$	0	0	0	0	0	0	$\begin{array}{r} 380 \mathrm{~m} \\ 1,247^{\prime} \end{array}$	B－7，T－5，G．
195B	$32^{\circ} 46.39^{\prime} \mathrm{N} \quad 146^{\circ} 58.76^{\prime} \mathrm{E}$ September 28， 1971 5968 m （ $19,581^{\prime}$ ）	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & 94 \mathrm{CJS} \\ & { }^{\mathrm{HZ} 2014} \end{aligned}$	3	3	100	$\begin{gathered} 7 \mathrm{~m} \\ 23^{\prime} \end{gathered}$	$1 \mathrm{~m}$ 3^{\prime}	6	$\begin{array}{r} 389 \mathrm{~m} \\ 1,276^{\prime} \end{array}$	B－2，T－4，G．Few buttons gone．
196	$\begin{aligned} & 3-^{\circ} 06.97^{\prime} \mathrm{N} \quad 148^{\circ} 58.76^{\prime} \mathrm{E} \\ & \text { October } 2,1971 \\ & 6194 \mathrm{~m} \quad\left(20,322^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { 94CJS } \\ & \text { \#HZO23 } \\ & \hline \end{aligned}$	6	5	83	$\begin{gathered} 40 \mathrm{~m} \\ 131^{\prime} \end{gathered}$	$\begin{gathered} 9 \mathrm{~m} \\ 30^{\prime} \end{gathered}$	21	$\begin{array}{r} 377 \mathrm{~m} \\ 1,237 \mathrm{r} \end{array}$	B－8，T－8，OG．
197	$30^{\circ} 17.44^{\prime} \mathrm{N} \quad 147^{\circ} 40.46^{\prime} \mathrm{E}$ October 8， 1971 $6153 \mathrm{~m} \quad\left(20,188^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { SS49C } \\ & \text { "HZO29 } \end{aligned}$	1	1	100	$\begin{aligned} & 10 \mathrm{~m} \\ & 32^{\prime} \end{aligned}$	$\begin{aligned} & \text { 1m } \\ & 3^{\prime} \end{aligned}$	11	$\begin{aligned} & 283 \mathrm{~m} \\ & 923^{\prime} \end{aligned}$	Lost in hole．

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT		CORES		TOTAL AMOUNT CORED				REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S / N						$\begin{aligned} & \lambda \\ & \stackrel{\imath}{0} \\ & \stackrel{0}{0} \\ & \stackrel{0}{*} \\ & \dot{\circ} \\ & \hline \end{aligned}$		
198	$\begin{aligned} & 25^{\circ} 49.54^{\prime} \mathrm{N} \quad 154^{\circ} 35.05^{\prime} \mathrm{E} \\ & \text { October } 12,1971 \\ & 5858 \mathrm{~m} \quad\left(19,220^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & 9 \mathrm{CJS} \\ & \text { \#6R753 } \\ & \hline \end{aligned}$	0	0	0	0	0	0	0	Lost in hole.
198A	$\begin{aligned} & 25^{\circ} 49.54^{\prime} \mathrm{N} \quad 154^{\circ} 35.5^{\prime} \mathrm{E} \\ & \text { October } 14,1971 \\ & 5858 \mathrm{~m} \quad\left(19,220^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { 4 CTR } \\ & \text { \#GR568 } \\ & \hline \end{aligned}$	0	0	0	0	0	0	0	Dropped in hole.
198A	$\begin{aligned} & 25^{\circ} 49.54^{\prime} \mathrm{N} \quad 154^{\circ} 35.05^{\prime} \mathrm{E} \\ & \text { October } 14,1971 \\ & 5858 \mathrm{~m} \quad\left(19,220^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { 4 CTR } \\ & \text { \#GR552 } \\ & \hline \end{aligned}$	6	5	83	$\begin{gathered} 51 \mathrm{~m} \\ 167^{\prime} \end{gathered}$	$\begin{aligned} & 26 \mathrm{~m} \\ & 85^{\prime} \end{aligned}$	51	258m 846'	B-5, T-2, G. Swivel locked.
199	$13^{\circ} 30.78^{\prime} \mathrm{N} \quad 156^{\circ} 10.37^{\prime} \mathrm{E}$ October 26, 1971 $6100 \mathrm{~m} \quad\left(20,014^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { 4 CTR } \\ & \text { \#HE200 } \\ & \hline \end{aligned}$	12	12	100	$\begin{aligned} & 124 \mathrm{~m} \\ & 406 \end{aligned}$	$\begin{gathered} \text { 59m } \\ 194^{\prime} \end{gathered}$	48	$\begin{array}{r} 457 \\ 1,499 \end{array}$	B-2, T-2, G. Ship rolling.
200	$12^{\circ} 50.12^{\prime} \mathrm{N} \quad 156^{\circ} 46.96^{\prime} \mathrm{E}$ October 27, 1971 $1479 \mathrm{~m}\left(4,853^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & 3 \text { CTR } \\ & \text { \#GR566 } \\ & \hline \end{aligned}$	10	8	80	$\begin{gathered} 95 \mathrm{~m} \\ 312^{\prime} \end{gathered}$	$\begin{gathered} 36 m \\ 118^{\prime} \end{gathered}$	38	114 m 374^{\prime}	See Site 202.
200A	$12^{\circ} 50.12^{\prime} \mathrm{N} \quad 156^{\prime} 46.96^{\prime} \mathrm{E}$ October 27, 1971 $1479 \mathrm{~m}\left(4,853{ }^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { 3 CTR } \\ & \text { \#GR566 } \end{aligned}$	2	2	100	$\begin{aligned} & 19 \mathrm{~m} \\ & 62 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	$\begin{aligned} & 132 \mathrm{~m} \\ & 433 \end{aligned}$	See Site 202.

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT	CORES			TOTAL A	UNT CORE			REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S/N								
203	22으․ $22^{\prime} \mathrm{S} \quad 177^{\circ} 32.77^{\prime} \mathrm{W}$ November 17-19, 1971 2730m ($8,957^{\prime}$)	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & 94 \mathrm{C} \text { JS } \\ & \text { \#HZ021 } \\ & \hline \end{aligned}$	5	5	100	$\begin{gathered} 42 \mathrm{~m} \\ 138^{\prime} \end{gathered}$	$\begin{aligned} & 20 \mathrm{~m} \\ & 65^{\prime} \end{aligned}$	48	$\begin{array}{r} 409 \mathrm{~m} \\ 1,342^{\prime} \end{array}$	As new - good for rerun.
204	24오‥27'S $174^{\circ} 06.69^{\prime} \mathrm{W}$ November 20-21, 1971 5364m (17,599')	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & 94 \mathrm{C} \text { JS } \\ & \text { \#HZ021 } \end{aligned}$	9	9	100	$\begin{gathered} 79 \mathrm{~m} \\ 259 \end{gathered}$	$\begin{gathered} 49 \mathrm{~m} \\ 161 \end{gathered}$	63	$\begin{aligned} & 160 \mathrm{~m} \\ & 525^{\prime} \end{aligned}$	Rerun
204A	24오․27'S $174^{\circ} 06.69^{\prime} \mathrm{W}$ November 21-22, 1971 5364m (17,599')	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & 94 \mathrm{C} \text { JS } \\ & \text { \#HZO21 } \end{aligned}$	1	1	100	$\begin{gathered} 9 \mathrm{~m} \\ 29^{\prime} \end{gathered}$	$\begin{gathered} 4 \mathrm{~m} \\ 13^{\prime} \end{gathered}$	48	$\begin{gathered} 95 \mathrm{~m} \\ 312^{\prime} \end{gathered}$	Rerun
205	$25^{\circ} 30.99^{\prime} \mathrm{S} \quad 177^{\circ} 53.95^{\prime} \mathrm{E}$ November 24-27, 1971 4330m (14,207)	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & 94 \mathrm{C} \text { JS } \\ & \text { \#HZ021 } \end{aligned}$	32	24	75	$\begin{aligned} & 288 \mathrm{~m} \\ & 945^{\prime} \end{aligned}$	$\begin{aligned} & 135 \\ & 443^{\prime} \end{aligned}$	47	$\begin{array}{r} 355 \mathrm{~m} \\ 1,165^{\prime} \end{array}$	Rerun
206	32ㅇo0.75'S $165^{\circ} 27.1^{\prime}{ }^{\prime} \mathrm{E}$ November 30-December 3, 1971 $3206 m$ ($10,519^{\prime}$)	$\begin{aligned} & \text { 10-1/8 } \\ & \text { Smith } \\ & \text { 94C JS } \\ & \text { "HG648 } \\ & \hline \end{aligned}$	45	45	100	$\begin{gathered} 400 \mathrm{~m} \\ 1,312^{\prime} \end{gathered}$	$\begin{aligned} & 244 \mathrm{~m} \\ & 800 \end{aligned}$	61	$\begin{array}{r} 416 \mathrm{~m} \\ 1,365^{\prime} \end{array}$	T-1, B-3, IG - worn.
206A	$\begin{aligned} & 32^{\circ} 00.75^{\prime} \mathrm{S} \quad 165^{\circ} 27.15^{\prime} \mathrm{E} \\ & \text { December } 17,1971 \\ & 3206 \mathrm{~m} \quad\left(10,519^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & 94 \mathrm{CJS} \\ & \text { \#HG648 } \end{aligned}$	0	0	0	0	0	0	$\begin{aligned} & 100 \mathrm{~m} \\ & 328^{\prime} \end{aligned}$	

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT		CORES		TOTAL AMOUNT CORED			REMARKS	
	Latitude／Longitude Dates of Operation Water Depth－Meters（Ft）	Size Make Type S／N	$\begin{aligned} & \frac{n}{⿳ 亠 口 冖 口 木 ~} \\ & \stackrel{\Phi}{4} \\ & \frac{9}{4} \end{aligned}$							
206B	$32^{\circ} 00.75^{\prime} \mathrm{S} \quad 165^{\circ} 27.15^{\prime} \mathrm{E}$ December 17－18， 1971 $3206 m$（ $10,519^{\prime}$ ）	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & 94 \mathrm{CJS} \\ & { }^{\text {HGG648 }} \end{aligned}$	1	1	100	$\begin{gathered} 9 m \\ 29^{\prime} \end{gathered}$	0.7 m	8	$\begin{aligned} & 220 \mathrm{~m} \\ & 722^{\prime} \end{aligned}$	＊
206C	$32^{\circ} 00.75^{\prime} \mathrm{S} \quad 165^{\circ} 27.15^{\circ} \mathrm{E}$ December 18－21， 1971 $3206 m$（ $10,519^{\prime}$ ）	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & 94 \mathrm{CJS} \\ & \text { \#HG648 } \end{aligned}$	21	19	91	$189 \mathrm{~m}$ 620^{\prime}	$\begin{gathered} 89 m \\ 292 \end{gathered}$	47	$\begin{array}{r} 734 \mathrm{~m} \\ 2,408 \end{array}$	T－1，B－1，IG－two broken teeth．
207	$\begin{aligned} & 36^{\circ} 57.75^{\prime} \mathrm{S} \quad 165^{\circ} 26.06^{\prime} \mathrm{E} \\ & \text { December } 12,1971 \\ & 1399 \mathrm{~m} \quad\left(4,590^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & S_{\text {mith }} \\ & \text { S94C } \\ & \text { \#HZ836 } \\ & \hline \end{aligned}$	5	5	100	$\begin{gathered} 42 \mathrm{~m} \\ 138 \end{gathered}$	$\begin{gathered} 38 \mathrm{~m} \\ 125^{\prime} \end{gathered}$	91	$\begin{gathered} 47 \mathrm{~m} \\ 154^{\prime} \end{gathered}$	
207A	3657．75＇S 165º26．06＇E December 12－15， 1971 $1399 \mathrm{~m}\left(4,590^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { S94C } \\ & \text { \#HZ836 } \end{aligned}$	50	45	90	$\begin{array}{r} 450 \mathrm{~m} \\ 1,476^{1} \end{array}$	$\begin{gathered} 212 \mathrm{~m} \\ 696 \end{gathered}$	47	$\begin{array}{r} 513 \mathrm{~m} \\ 1,683^{\prime} \end{array}$	Lost in hole．
208	$\begin{aligned} & 26^{\circ} 06.61^{\prime} \mathrm{S} \quad 161^{\circ} 13.27^{\prime} \mathrm{E} \\ & \text { December } 23-24,1971 \\ & 1555 \mathrm{~m}\left(5,102^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { 94C JS } \\ & \text { \#HZO26 } \end{aligned}$	34	33	97	$\begin{array}{r} 306 \mathrm{~m} \\ 1,004^{\prime} \end{array}$	$\begin{aligned} & 255 \mathrm{~m} \\ & 836^{\prime} \end{aligned}$	84	$\begin{array}{r} 594 \mathrm{~m} \\ 1,949 \end{array}$	
209	$15^{\circ} 56.19^{\prime} \mathrm{S} \quad 152^{\circ} 11.27^{\prime} \mathrm{E}$ December 28－29， 1971 1438m（4，718＇）	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & 94 \mathrm{C} \text { JS } \\ & \text { \#HZ026 } \end{aligned}$	34	30	88	301 m 988^{\prime}	$\begin{gathered} 77 \mathrm{~m} \\ 252^{\prime} \end{gathered}$	26	$\begin{array}{r} 344 \mathrm{~m} \\ 1,129 \end{array}$	

CORE BIT SUMMARY - LEG 21

HOLE NO.	POSITION	CORE BIT		CORES		TOTAL AMOUNT CORED				REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S / N								
211	$09^{\circ} 46.53^{\prime} \mathrm{S} \quad 102^{\circ} 41.95^{\prime} \mathrm{E}$ January 11-24, 1972 $5535 \mathrm{~m} \quad\left(18,160^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & 94 \mathrm{CJS} \\ & \text { \#HZO15 } \end{aligned}$	15	15	100	$\begin{aligned} & 143 \\ & 469 \end{aligned}$	$\begin{aligned} & 67 \mathrm{~m} \\ & 220^{\prime} \end{aligned}$	47	$\begin{gathered} 447 \mathrm{~m} \\ 1,467^{\prime} \end{gathered}$	T-1, B-2
212	$19^{\circ} 11.34^{\prime} \mathrm{S} \quad 99^{\circ} 17.84^{\prime} \mathrm{E}$ January 24-February 1, 1972 $6243 \mathrm{~m} \quad\left(20,483^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { 93C JS } \\ & \text { \#JK192 } \\ & \hline \end{aligned}$	39	39	100	$\begin{array}{r} 366 \mathrm{~m} \\ 1,201^{\prime} \end{array}$	$\begin{gathered} 174 \mathrm{~m} \\ 571 \end{gathered}$	48	$\begin{array}{r} 521 \mathrm{~m} \\ 1,709 \end{array}$	T-1, B-2-drilled 5m basalt.
213	$10^{\circ} 12.71$ 'S $\quad 93^{\circ} 53.77^{\prime} \mathrm{E}$ February 1-6, 1972 $5611 \mathrm{~m}\left(18,410^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & 94 \mathrm{CJS} \\ & \text { \#HZOI5 } \\ & \hline \end{aligned}$	19	19	100	$\begin{aligned} & 173 \\ & 568^{\prime} \end{aligned}$	$\begin{aligned} & 146 \\ & 479 \end{aligned}$	84	$\begin{aligned} & 172 \mathrm{~m} \\ & 564^{\prime} \end{aligned}$	
213A	$10^{\circ} 12.71$ 'S $\quad 93^{\circ} 53.77^{\prime} \mathrm{E}$ February 6-7, 1972 $5611 \mathrm{~m}\left(18,410^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & 94 \mathrm{CJS} \\ & \text { \#HZO15 } \\ & \hline \end{aligned}$	3	3	100	25 m	$\begin{aligned} & 25 m \\ & 83^{\prime} \end{aligned}$	100	$\begin{aligned} & 131 \mathrm{~m} \\ & 429 \end{aligned}$	T-1, B-3-74m basalt drilled. No shirttail wear. Bit in gauge.
214	$11^{\circ} 20.21^{\prime} \mathrm{S} \quad 88^{\circ} 43.08^{\prime} \mathrm{E}$ February 7-12, 1972 $1665 \mathrm{~m}(5,463$ ')	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { 94C JS } \\ & \text { \#HZO15 } \\ & \hline \end{aligned}$	54	53	98	$\begin{array}{r} 495 m \\ 1,624^{\prime} \end{array}$	$\begin{array}{r} 346 \mathrm{~m} \\ 1,135^{\prime} \end{array}$	70	$\begin{aligned} & 500 \mathrm{~m} \\ & 1,641^{\prime} \end{aligned}$	T-2, B-5
215	$\begin{aligned} & 08^{\circ} 07.30^{\prime} \mathrm{S} \quad 80^{\circ} 47.50^{\prime} \mathrm{E} \\ & \text { February } 12-15,1972 \\ & 5319 \mathrm{~m}\left(17,452^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { 94C JS } \\ & \text { \#HZO24 } \end{aligned}$	20	20	100	$\begin{aligned} & 175 m \\ & 574^{\prime} \end{aligned}$	$\begin{aligned} & 113 \mathrm{~m} \\ & 371 \end{aligned}$	65	175 m $574{ }^{\prime}$	Drilled 38 m basalt. Bit in gauge.

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT	CORES			TOTAL AMOUNT CORED				REMARKS
	Latitude／Longitude Dates of Operation Water Depth－Meters（Ft）	Size Make Type S / N	$\begin{aligned} & \text { n⿳亠口冋口 } \\ & E \\ & \text { 黑 } \\ & \frac{1}{4} \end{aligned}$							
216	$\begin{aligned} & 01^{\circ} 27.73^{\prime} \mathrm{N} \quad 90^{\circ} 12.48^{\prime} \mathrm{E} \\ & \text { February } 15-21,1972 \\ & 2247 \mathrm{~m}\left(7,372^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & .94 \mathrm{CJS} \\ & \text { \#HZ024 } \end{aligned}$	38	38	100	$\begin{array}{r} 353 \mathrm{~m} \\ 1,158^{\prime} \end{array}$	171 m 561^{\prime}	48	$\begin{array}{r} 478 \mathrm{~m} \\ 1,568^{\prime} \end{array}$	T－5，B－5
216A	$01^{\circ} 27.73^{\prime} \mathrm{N} \quad 90^{\circ} 12.48^{\prime} \mathrm{E}$ February 21， 1972 2247m（7，372＇）	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & 94 \mathrm{CJS} \\ & \text { \#HZ024 } \end{aligned}$	6	6	100	$\begin{gathered} 57 \mathrm{~m} \\ 187 \mathrm{r} \end{gathered}$	$\begin{gathered} 53 \mathrm{~m} \\ 174^{\prime} \end{gathered}$	94	159m 521 ＇	Drilled 70 m chert，limestone，and hard sand．Left cones in hole
217	$\begin{aligned} & 08^{\circ} 55.57^{\prime} \mathrm{N} \quad 90^{\circ} 32.3^{\prime} \mathrm{E} \\ & \text { February } 21-27,1972 \\ & 3020 \mathrm{~m} \quad\left(9,909^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & 93 \mathrm{CJS} \\ & \text { \#JK } 192 \\ & \hline \end{aligned}$	37	36	97	$\begin{array}{r} 346 \mathrm{~m} \\ 1,135^{\prime} \end{array}$	$\begin{aligned} & 183 \mathrm{~m} \\ & 600^{\prime} \end{aligned}$	53	$\begin{array}{r} 615 \mathrm{~m} \\ 2,017 \end{array}$	T－6，B－4．Shirttail wear．Drilled 130 m chert，hard sand，dolomite．
217A	$\begin{aligned} & 08^{\circ} 55.57^{\top} \mathrm{N} \quad 90^{\circ} 32.33^{\prime} \mathrm{E} \\ & \text { February } 27-29^{\prime} 1972 \\ & 3020 \mathrm{~m} \quad\left(9,909^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { FS94C } \\ & \text { \#HZ835 } \\ & \hline \end{aligned}$	17	16	94	$\begin{aligned} & 162 \mathrm{~m} \\ & 532 \end{aligned}$	$\begin{gathered} 42 \mathrm{~m} \\ 138^{\prime} \end{gathered}$	26	$\begin{array}{r} 664 m \\ 2,178^{\prime} \end{array}$	T－1，B－1
218	$\begin{aligned} & 08^{\circ} 00.42^{\prime} \mathrm{N} \quad 86^{\circ} 16.97{ }^{\prime} \mathrm{E} \\ & \text { February } 29-\text { March } 4,1972 \\ & 3759 \mathrm{~m} \quad\left(12,333^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & 94 \mathrm{C} \text { JS } \\ & \text { \#HZ027 } \end{aligned}$	27	26	96	$\begin{aligned} & 251 \mathrm{~m} \\ & 824^{\prime} \end{aligned}$	$\begin{gathered} 59 \\ 194^{\prime} \end{gathered}$	24	$\begin{array}{r} 773 \mathrm{~m} \\ 2,536^{\prime} \end{array}$	

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT		CORES		TOTAL	UNT CORED			REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S/N	$\begin{aligned} & \frac{n}{0} \\ & E \\ & \stackrel{N}{む} \\ & \frac{0}{4} \end{aligned}$							
219	$09^{\circ} 01.75^{\prime} \mathrm{N} \quad 72^{\circ} 52.67^{\prime} \mathrm{E}$ March 10-12, 1972 $1779 \mathrm{~m}\left(5,834^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & 94 \mathrm{C} \text { JS } \\ & \text { \#HZO25 } \end{aligned}$	27	27	100	$\begin{aligned} & 235 \mathrm{~m} \\ & 7711 \end{aligned}$	$\begin{aligned} & 173 \mathrm{~m} \\ & 567 \end{aligned}$	73	$\begin{aligned} & 273 \mathrm{~m} \\ & 896^{\prime} \end{aligned}$	Excellent for rerun. T-1, B-1.
219A	$09^{\circ} 01.75^{\prime} \mathrm{N} \quad 72^{\circ} 52.67^{\prime} \mathrm{E}$ March 12-13, 1973 $1779 \mathrm{~m}\left(5,834^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & 94 \mathrm{CJS} \\ & \text { \#HZO25 } \\ & \hline \end{aligned}$	14	13	93	$115 m$ $3^{\prime \prime}{ }^{\prime}$	$\begin{gathered} 51 \mathrm{~m} \\ 167 \end{gathered}$	44	$\begin{array}{r} 411 \mathrm{~m} \\ 1,348^{\prime} \end{array}$	Rerun- T-1, B-1. Excellent for rerun.
220	060 30.97' $\mathrm{N} \quad 70^{\circ} 59.02^{\prime} \mathrm{E}$ March 14-17, 1072 $4043 \mathrm{~m}\left(13,265^{\prime}\right)$	$\begin{aligned} & \text { 10-1/8 } \\ & \text { Smith } \\ & 93 \mathrm{CJS}, 3 \text { CTK } \\ & \text { \#JK190 } \end{aligned}$	21	21	100	$177 \mathrm{~m}$ 581^{\prime}	101 m 331^{\prime}	57	$\begin{array}{r} 350 \mathrm{~m} \\ 1,148^{\prime} \end{array}$	$T-3, B-8, B T, O G .$ Worn out.
221	07059.18'N $68^{\circ} 24.37^{\prime} \mathrm{E}$ March 18-20, 1972 4679 m ($15,352^{\prime}$)	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { 94CJS, } 4 \text { CTR } \\ & \text { "HZ161 } \end{aligned}$	19	19	100	$\begin{aligned} & 170 \mathrm{~m} \\ & 558^{\prime} \end{aligned}$	$\begin{gathered} 77 \mathrm{~m} \\ 252^{\prime} \end{gathered}$	45	$270 \mathrm{~m}$ 886'	T-1, B-1 - ok for rerun.
222	$20^{\circ} 05.49^{\prime} \mathrm{N} \quad 61^{\circ} 30.56^{\prime} \mathrm{E}$ March 24-30, 1972 $3570 \mathrm{~m}\left(11,713^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & 94 \mathrm{CJS}, 4 \mathrm{CTR} \\ & \text { \#HZO13 } \end{aligned}$	36	36	100	$\begin{array}{r} 313 \mathrm{~m} \\ 1,027 \mathrm{I} \end{array}$	176 m 577'	56	$\begin{array}{r} 1300 \mathrm{~m} \\ 4,265^{\prime} \end{array}$	$T-3, B-1, B T, O G .$ Worn out.
223	18044.98' $\mathrm{N} \quad 60^{\circ} 07.78^{\prime} \mathrm{E}$ March 31-April 4, 1972 3654 m (11,989')	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & 93 \mathrm{C} J \mathrm{~S}, 4 \mathrm{CTR} \\ & \text { \#JK241 } \end{aligned}$	41	41	100	$\begin{aligned} & 369 \mathrm{~m} \\ & 1,210^{\prime} \end{aligned}$	204m 669^{\prime}	55	$\begin{array}{r} 740 \mathrm{~m} \\ 2,428^{\prime} \end{array}$	T-1, B-2-for rerun.

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT	CORES			TOTAL	UNT CORED			REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S/N	$\begin{aligned} & \text { n } \\ & \frac{0}{E} \\ & \text { Q } \\ & \frac{1}{4} \end{aligned}$					$\begin{aligned} & \text { ta } \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & \text { « } \\ & \circ \end{aligned}$		
224	$\begin{aligned} & 16^{\circ} 32.51^{\prime} \mathrm{N} \quad 59^{\circ} 42 \cdot 10^{\prime} \mathrm{E} \\ & \text { April } 5-7,1972 \\ & 2523 \mathrm{~m} \quad\left(8,278^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { 93C JS, } 4 \text { CTR } \\ & \text { \#JK241 } \\ & \hline \end{aligned}$	11	11	100	$\begin{gathered} 99 \mathrm{~m} \\ 325^{\prime} \end{gathered}$	$\begin{gathered} 31 \mathrm{~m} \\ 102^{\prime} \end{gathered}$	31	$\begin{array}{r} 792 \mathrm{~m} \\ 2,598^{\prime} \end{array}$	T-1, B-5 - worn out.
225	$\begin{aligned} & 21^{\circ} 18.58^{\prime} \mathrm{N} \quad 38^{\circ} 15.11^{\prime} \mathrm{E} \\ & \text { April } 15-17,1972 \\ & 1240 \mathrm{~m} \quad\left(4,068^{\prime}\right) \end{aligned}$	$\begin{aligned} & \text { 10-1/8 } \\ & \text { Smith } \\ & \text { 94C JS, } 4 \text { CTR } \\ & \text { "HZO25 } \end{aligned}$	29	29	100	$\begin{aligned} & 230 \mathrm{~m} \\ & 7555^{\prime} \end{aligned}$	$\begin{aligned} & 138 \mathrm{~m} \\ & 452^{\prime} \end{aligned}$	60	$\begin{aligned} & 230 \mathrm{~m} \\ & 755^{\prime} \end{aligned}$	$\mathrm{T}-1, \mathrm{~B}-2$ - rerun. Good condition for rerun.
226	$\begin{aligned} & 21^{\circ} 20.51^{\prime} \mathrm{N} \quad 38^{\circ} 04.93^{\prime} \mathrm{E} \\ & \text { April } 17-18,1972 \\ & 2208 \mathrm{~m} \quad\left(7,244^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & 94 \mathrm{C} \text { JS } \\ & \text { \#HZO25 } \end{aligned}$	2	2	100	14 m 46^{\prime}	$\begin{gathered} 9 m \\ 29^{\prime} \end{gathered}$	64	$14 m$ 46^{\prime}	Rerun - lost in hole .
227	$\begin{aligned} & 21^{\circ} 19.86^{\prime} \mathrm{N} \quad 38^{\circ} 07.97^{\prime} \mathrm{E} \\ & \text { April } 18-21,1972 \\ & 1821 \mathrm{~m} \quad\left(5,975^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & 94 \mathrm{CJS} \\ & \text { \#HZ161 } \end{aligned}$	45	45	100	$\begin{array}{r} 344 \mathrm{~m} \\ 1,129 \end{array}$	$\begin{aligned} & 124 \mathrm{~m} \\ & 406^{\prime} \end{aligned}$	36	$\begin{array}{r} 359 \mathrm{~m} \\ 1,178^{\prime} \end{array}$	T-1, B-2 - for rerun.
228	$19^{\circ} 05.16^{\prime} \mathrm{N} \quad 39^{\circ} 00.20^{\prime} \mathrm{E}$ April 22-24, 1972 $1055 \mathrm{~m}(3,461)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & 93 \mathrm{CJS} \\ & \text { \#JK195 } \end{aligned}$	39	39	100	$\begin{array}{r} 315 \mathrm{~m} \\ 1,033^{\prime} \end{array}$	185 m 606'	59	$\begin{array}{r} 325 \mathrm{~m} \\ 1,066^{\prime} \end{array}$	T-1, B-3-took severe pounding.
229	$\begin{aligned} & 14^{\circ} 46.09^{\prime} \mathrm{N} \quad 42^{\circ} 11.47^{\prime} \mathrm{E} \\ & \text { April } 27,1972 \\ & 861 \mathrm{~m} \quad\left(2,825^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { 94C JS } \\ & \text { "HZ488 } \end{aligned}$	4	4	100	$\begin{gathered} 33 \mathrm{~m} \\ 108^{\prime} \end{gathered}$	$29 \mathrm{~m}$ 95^{\prime}	88	108 m $354{ }^{\prime}$	T-1, B-1 - for rerun.

CORE BIT SUMMARY - LEG 23

hole NO.	POSITION	CORE BIT		CORES		Total amount cored				REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S/N								
229 A	$\begin{aligned} & 14^{\circ}{ }^{4} 46.09^{\prime} \mathrm{N} \quad 42^{\circ} 11.47^{\prime} \mathrm{E} \\ & \text { April } 27-28,198^{2}, 192 \\ & 861 \mathrm{~m}\left(2,825^{\prime}\right) \end{aligned}$	$10-1 / 8$ Smith 94C JS \qquad	18	17	95	$\begin{aligned} & 162 \mathrm{~m} \\ & 5311 \end{aligned}$	$\begin{aligned} & 119 \mathrm{~m} \\ & 390 \end{aligned}$	74	$\begin{aligned} & 212 \mathrm{~m} \\ & 695^{\prime} \end{aligned}$	T-1, B-1 - for rerun.
230	$\begin{aligned} & 1^{15^{\circ} 19.00^{\prime} \mathrm{N} \quad 41^{\circ} 50.05^{\prime} \mathrm{E}} \\ & \text { April 28-2, } 192, \\ & 851 \mathrm{~m} \quad\left(2,792^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & 94 \mathrm{CJS} \\ & \hline 4 \mathrm{HZ} 488 \\ & \hline \end{aligned}$	2	2	100	$\begin{aligned} & 18 \mathrm{~m} \\ & 59 \mathrm{a} \end{aligned}$	$\begin{aligned} & 13 \mathrm{~m} \\ & 4^{3} \end{aligned}$	75	$\begin{gathered} 9 m \\ 29 \end{gathered}$	T-1, B-1-good condition for rerun.

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT		CORES		TOTAL AMOUNT CORED				REMARKS
	Latitude／Longitude Dates of Operation Water Depth－Meters（ Ft ）	Size Make Type S／N	$\begin{aligned} & \stackrel{n}{⿳ 亠 丷 厂 彡} \\ & E \\ & \frac{\Phi}{4} \end{aligned}$							
234A	$04^{\circ} 28.95^{\prime} \mathrm{N} \quad 51^{\circ} 13.48^{\prime} \mathrm{E}$ May 19－21， 1972 $4738 \mathrm{~m}\left(15,545^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & 94 \mathrm{C} \text { JS } \\ & \text { \#HZ250 } \end{aligned}$	1	1	100	$\begin{aligned} & 10 \mathrm{~m} \\ & 32^{\prime} \end{aligned}$	$\begin{aligned} & 1 \mathrm{~m} \\ & 3^{\prime} \end{aligned}$	15	$\begin{aligned} & 277 \mathrm{~m} \\ & 909{ }^{\prime} \end{aligned}$	T－1，B－1－in gauge．Drilling in clay． Cut 32.5 m basalt，recovered 12.5 m ．
235	$03^{\circ} 14.06^{\prime} \mathrm{N} \quad 52^{\circ} 41.64^{\prime} \mathrm{E}$ May 22－26， 1972 $5146 \mathrm{~m}\left(16,684^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { 94C JS } \\ & \text { \#HZ250 } \\ & \hline \end{aligned}$	20	19	95	$\begin{aligned} & 190 \mathrm{~m} \\ & 623^{\prime} \end{aligned}$	$\begin{aligned} & 98 \mathrm{~m} \\ & 321 \end{aligned}$	52	$\begin{array}{r} 684 \mathrm{~m} \\ 2,244^{\prime} \end{array}$	
236	$01^{\circ} 40.68^{\prime} \mathrm{S} \quad 57^{\circ} 38.85^{\prime} \mathrm{E}$ May 28－June 1， 1972 $4504 m \quad\left(14,778^{1}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & 94 \mathrm{C} \\ & \text { \#HC754 } \\ & \hline \end{aligned}$	37	37	100	$\begin{array}{r} 328 \mathrm{~m} \\ 1,076^{\prime} \end{array}$	$219 \mathrm{~m}$ 718^{\prime}	67	$\begin{array}{r} 328 \mathrm{~m} \\ 1,076^{\prime} \end{array}$	T-2, B-7 Cut 21.5 m basalt，recovered 10.6 m
237	0704．99＇S $\quad 58^{\circ} 07.48^{\prime} \mathrm{E}$ June 5－9， 1972 $1640 \mathrm{~m}(5,381)$	$\begin{aligned} & \text { 10-1/8 } \\ & \text { Smith } \\ & \text { 94C JS } \\ & \text { \#JZ254 } \\ & \hline \end{aligned}$	67	63	94	$\begin{array}{r} 627 m \\ 2,057 \end{array}$	$\begin{array}{r} 312 \mathrm{~m} \\ 1,023^{\prime} \end{array}$	50	$\begin{array}{r} 694 m \\ 2,277 \end{array}$	T-3, B-7 Cut 214 m chert and limestone．
238	$\begin{aligned} & 11^{\circ} 09.21^{\prime} \mathrm{S} \quad 70^{\circ} 31.56^{\prime} \mathrm{E} \\ & \text { June } 15-21,1972 \\ & 2845 \mathrm{~m} \quad\left(9,334^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { 94C JS, } 4 \text { Cone } \\ & \text { \#JZ251 } \end{aligned}$	64	63	98	$\begin{array}{r} 587 m \\ 1,925^{\prime} \end{array}$	$\begin{array}{r} 425 \mathrm{~m} \\ 1,394^{\prime} \end{array}$	72	$\begin{array}{r} 587 \mathrm{~m} \\ 1,925^{\prime} \end{array}$	T-3, B-7 Cored 80.5 m basalt，recovered 40.6 m ．

／128

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT	CORES			TOTAL AM	UNT CORE			REMARKS
	Latitude／Longitude Dates of Operation Water Depth－Meters（Ft）	Size Make Type S／N	$\begin{aligned} & \frac{n}{⿳ 亠 口 冖 口 木 ~} \\ & \frac{\ddot{y y}}{4} \end{aligned}$							
244	$\begin{aligned} & 22^{\circ} 55.87{ }^{\prime} \mathrm{S} \quad 41^{\circ} 25.98^{\prime} \mathrm{E} \\ & \text { July 29, } 1972 \\ & 3847 \mathrm{~m} \quad\left(12,622^{\prime}\right) \end{aligned}$	$\begin{aligned} & \text { 10-1/8 } \\ & \text { Smith } \\ & \text { 4 CTR, 94C JS } \\ & \text { \#JZ252 } \\ & \hline \end{aligned}$	1	0	0	$\begin{gathered} 3 \mathrm{~m} \\ 10^{\prime} \end{gathered}$	0	0	$\begin{aligned} & 27 \mathrm{~m} \\ & 89^{\prime} \end{aligned}$	Punch cores washed only－no rotation． Bit lost in hole
245	$\begin{aligned} & 31^{\circ} 32.02^{\prime} \mathrm{S} \quad 52^{\circ} 18.11^{\prime} \mathrm{E} \\ & \text { August } 2-6,1972 \\ & 4857 \mathrm{~m} \quad\left(15,936^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & 4 \text { CTR, 94C JS } \\ & \text { \#JZ255 } \end{aligned}$	19	17	89	$\begin{aligned} & 151 \mathrm{~m} \\ & 495^{\prime} \end{aligned}$	$\begin{gathered} 82 \mathrm{~m} \\ 2699^{\prime} \end{gathered}$	54	$\begin{array}{r} 397 \mathrm{~m} \\ 1,302^{\prime} \end{array}$	T－5，B－4－bearing fair－ 19 teeth either missing or badly chipped．
245A	$\begin{aligned} & 31^{\circ} 32.02{ }^{\prime} \mathrm{S} \\ & \text { August } 6-7,192^{\circ} 18.11^{\prime} \mathrm{E} \\ & 4857 \mathrm{~m} \quad\left(15,936^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & 4 \text { CTR, 94C JS } \\ & \text { \#JZ255 } \end{aligned}$	7	7	100	$\begin{gathered} 63 \mathrm{~m} \\ 207 \end{gathered}$	$\begin{gathered} 47 \mathrm{~m} \\ 154^{\prime} \end{gathered}$	75	$\begin{aligned} & 149 \mathrm{~m} \\ & 489 \end{aligned}$	Chipped
246	$\begin{aligned} & 33^{\circ} 37.21 \text { 'S } \quad 45^{\circ} 09.60^{\prime} \mathrm{E} \\ & \text { August } 9-10,1972 \\ & 1030 \mathrm{~m} \quad\left(3,379^{\prime}\right) \end{aligned}$	$\begin{aligned} & \text { 10-1/8 } \\ & \text { Smith } \\ & 3 \text { CTR, } 94 \mathrm{CJS} \\ & \text { \#JZ243 } \end{aligned}$	11	6	55	$\begin{gathered} 94 \mathrm{~m} \\ 308^{\prime} \end{gathered}$	$\begin{aligned} & 24 \mathrm{~m} \\ & 79 \end{aligned}$	25	$203 \mathrm{~m}$ 666＇	$T-1, B-2$－in gauge． Good for rerun．
247	$\begin{aligned} & 33^{\circ} 37.53^{\prime} \mathrm{S} \quad 45^{\circ} 00.68^{\prime} \mathrm{E} \\ & \text { August } 10-11,1972 \\ & 944 \mathrm{~m} \quad\left(3,097^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & 3 \text { CTR, } 94 \mathrm{CJS} \\ & \text { \# JZ243 } \end{aligned}$	1	0	0	$\begin{gathered} 8 m \\ 26^{\prime} \end{gathered}$	0	0	$\begin{aligned} & 26 m \\ & 85 \end{aligned}$	$\mathrm{T}-1, \mathrm{~B}-2$－in gauge． Good for rerun．
248	$\begin{aligned} & 29^{\circ} 31.78^{\prime} \mathrm{S} \quad 37^{\circ} 28.48^{\prime} \mathrm{E} \\ & \text { August } 13-17,1972 \\ & 4994 \mathrm{~m} \quad\left(16,385^{\prime}\right) \end{aligned}$	$\begin{aligned} & \text { 10-1/8 } \\ & \text { Smith } \\ & 3 \text { CTR, 94CJS } \\ & \text { \#JZ243 } \end{aligned}$	17	13	77	136 m 446＇	$\begin{gathered} 41 \mathrm{~m} \\ 134^{\prime} \end{gathered}$	30	$\begin{array}{r} 434 m \\ 1,424^{\prime} \end{array}$	T－2，B－8－out of gauge．

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT CORES				TOTAL AMOUNT CORED				REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S / N								
249	$29^{\circ} 56.99^{\prime} \mathrm{S} \quad 36^{\circ} 04.62^{\prime} \mathrm{E}$ August 17-20, 1972 2088m (6,851')	$\begin{aligned} & \text { 10-1/8 } \\ & \text { Smith } \\ & 4 \text { CTR, } 94 \mathrm{C} \\ & \text { \#HC759 } \end{aligned}$	33	33	100	$\begin{aligned} & 285 \mathrm{~m} \\ & 935^{\prime} \end{aligned}$	222 728^{\prime}	78	$\begin{array}{r} 412 \mathrm{~m} \\ 1,352^{\prime} \end{array}$	T-1, B-3 - in gauge. Good for rerun.
	-									
	,									

$/ 131$

$\begin{aligned} & \text { HOLE } \\ & \text { NO } \end{aligned}$	POSITION	CORE BIT		CORES		TOTAL AMOUNT CORED				REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S/N	$\begin{aligned} & \stackrel{n}{0} \\ & E \\ & \frac{\Phi}{4} \\ & \frac{1}{4} \end{aligned}$							
250	$33^{\circ} 27.67^{\prime} \mathrm{S} \quad 39^{\circ} 22.20^{\prime} \mathrm{E}$ September 6-10, 1972 $5129 \mathrm{~m}\left(16,828^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { F94C } \\ & \text { \#KK998 } \end{aligned}$	3	3	100	$\begin{aligned} & 28 \mathrm{~m} \\ & 92^{\prime} \end{aligned}$	$\begin{aligned} & 21 \mathrm{~m} \\ & 72^{\prime} \end{aligned}$	76	$\begin{gathered} 65 \mathrm{~m} \\ 212^{\prime} \end{gathered}$	New - bent bottomhole assembly.
250A	$33^{\circ} 27.74^{\prime} \mathrm{S} \quad 39^{\circ} 22.15^{\prime} \mathrm{E}$ September 10-14, 1972 $5129 \mathrm{~m}\left(16,828^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { F94C } \\ & \text { \#KK } 998 \\ & \hline \end{aligned}$	26	25	96	$\begin{aligned} & 241 \mathrm{~m} \\ & 790^{\prime} \end{aligned}$	$\begin{aligned} & 125 \mathrm{~m} \\ & 410^{\prime} \end{aligned}$	52	$\begin{array}{r} 739 \mathrm{~m} \\ 2,424^{\prime} \end{array}$	$\mathrm{T}-1, \mathrm{~B}-2$ Cored 13 m basalt.
251	$36^{\circ} 30.25^{\prime} \mathrm{S} \quad 49^{\circ} 27.15^{\prime} \mathrm{E}$ September 14-18, 1972 $3499 \mathrm{~m}\left(11,480^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { F94C } \\ & \text { "KK998 } \end{aligned}$	10	9	90	$\begin{gathered} 88 \mathrm{~m} \\ 288^{\prime} \end{gathered}$	$\begin{gathered} 67 \mathrm{~m} \\ 220^{\prime} \end{gathered}$	77	$\begin{gathered} 88 \mathrm{~m} \\ 288^{\prime} \end{gathered}$	Loss of power - pulled out of hole.
251A	$36^{\circ} 30.26^{\prime} \mathrm{S} \quad 49^{\circ} 29.08^{\prime} \mathrm{E}$ September 18-21, 1972 $3499 \mathrm{~m}\left(11,480^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { F94C } \\ & \text { \#KK998 } \end{aligned}$	31	29	93	$\begin{aligned} & \text { 277m } \\ & 908 \end{aligned}$	$\begin{aligned} & 158 \mathrm{~m} \\ & 518^{\prime} \end{aligned}$	57	$\begin{array}{r} \text { 499m } \\ 1,637 \mathrm{~m} \end{array}$	T-4, B-3-cored 10m basalt.
252	$\begin{aligned} & 37^{\circ} 02.44^{\prime} \mathrm{S} \quad 59^{\circ} 14.33^{\prime} \mathrm{E} \\ & \text { September } 21-24,1972 \\ & 5042 \mathrm{~m} \quad\left(16,543^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 2 \\ & \text { Smith } \\ & \text { F94C } \\ & \text { "KK989 } \end{aligned}$	7	7	100	$\begin{gathered} 57 \mathrm{~m} \\ 188^{\prime} \end{gathered}$	$\begin{gathered} 42 \mathrm{~m} \\ 137 \end{gathered}$	73	$\begin{aligned} & 247 \mathrm{~m} \\ & 810^{\prime} \end{aligned}$	Abandoned site because of weather.
253	$24^{\circ} 52.65^{\prime} \mathrm{S} \quad 87^{\circ} 21.91^{\prime} \mathrm{E}$ September 24-October 5, 1972 $1972 \mathrm{~m}\left(6,470^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { F94C } \\ & \text { \#KN025 } \end{aligned}$	58	56	96	$\begin{array}{r} 536 \mathrm{~m} \\ 1,758^{\prime} \end{array}$	270 m 885'	50	$\begin{array}{r} 559 \mathrm{~m} \\ 1,834^{\prime} \end{array}$	T-1, B-2, 1. Drilled one meter basalt. Hole abandoned when center bit hung in the support housing.

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT		CORES		TOTAL AMOUNT CORED				REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters $\left(\mathrm{F}_{\mathrm{t}}\right)$	Size Make Type S/N	$\begin{aligned} & \text { n } \\ & \frac{\vdots}{E} \\ & \stackrel{4}{を} \\ & \hline \end{aligned}$							
254	$30^{\circ} 58.15^{\prime} \mathrm{S} \quad 87^{\circ} 53.72^{\prime} \mathrm{E}$ October 5-9, 1972 $1263 \mathrm{~m}\left(4,144^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { F94C } \\ & \text { \#KNO25 } \\ & \hline \end{aligned}$	38	38	100	$\begin{array}{r} 329 \mathrm{~m} \\ 1,079 \end{array}$	$\begin{aligned} & 151 \mathrm{~m} \\ & 495{ }^{\prime} \end{aligned}$	46	$\begin{array}{r} 344 m \\ 1,129 \end{array}$	T-2, B-2, 1 - Cored 18m basalt.
255	$31^{\circ} 07.87^{\prime} \mathrm{S} \quad 93^{\circ} 43.72^{\prime} \mathrm{E}$ October 9-12, 1972 $1154 m\left(3,786^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { F94C } \\ & \text { \#KNO25 } \end{aligned}$	11	11	100	$99 \mathrm{~m}$ 325^{\prime}	$\begin{gathered} 8 \mathrm{~m} \\ 26^{\prime} \end{gathered}$	8	109 m $357{ }^{\prime}$	Lost in hole.
256	$23^{\circ} 27.35^{\prime} \mathrm{S} \quad 60^{\circ} 46.46^{\prime} \mathrm{E}$ October 12-17, 1972 $5371 \mathrm{~m}\left(17,622^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & 94 \text { C JS, } 3 \text { Cone } \\ & \text { \#JZ238 } \end{aligned}$	11	11	100	$\begin{gathered} 99 \mathrm{~m} \\ 325^{\prime} \end{gathered}$	$\begin{gathered} 78 \mathrm{~m} \\ 256^{\prime} \end{gathered}$	79	$270 \mathrm{~m}$ 886'	Lost 2 cones. Heat flow probe locked cones. 19 m basalt cored.
257	$\begin{aligned} & 30^{\circ} 59.16^{\prime} \mathrm{S} \quad 108^{\circ} 20.99^{\prime} \mathrm{E} \\ & \text { October } 17-23,1972 \\ & 5288 \mathrm{~m} \quad\left(17,350^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { F94C } \\ & \text { \#KNO26 } \end{aligned}$	17	17	100	156 m 511^{\prime}	$\begin{gathered} 77 \mathrm{~m} \\ 252^{\prime} \end{gathered}$	49	$\begin{array}{r} 325 \mathrm{~m} \\ 1,066^{\prime} \end{array}$	T-5, B-2, 1 -drilled 63.5 m basalt. Inside teeth, cone off cones.
258	$\begin{aligned} & 33^{\circ} 47.69^{\prime} \mathrm{S} \quad 112^{\circ} 28.42^{\prime} \mathrm{E} \\ & \text { October } 24-28,1972 \\ & 2803 \mathrm{~m} \quad\left(9,197^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith }^{\text {F94C }} \\ & { }^{3} \text { KNO24 } \\ & \hline \end{aligned}$	25	24	96	$\begin{aligned} & 231 \mathrm{~m} \\ & 757^{\prime} \end{aligned}$	116 m 380^{\prime}	50	$\begin{array}{r} 525 \mathrm{~m} \\ 1,722^{\prime} \end{array}$	
258A	$33^{\circ} 47.69^{\prime} \mathrm{S} \quad 112^{\circ} 28.42^{\prime} \mathrm{E}$ October 28-29, 1972 2803m (9,197)	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { F94C } \\ & \text { \#KN924 } \end{aligned}$	9	9	100	$\begin{gathered} 95 \mathrm{~m} \\ 312^{\prime} \end{gathered}$	$\begin{gathered} 67 \mathrm{~m} \\ 220^{\prime} \end{gathered}$	71	$\begin{aligned} & 124 \mathrm{~m} \\ & 406^{\prime} \end{aligned}$	T-1, B-1, 1-drilled streaks of chert.

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT	CORES			TOTAL AMOUNT CORED				REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S / N	$\begin{aligned} & \frac{n}{0} \\ & E \\ & \frac{9}{4} \\ & \hline \end{aligned}$							
259	$29^{\circ} 37.05^{\circ} \mathrm{S} \quad 112^{\circ} 41.78^{\prime} \mathrm{E}$ November 2-7, 1972 $4712 \mathrm{~m}\left(15,460^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { 94C JS, } 3 \text { CTR } \\ & \text { \#JZ239 } \\ & \hline \end{aligned}$	41	40	98	$\begin{array}{r} 346 \mathrm{~m} \\ 1,1355^{\prime} \end{array}$	$249 \mathrm{~m}$ 816'	72	$\begin{array}{r} 346 \mathrm{~m} \\ 1,135^{\prime} \end{array}$	$\mathrm{T}-2, \mathrm{~B}-8,6,7$ Cored 38.5 m basalt. Shirttail wear.
260	$16^{\circ} 8.67^{\prime} \mathrm{S} \quad 110^{\circ} 17.92^{\prime} \mathrm{E}$ November 7-14, 1972 5709m (18,731)	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { 94C JS, } 4 \mathrm{CTR} \\ & \text { \#JZ246 } \end{aligned}$	20	19	95	170 m 559^{\prime}	$\begin{gathered} 57 \mathrm{~m} \\ 187 \end{gathered}$	34	$\begin{array}{r} 331 \mathrm{~m} \\ 1,085^{\prime} \end{array}$	$\mathrm{T}-5, \mathrm{~B}-3, \mathrm{G}-0$ Cored 8 m basalt.
261	$12^{\circ} 56.83^{\prime} \mathrm{S} \quad 117^{\circ} 53.56^{\prime} \mathrm{E}$ November 14-22, 1972 5687m (18,659')	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { F94C, \$ CTR } \\ & \text { \#KNO37 } \\ & \hline \end{aligned}$	39	38	97	$\begin{array}{r} 342 \mathrm{~m} \\ 1,122^{\prime} \end{array}$	126 m 413^{\prime}	37	$\begin{gathered} 580 \mathrm{~m} \\ 1,902^{\prime} \end{gathered}$	T-2, B-4, G-0. Cored 47.5 m basalt.
262	$10^{\circ} 52.19^{\prime} \mathrm{S} \quad 123^{\circ} 50.78^{\prime} \mathrm{E}$ November 22-26, 1972 2315m (7,596')	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { 93CJS, } 3 \text { CTR } \\ & \text { \#JK194 } \\ & \hline \end{aligned}$	47	47	100	$\begin{array}{r} 442 \mathrm{~m} \\ 1,450^{\prime} \end{array}$	$\begin{array}{r} 366 \mathrm{~m} \\ 1,200^{\mathrm{r}} \end{array}$	83	$\begin{array}{r} 442 \mathrm{~m} \\ 1,450^{\prime} \end{array}$	T-2, B-1, B-0. For rerun.
263	$23^{\circ} 19.43^{\prime} \mathrm{S} \quad 110^{\circ} 57.81^{\prime} \mathrm{E}$ Nov 26-Dec 6, 1972 $5065 \mathrm{~m}\left(16,618^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \end{aligned}$ F94C, 4 CTR \#KN072	29	29	100	271m 889'	$\begin{aligned} & 164 \mathrm{~m} \\ & 538^{\prime} \end{aligned}$	60	$\begin{array}{r} 746 \mathrm{~m} \\ 2,448^{\prime} \end{array}$	T-1, B-2, G-0. Drill pipe dropped when overrunning clutch failed. One cone cracked.

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT		CORES		TOTAL AMOUNT CORED				REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S/N	$\begin{aligned} & \frac{n}{\partial} \\ & \frac{0}{E} \\ & \frac{9}{4} \end{aligned}$					$$		
264	$34^{\circ} 58.13^{\prime} \mathrm{S} \quad 112^{\circ} 02.68^{\prime} \mathrm{E}$ December 22-23, 1972 2883m (9,459)	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { F94C } \\ & \text { \#KN104 } \\ & \hline \end{aligned}$	15	11	73	$\begin{aligned} & 143 \mathrm{~m} \\ & 469^{\prime} \end{aligned}$	$\begin{gathered} 65 \mathrm{~m} \\ 212^{\prime} \end{gathered}$	46	$\begin{aligned} & 216 \mathrm{~m} \\ & 708^{\prime} \end{aligned}$	
264A	$34^{\circ} 58.13^{\prime} \mathrm{S} \quad 112^{\circ} 02.68^{\prime} \mathrm{E}$ December 23-24, 1972 2883m ($9,459^{\prime}$)	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { F94C } \\ & \text { \#KN104 } \\ & \hline \end{aligned}$	4	4	100	$\begin{gathered} 38 \mathrm{~m} \\ 125^{\prime} \end{gathered}$	$\begin{gathered} 33 \mathrm{~m} \\ 118^{\prime} \end{gathered}$	87	159 m 521^{\prime}	T-1, B-6-drilled 40m conglomerate. One cone locking. 3-cone bit.
265	$53^{\circ} 32.45^{\prime} \mathrm{S} \quad 109^{\circ} 56.74^{\prime} \mathrm{E}$ December 24-January 1, 1973 3592 m (11,785')	$\begin{aligned} & \text { 10-1/8 } \\ & \text { Smith } \\ & \text { 94CJS } \\ & \text { \#JZ247 } \\ & \hline \end{aligned}$	18	17	94	169m $554{ }^{\prime}$	$\begin{aligned} & 108 \mathrm{~m} \\ & 354^{\prime} \end{aligned}$	64	$\begin{gathered} 462 \mathrm{~m} \\ 1,516^{1} \end{gathered}$	T-1, B-2 - cored 18m basalt.
266	$\begin{aligned} & 56^{\circ} 24.13^{\prime} \mathrm{S} \quad 110^{\circ} 06.70^{\prime} \mathrm{E} \\ & \text { January } 1-4,1973 \\ & 4183 \mathrm{~m} \quad\left(13,724^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { 94CJS } \\ & \text { \#JZ247 } \\ & \hline \end{aligned}$	24	24	100	$\begin{aligned} & 220 \mathrm{~m} \\ & 721 \end{aligned}$	$\begin{aligned} & 145 m \\ & 476^{\prime} \end{aligned}$	66	$\begin{gathered} 384 \mathrm{~m} \\ 1,260^{\prime} \end{gathered}$	$\mathrm{T}-5, \mathrm{~B}-6, \mathrm{G}-3 / 8$ Cored 13 m basalt - one cone loose 7 broken.
267	$\begin{aligned} & 59^{\circ} 15.74^{\prime} \mathrm{S} \quad 104^{\circ} 29.30^{\prime} \mathrm{E} \\ & \text { January } 4-6,1973 \\ & 4574 \mathrm{~m} \quad\left(15,007^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { 94CJS } \\ & \text { \#JZ249 } \\ & \hline \end{aligned}$	7	6	85	$\begin{gathered} 58 \mathrm{~m} \\ 190^{\prime} \end{gathered}$	$\begin{aligned} & 26 \mathrm{~m} \\ & 85^{\prime} \end{aligned}$	45	220 m 721^{\prime}	Cored 16m basalt.
267A	$\begin{aligned} & 59^{\circ} 15.74^{\prime} \mathrm{S} \quad 104^{\circ} 29.30^{\prime} \mathrm{E} \\ & \text { January } 6-7,1973 \\ & 4574 \mathrm{~m} \quad\left(15,007{ }^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { 94C JS } \\ & \text { \#JZ249 } \end{aligned}$	3	2	66	$29 \mathrm{~m}$ 95^{\prime}	11 m 35^{\prime}	41	$\begin{gathered} 71 \mathrm{~m} \\ 232 \end{gathered}$	

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT		CORES		TOTAL AMOUNT CORED				REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S/N	$\begin{aligned} & \frac{n}{0} \\ & E \\ & \frac{ \pm}{4} \\ & \frac{1}{4} \end{aligned}$							
267B	$\begin{aligned} & 5^{5} 14.55^{\prime} \mathrm{S} \quad 104^{\circ} 29.94^{\prime} \mathrm{E} \\ & \text { January } 7-8,1973 \\ & 4559 \mathrm{~m} \quad\left(14,958^{\prime}\right) \end{aligned}$	10-1/8 Smith 94CJS \#JZ249	10	10	100	$\begin{array}{r} 95 \mathrm{~m} \\ 312^{\prime} \end{array}$	$\begin{gathered} 54 \mathrm{~m} \\ 177 \text { ' } \end{gathered}$	56	$\begin{array}{r} 314 \mathrm{~m} \\ 1,030^{\prime} \end{array}$	T-7, B-7 - cored 3 m basalt. All cones wove loose. 30% of the teeth gone.
268	$\begin{aligned} & 63^{\circ} 56.99 \mathrm{~S}^{\prime} \quad 105^{\circ} 09.34^{\prime} \mathrm{E} \\ & \text { January 8-12, } 1973 \\ & 3554 \mathrm{~m} \quad\left(11,661^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { F93C } \\ & { }^{\text {KNN } 151} \end{aligned}$	20	20	100	190 m 623^{\prime}	$\begin{gathered} 66 \mathrm{~m} \\ 216^{\prime} \end{gathered}$	35	$\begin{array}{r} 475 \mathrm{~m} \\ 1,558^{\prime} \end{array}$	T-2, B-3-1 tooth missing in the core area.
269	$\begin{aligned} & 61^{\circ} 40.57^{\prime} \mathrm{S} \quad 104^{\circ} 04.21^{\prime} \mathrm{E} \\ & \text { January } 12-18,1973 \\ & 4295 \mathrm{~m} \quad\left(14,092^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { F93C } \\ & { }^{\text {FKN145 }} \end{aligned}$	11	11	100	103 m 338^{\prime}	$\begin{gathered} 38 \mathrm{~m} \\ 125^{\prime} \end{gathered}$	38	$\begin{array}{r} 417 \mathrm{~m} \\ 1,368^{\prime} \end{array}$	
269A	$\begin{aligned} & 61^{\circ} 40.57^{\prime} \mathrm{S} \quad 104^{\circ} 04.21^{\prime} \mathrm{E} \\ & \text { January } 18-21,1973 \\ & 4295 \mathrm{~m} \quad\left(14,092^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { F93C } \\ & { }^{7} \mathrm{KN} 145 \\ & \hline \end{aligned}$	13	13	100	$124 m$ 406^{\prime}	$\begin{gathered} 55 \mathrm{~m} \\ 180^{\prime} \end{gathered}$	45	$\begin{array}{r} 958 \mathrm{~m} \\ 3,143^{\prime} \end{array}$	T-2, B-5 - drilled clay and mudstone . One loose cone and one tooth missing.
270	$\begin{aligned} & 77^{\circ} 26.48^{\prime} \mathrm{S} \quad 178^{\circ} 30.19^{\prime} \mathrm{W} \\ & \text { January } 21 \text {-February } 3,1973 \\ & 644 \mathrm{~m} \quad\left(2,113^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { 93C JS } \\ & \text { \#JK242 } \\ & \hline \end{aligned}$	49	48	98	$\begin{array}{r} 423 \mathrm{~m} \\ 1,387 \end{array}$	$\begin{aligned} & 264 \mathrm{~m} \\ & 866^{\prime} \end{aligned}$	62		All cones locked.
271	$76^{\circ} 47.21^{\prime} \mathrm{S} \quad 175^{\circ} 02.86^{\prime} \mathrm{W}$ February 3-5, 1973 $579 \mathrm{~m}\left(1,900^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { F93C } \\ & \text { \#KN221 } \end{aligned}$	24	11	45	$\begin{aligned} & 223 \mathrm{~m} \\ & 732 \end{aligned}$	15 m 49^{1}	7	265m 869^{\prime}	One cone almost off. Drilled rocks, boulders, clay and sand. Bit wear was a surprise.

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT		CORES TOTAL AMOUNT CORED						REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S/N		辛						
272	$77^{\circ} 07.62^{\prime} \mathrm{S} \quad 176^{\circ} 45.61^{\prime} \mathrm{W}$ February 5-9, 1973 $629 \mathrm{~m}\left(2,064^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { F93C } \\ & { }^{\text {HNN150 }} \\ & \hline \end{aligned}$	48	39	82	$\begin{array}{r} 439 \mathrm{~m} \\ 1,440^{\prime} \end{array}$	$\begin{aligned} & 162 \mathrm{~m} \\ & 5311 \end{aligned}$	37	$\begin{array}{r} 443 \mathrm{~m} \\ 1,453^{\prime} \end{array}$	B-4, T-2 - drilled clay and sand. Had shirttail wear.
273	$74^{\circ} 32.29^{\prime} \mathrm{S} \quad 174^{\circ} 37.57^{\prime} \mathrm{E}$ February 9-10, 1973 $505 \mathrm{~m}\left(1,657^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { F93C } \\ & \text { \#KN261 } \end{aligned}$	9	9	100	$\begin{gathered} 76 \mathrm{~m} \\ 249 \end{gathered}$	$\begin{aligned} & 28 \mathrm{~m} \\ & 92^{\prime} \end{aligned}$	37	$\begin{gathered} 76 \mathrm{~m} \\ 249 \end{gathered}$	
273A	$\begin{aligned} & 74^{\circ} 32.29^{\prime} \mathrm{S} \quad 174^{\circ} 37.57^{\prime} \mathrm{E} \\ & \text { February } 10-13,1973 \\ & 505 \mathrm{~m} \quad\left(1,657 \prime^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { F93C } \\ & \text { \#KN261 } \end{aligned}$	29	24	83	266 m 873^{\prime}	$\begin{gathered} 56 m \\ 183^{\prime} \end{gathered}$	21	$\begin{gathered} 346 \mathrm{~m} \\ 1,135 \end{gathered}$	B-5, T-2 - clay, sand and siltstone.
274	$68^{\circ} 59.81^{\prime} \mathrm{S} \quad 173^{\circ} 25.64^{\prime} \mathrm{E}$ February 13-19, 1973 3326 m ($10,913^{\prime}$)	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & 94 \mathrm{C} \\ & \text { \#HC758 } \end{aligned}$	45	44	97	$\begin{gathered} 421 \mathrm{~m} \\ 1,381^{\prime} \end{gathered}$	$\begin{aligned} & 279 \mathrm{~m} \\ & 915^{\prime} \end{aligned}$	66	$\begin{array}{r} 421 \mathrm{~m} \\ 1,381^{\prime} \end{array}$	B-7, T-4 - cored some chert streaks in soft clay. Cored 5 m basalt.

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT	CORES			TOTAL	UNT CORE			REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S / N								
275	$\begin{aligned} & 50^{\circ} 26.34^{\prime} \mathrm{S} \quad 176^{\circ} 18.99^{\prime} \mathrm{E} \\ & \text { March } 2-6,1973 \\ & 2837 \mathrm{~m} \quad\left(9,308^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { SS94C, } 3 \text { CTR } \\ & { }^{\text {HZ } 487} \end{aligned}$	5	4	80	$\begin{gathered} 43 \mathrm{~m} \\ 141^{\prime} \end{gathered}$	18 m 59'	41	$\begin{gathered} 62 \mathrm{~m} \\ 2033^{\prime} \end{gathered}$	Lost in hole.
276	$\begin{aligned} & 50^{\circ} 48.11 \text { 'S } 176^{\circ} 48.40^{\prime} \mathrm{E} \\ & \text { March } 6-9,1973 \\ & 4677 \mathrm{~m} \quad\left(15,345^{\prime}\right) \end{aligned}$	$\begin{aligned} & \text { 10-1/8 } \\ & \text { Smith } \\ & \text { 94CJS, } 3 \text { CTR } \\ & \text { \#JZ237 } \\ & \hline \end{aligned}$	1	0	0	$\begin{aligned} & 1 \mathrm{~m} \\ & 3^{1} \end{aligned}$	0	0	$\begin{aligned} & 24 \mathrm{~m} \\ & 791 \end{aligned}$	T-1, B-1 - suitable for rerun.
277	$\begin{aligned} & 52^{\circ} 13.43^{\prime} \mathrm{S} \quad 166^{\circ} 11.48^{\prime} \mathrm{E} \\ & \text { March } 9-13,1973 \\ & 1232 \mathrm{~m} \quad\left(4,042^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & 94 C J S, 3 \text { CTR } \\ & \text { \#JZ237 } \end{aligned}$	46	46	100	$\begin{array}{r} 435 \mathrm{~m} \\ 1,427 \mathrm{I} \end{array}$	$\begin{aligned} & 259 \mathrm{~m} \\ & 849^{\prime} \end{aligned}$	60	$\begin{gathered} \text { 473m } \\ 1,551^{\prime} \end{gathered}$	T-1, B-2 - suitable for rerun.
278	$\begin{aligned} & 56^{\circ} 33.42^{\prime} \mathrm{S} \text { 160 } 04.29^{\prime} \mathrm{E} \\ & \text { March } 13-17,1973 \\ & 3708 \mathrm{~m} \quad\left(12,166^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { 94C JS, } 3 \text { CTR } \\ & \text { \#JZ237 } \\ & \hline \end{aligned}$	35	35	100		$\begin{aligned} & 278 \mathrm{~m} \\ & 912^{\prime} \end{aligned}$	86	$\begin{gathered} 439 \mathrm{~m} \\ 1,440^{\prime} \end{gathered}$	
278A	$\begin{aligned} & 56^{\circ} 33.42^{\prime} \mathrm{S} \quad 160^{\circ} 04.29^{\prime} \mathrm{E} \\ & \text { March } 17,1973 \\ & 3708 \mathrm{~m} \quad\left(12,166^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { 94C JS, } 3 \text { CTR } \\ & \text { \#JZ237 } \\ & \hline \end{aligned}$	2	2	100	19 m 62^{\prime}	$\begin{gathered} 8 \mathrm{~m} \\ 26^{\prime} \end{gathered}$	40	$\begin{gathered} 44 \mathrm{~m} \\ 144^{\prime} \end{gathered}$	T-1, B-3 - throat flared. Cored 10.5 m basalt.
279	$51^{\circ} 20.14^{\prime} \mathrm{S} \quad 162^{\circ} 38.10^{\prime} \mathrm{E}$ March 17-21, 1973 $3381 m$ ($11,093^{\prime}$)	$\begin{aligned} & \text { 10-1/8 } \\ & \text { Smith } \\ & \text { 94C JS, } 3 \text { CTR } \\ & \text { \# JZ563 } \end{aligned}$	1	1	100	$\begin{aligned} & 1 \mathrm{~m} \\ & 3^{1} \end{aligned}$	0.6 m	60	$\begin{aligned} & 1 \mathrm{~m} \\ & 3^{\prime} \end{aligned}$	

HOLE NO.	POSITION	CORE BIT	CORES			TOTAL	UNT CORE			REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type s / N	$\begin{aligned} & n \\ & \frac{n}{0} \\ & E \\ & \stackrel{y}{k} \\ & \hline \end{aligned}$							
279A	$51^{\circ} 20.14^{\prime} \mathrm{S} \quad 162^{\circ} 38.10^{\prime} \mathrm{E}$ March 21-22, 1973 $3378 \mathrm{~m}\left(11,083^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & 94 \mathrm{C} J S_{,} 3 \subset T R \\ & \text { IJZ563 } \end{aligned}$	13	13	100	$\begin{aligned} & 110 \mathrm{~m} \\ & 361^{\prime} \end{aligned}$	$\begin{gathered} 80 \mathrm{~m} \\ 262^{\prime} \end{gathered}$	73	$\begin{aligned} & 202 \mathrm{~m} \\ & 663^{\prime} \end{aligned}$	T-1, B-1 - cored 5m basalt. For rerun.
280	48 ${ }^{\circ} 57.44^{\prime} \mathrm{S} \quad 147^{\circ} 14.08^{\prime} \mathrm{E}$ March 23-27, 1973 $4191 \mathrm{~m}\left(13,751^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & 94 \mathrm{C} J S, 3 \subset T R \\ & \text { JZ } 563 \end{aligned}$	1	1	100	$\begin{gathered} 6 \mathrm{~m} \\ 20^{1} \end{gathered}$	$\begin{gathered} 6 \mathrm{~m} \\ 20^{\prime} \end{gathered}$	92	10 m 32^{\prime}	Lost in hole.
280A	$\begin{aligned} & 48^{\circ} 57.44^{\prime} \mathrm{S} \quad 147^{\circ} 14.08^{\prime} \mathrm{E} \\ & \text { March 23-27, } 1973 \\ & \text { 4191m } \quad\left(13,751^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { 94C JS, } 3 \text { CTR } \\ & \text { 4KN } 146 \\ & \hline \end{aligned}$	23	23	100	$201 m$ 659^{1}	97m	48	$\begin{array}{r} 524 m \\ 1,719 \end{array}$	T-1, B-2 - cored 5m basalt. For rerun.
281	47 ${ }^{\circ} 59.84^{\prime} \mathrm{S} \quad 147^{\circ} 45.85^{\prime} \mathrm{E}$ March 31-April 1, 1973 $1601 \mathrm{~m}\left(5,252^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { F93C, } 4 \text { CTR } \\ & \text { 4KN } 146 \\ & \hline \end{aligned}$	19	16	84	169m 554^{\prime}	$\begin{aligned} & 106 m \\ & 347 \text { י } \end{aligned}$	63	$\begin{aligned} & 169 \mathrm{~m} \\ & 554^{\prime} \end{aligned}$	T-1, B-2
281A	$\begin{aligned} & 47^{\circ} 59.84^{\prime} \mathrm{S} \quad 147^{\circ} 45.85^{\prime} \mathrm{E} \\ & \text { April } 1-2,1973 \\ & 1601 \mathrm{~m} \quad\left(5,252^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { F93C, } 4 \text { CTR } \\ & { }^{\text {KNN } 146} \\ & \hline \end{aligned}$	3	2	67	$29 \mathrm{~m}$ 95^{\prime}	$\begin{gathered} 7 \mathrm{~m} \\ 23^{\prime} \end{gathered}$	25	$\begin{gathered} 46 \mathrm{~m} \\ 151^{\prime} \end{gathered}$	
282	$\begin{aligned} & 42^{\circ} 14.76^{\prime} \mathrm{S} \quad 143^{\circ} 29.18^{\prime} \mathrm{E} \\ & \text { April } 2-8,1973 \\ & 4217 \mathrm{~m} \quad\left(13,836^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { F93C, 4CTR } \\ & \text { RN } 146 \end{aligned}$	20	18	90	168 m 551^{\prime}	$\begin{aligned} & \text { 64m } \\ & 209 \end{aligned}$	38	$\begin{array}{r} 311 \mathrm{~m} \\ 1,020^{\prime} \end{array}$	T-2, B-4 - cored 15.5 m basalt. Shirttail wear.

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT	CORES			TOTAL AMOUNT CORED				REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S / N	$\begin{aligned} & \frac{n}{0} \\ & E \\ & \pm \\ & \frac{ \pm}{4} \end{aligned}$							
283	$\begin{aligned} & 43^{\circ} 54.60^{\prime} \mathrm{S} \quad 154^{\circ} 16.96^{\prime} \mathrm{E} \\ & \text { April } 8-12,1973 \\ & 4766 \mathrm{~m} \quad\left(15,637^{\prime}\right) \end{aligned}$	$\begin{aligned} & \text { 10-1/8 } \\ & \text { Smith } \\ & \text { 93C JS, } 3 \text { CTR } \\ & \text { \#JK191 } \\ & \hline \end{aligned}$	19	19	100	$\begin{aligned} & 156 \mathrm{~m} \\ & 512^{\prime} \end{aligned}$	$\begin{gathered} 61 \mathrm{~m} \\ 200^{\prime} \end{gathered}$	39	$\begin{array}{r} 592 \mathrm{~m} \\ 1,942 \end{array}$	
283A	$\begin{aligned} & 43^{\circ} 54.60^{\prime} \mathrm{S} \quad 154^{\circ} 16.96^{\prime} \mathrm{E} \\ & \text { April } 12-13,1973 \\ & 4755 \mathrm{~m} \quad\left(15,604^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & 93 \mathrm{CJS}, 3 \text { CTR } \\ & \text { \#JK191 } \\ & \hline \end{aligned}$	2	2	100	11 m 35^{\prime}	$11 \mathrm{~m}$ 35^{\prime}	96	$\begin{aligned} & 21 \mathrm{~m} \\ & 72^{\prime} \end{aligned}$	T-1, B-1 - cored 3.5 m basalt. For rerun.
284	$\begin{aligned} & 40^{\circ} 30.48^{\prime} \mathrm{S} \quad 167^{\circ} 40.81^{\prime} \mathrm{E} \\ & \text { April } 13-16,1973 \\ & 1078 \mathrm{~m} \quad\left(3,5377^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { 93CJS, } 3 \text { CTR } \\ & \text { \#JK191 } \\ & \hline \end{aligned}$	22	21	96	$\begin{aligned} & 208 \mathrm{~m} \\ & 682^{\prime} \end{aligned}$	$167 \mathrm{~m}$ 547	80	208 m 682^{\prime}	
284A	$\begin{aligned} & 40^{\circ} 30.48^{\prime} \mathrm{S} \quad 167^{\circ} 40.81^{\prime} \mathrm{E} \\ & \text { April } 16,1973 \\ & 1078 \mathrm{~m} \quad\left(3,537^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { 93C JS, } 3 \text { CTR } \\ & \text { \#JK191 } \end{aligned}$	3	3	100	$\begin{aligned} & 29 \mathrm{~m} \\ & 95^{\prime} \end{aligned}$	$\begin{aligned} & 22 \mathrm{~m} \\ & 72^{\prime} \end{aligned}$	79	$\begin{gathered} 75 \mathrm{~m} \\ 246^{\prime} \end{gathered}$	Suitable for rerun.

140

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT		CORES		TOTAL	UNT CORED			REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S/N								
285	$26^{\circ} 49.16^{\prime} \mathrm{S} \quad 175^{\circ} 48.24^{\prime} \mathrm{E}$ April 29-May 1, 1973 4674 m ($15,335^{\prime}$)	$\begin{aligned} & 10-1 / 2 \\ & \text { Smith } \\ & \text { F94C, } 3 \text { CTR } \\ & { }^{\text {KKK } 989} \end{aligned}$	5	5	100	$\begin{aligned} & 46 \mathrm{~m} \\ & 150^{\prime} \end{aligned}$	$\begin{gathered} 42 \mathrm{~m} \\ 138^{\prime} \end{gathered}$	93	$\begin{gathered} 93 \mathrm{~m} \\ 305 \end{gathered}$	Rerun - lost in hole. Little or no rotation.
285A	$\begin{aligned} & 26^{\circ} 49.16^{\prime} \mathrm{S} \quad 175^{\circ} 48.24^{\prime} \mathrm{E} \\ & \text { May } 2-4,1973 \\ & 4674 \mathrm{~m} \quad\left(15,335^{\prime}\right) \end{aligned}$	$\begin{aligned} & \text { 10-1/8 } \\ & \text { Smith } \\ & \text { F94C, } 3 \text { CTR } \\ & \text { \#KN103 } \end{aligned}$	10	10	100	$\begin{gathered} 86 \mathrm{~m} \\ 282^{\prime} \end{gathered}$	$\begin{gathered} 47 \mathrm{~m} \\ 154^{\prime} \end{gathered}$	55	$\begin{array}{r} 584 \mathrm{~m} \\ 1,916 \end{array}$	Lost one cone - remaining 2 cones tight. Many inserts broken.
286	16³1.92'S $166^{\circ} 22.18^{\prime} \mathrm{E}$ May 7-11, 1973 4484 m ($14,712^{\prime}$)	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { F94C, } 3 \text { CTR } \\ & \text { \#KNi02 } \end{aligned}$	41	41	100	$\begin{gathered} 383 \mathrm{~m} \\ 1,257^{\prime} \end{gathered}$	$\begin{aligned} & 170 \mathrm{~m} \\ & 557^{\prime} \end{aligned}$	45	$\begin{array}{r} 706 \mathrm{~m} \\ 2,316^{\prime} \end{array}$	$\mathrm{T}-1, \mathrm{~B}-8,10 \mathrm{BT}, 1 / 2^{\prime \prime} \mathrm{OG}$ Seal gone on two cones. Balls nearly gone on one cone.
287	$\begin{aligned} & 13^{\circ} 54.67^{\prime} \mathrm{S} \quad 153^{\circ} 15.93^{\prime} \mathrm{E} \\ & \text { May } 15-17,1973 \\ & 4654 \mathrm{~m} \quad\left(15,270^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { 94C JS, } 3 \text { CTR } \\ & \text { \# JZ244 } \end{aligned}$	18	18	100	$\begin{aligned} & 157 \mathrm{~m} \\ & 515^{\prime} \end{aligned}$	$\begin{gathered} 72 \mathrm{~m} \\ 236^{\prime} \end{gathered}$	46	$\begin{aligned} & 252 \mathrm{~m} \\ & 827 \end{aligned}$	$T-1, B-4,1 / 8^{\prime \prime} O G$ Seal gone on one cone. No broken teeth.
288	$\begin{aligned} & 5^{\circ} 58.3^{\prime} \mathrm{S} \quad 161^{\circ} 49.57^{\prime} \mathrm{E} \\ & \text { May } 21-22,1973 \\ & 3030 \mathrm{~m} \quad\left(9,941^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & 94 \mathrm{C} J \mathrm{~S}, 3 \mathrm{CTR} \\ & \text { \#JZ244 } \end{aligned}$	11	11	100	$98 \mathrm{~m}$ י122	$50 \mathrm{~m}$ 164^{\prime}	51	$\begin{aligned} & 238 \\ & 781^{\prime} \end{aligned}$	Rerun - T-1, B-4, 1/8" OG Seal gone on one cone. No broken teeth.
288A	$\begin{aligned} & 5^{\circ} 58.3^{\prime} \mathrm{S} \quad 161^{\circ} 49.57^{\prime} \mathrm{E} \\ & \text { May } 22-28,1973 \\ & 3030 \mathrm{~m} \quad\left(9,941^{\prime}\right) \end{aligned}$	$\begin{aligned} & \text { 10-1/8 } \\ & \text { Smith } \\ & \text { FS9C, } 4 \text { CTR } \\ & \text { \# JS521 } \end{aligned}$	30	29	97	$\begin{aligned} & 285 \mathrm{~m} \\ & 935^{\prime} \end{aligned}$	$\begin{aligned} & 61 \mathrm{~m} \\ & 200^{\prime} \end{aligned}$	22	$\begin{array}{r} 989 \mathrm{~m} \\ 3,245^{\prime} \end{array}$	T-2, B-8, 16 BT, 1/16" OG Two seals gone.

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT		CORES		TOTAL AMOUNT CORED				REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S/N	$\begin{aligned} & \text { n } \\ & \frac{0}{E} \\ & \frac{9}{4} \\ & \frac{1}{4} \end{aligned}$							
288A	$\begin{aligned} & 5^{\circ} 58.3^{\prime} \mathrm{S} \quad 161^{\circ} 49.57^{\prime} \mathrm{E} \\ & \text { May } 22-29,1973 \\ & 3030 \mathrm{~m} \quad\left(9,941^{\prime}\right) \end{aligned}$	$\begin{aligned} & \text { 10-1/8 } \\ & \text { Smith } \\ & \text { FS9C, } 4 \text { CTR } \\ & \text { \# } J S 522 \end{aligned}$	0	0	0	0	0	0	0	T-2, B-4, 1/16" OG - all bearings.
288B	$\begin{aligned} & 5^{\circ} 58.3^{\prime} \mathrm{S} \quad 161^{\circ} 49.57^{\prime} \mathrm{E} \\ & \text { May } 29,1973 \\ & 3030 \mathrm{~m} \quad\left(9,941^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & 9 \mathrm{C}, 4 \mathrm{CTR} \\ & \text { \#KC071 } \end{aligned}$	1	1	100	$\begin{gathered} 3 \mathrm{~m} \\ 10^{\prime} \end{gathered}$	$\begin{gathered} 3 \mathrm{~m} \\ 10^{\prime} \end{gathered}$	97	$\begin{gathered} 3 \mathrm{~m} \\ 10^{\prime} \end{gathered}$	As new - side tracks hole in soft ooze.
288 C	$\begin{aligned} & 5^{\circ} 58.3^{\prime} \mathrm{S} \quad 161^{\circ} 49.57^{\prime} \mathrm{E} \\ & \text { May } 30,1973 \\ & 3030 \mathrm{~m} \quad\left(9,941^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & 9 \mathrm{C}, 4 \mathrm{CTR} \\ & \text { \#KC071 } \end{aligned}$	1	0	0	$\begin{gathered} 5 \mathrm{~m} \\ 16^{\prime} \end{gathered}$	$\begin{gathered} 5 \mathrm{~m} \\ 16^{\prime} \end{gathered}$	100	$\begin{gathered} 5 m \\ 16^{\prime} \end{gathered}$	As new - side tracks hole in soft ooze.
289	$00^{\circ} 29.92^{\prime} \mathrm{S} \quad 158^{\circ} 30.69^{\prime} \mathrm{E}$ May 31-June 8, 1973 2224 m (7,297)	$\begin{aligned} & \text { 10-1/8 } \\ & \text { Smith } \\ & \text { 94C JS, } 4 \text { CTR } \\ & \text { \#JZ248 } \end{aligned}$	133	133	100	$1271 \mathrm{~m}$ $4,170^{\prime}$	$\begin{array}{r} 713 \mathrm{~m} \\ 2,339 \mathrm{r} \end{array}$	56	$\begin{aligned} & 1271 \mathrm{~m} \\ & 4,170 \end{aligned}$	$T-4, B-8, I G$ Many broken teeth. Two cones had begun skid.

HOLE NO.	POSITION	CORE BIT	CORES			TOTAL A	UNT CORE			REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S/N								
290	$\begin{aligned} & 17^{\circ} 44.85^{\prime} \mathrm{N} \quad 133^{\circ} 28.08^{\prime} \mathrm{E} \\ & \text { June } 18-20,1973 \\ & 6057 \mathrm{~m} \quad\left(19,873^{\prime}\right) \end{aligned}$	$10-1 / 8$ Smith-Sealed Bearing F93C, 3 CTR \#KN304	9	8	89	$\begin{gathered} 80 \mathrm{~m} \\ 262^{\prime} \end{gathered}$	$\begin{gathered} 39 \mathrm{~m} \\ 128^{\prime} \end{gathered}$	49	$\begin{aligned} & 255 m \\ & 837 \end{aligned}$	Core throat bent. Evidence of tooth interference. Six teeth missing several cracked and chipped. Ports plugged.
290A	$17^{\circ} 45.05^{\prime} \mathrm{N} \quad 133^{\circ} 28.44^{\prime} \mathrm{E}$ June 20-21, 1973 $6057 \mathrm{~m}\left(19,873^{\prime}\right)$	$10-1 / 8$ Smith-Sealed Bearing $\text { F93C, } 3 \text { CTR }$ \#KN304	2	1	50	$\begin{aligned} & 19 \mathrm{~m} \\ & 62^{\prime} \end{aligned}$	$\begin{aligned} & 2 \mathrm{~m} \\ & 7 \end{aligned}$	10	$\begin{aligned} & 140 \mathrm{~m} \\ & 459^{\prime} \end{aligned}$	T-3, B-8 Stabilizer hard facing worn.
291	$\begin{aligned} & 12^{\circ} 48.43^{\prime} \mathrm{N} \quad 127^{\circ} 49.85^{\prime} \mathrm{E} \\ & \text { June } 23-24,1973 \\ & 5217 \mathrm{~m} \quad\left(17,117^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith-Sealed Bearing } \\ & \text { 94C JS, } 4 \text { CTR } \\ & \text { \#JZ253 } \end{aligned}$	5	5	100	$\begin{gathered} 41 \mathrm{~m} \\ 135^{\prime} \end{gathered}$	$\begin{aligned} & 10 \mathrm{~m} \\ & 32^{\prime} \end{aligned}$	24	$\begin{aligned} & 127 \mathrm{~m} \\ & 417^{\prime} \end{aligned}$	Much scaring on body and stabilizers. Evidence of cones locking on bent core throat. Ports open.
291A	$\begin{aligned} & 12^{\circ} 48.45^{\prime} \mathrm{N} \quad 127^{\circ} 49.98^{\prime} \mathrm{E} \\ & \text { June } 24-25,1973 \\ & 5217 \mathrm{~m} \quad\left(17,117^{\prime}\right) \end{aligned}$	$10-1 / 8$ Smith-Sealed Bearing $94 \text { CJS, } 4 \text { CTR }$ \#JZ253	2	1	50	17 m 56^{\prime}	$\begin{aligned} & 1 \mathrm{~m} \\ & 3^{\prime} \end{aligned}$	9	$\begin{aligned} & 115 \mathrm{~m} \\ & 377 \end{aligned}$	T-2, B-4-in gauge.
292	$15^{\circ} 49.11^{\prime} \mathrm{N} \quad 124^{\circ} 39.05^{\prime} \mathrm{E}$ June 26-30, 1973 2943m ($9,656^{\prime}$)	$\begin{aligned} & \text { 10-1/8 } \\ & \text { Smith-Sealcd Bearing } \\ & \text { F94C, 3 CTR } \\ & \text { \#KNO81 } \\ & \hline \end{aligned}$	47	46	98	$\begin{array}{r} 444 m \\ 1,457 \end{array}$	$\begin{aligned} & 243 \mathrm{~m} \\ & 797 \end{aligned}$	55	$\begin{gathered} 444 \mathrm{~m} \\ 1,457 \end{gathered}$	T-1, B-2 - in gauge
293	$\begin{aligned} & 20^{\circ} 21.25^{\prime} \mathrm{N} \quad 124^{\circ} 05.65^{\prime} \mathrm{E} \\ & \text { July } 1-4,1973 \\ & 5601 \mathrm{~lm} \quad\left(18,376^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith-Sealed Bearing } \\ & \text { F94C, } 3 \text { CTR } \\ & \text { "KN107 } \end{aligned}$	23	20	87	$\begin{aligned} & 203 \mathrm{~m} \\ & 666^{\prime} \end{aligned}$	$\begin{gathered} 79 \mathrm{~m} \\ 259 \end{gathered}$	39	$\begin{array}{r} 564 \mathrm{~m} \\ 1,850^{\prime} \end{array}$	T-8, B-8 - many teeth missing Core throat bent. Shank cracked. Out of gauge. Two ports plugged. Stabilizers worn.

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT		CORES		TOTAL AMOUNT CORED				REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S/N	$\begin{aligned} & \text { n } \\ & \text { E } \\ & \text { O} \\ & \frac{Q}{4} \end{aligned}$							
294	$\begin{aligned} & 22^{\circ} 34.74^{\prime} \mathrm{N} \quad 131^{\circ} 23.13^{\prime} \mathrm{E} \\ & \text { July 6-9, } 1973 \\ & 5784 \mathrm{~m} \quad\left(18,977^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith-Sealed Bearing } \\ & 94 \mathrm{CJS}, 3 \text { CTR } \\ & \text { \# JZ241 } \end{aligned}$	7	6	86	$\begin{gathered} 52 \mathrm{~m} \\ 170^{\prime} \end{gathered}$	$\begin{aligned} & 23 \mathrm{~m} \\ & 75^{\prime} \end{aligned}$	45	$\begin{aligned} & 118 \mathrm{~m} \\ & 387^{\prime} \end{aligned}$	T-1, B-1 - in gauge. One tooth chipped. Bearing and throat in good condition. Ports open - good for rerun.
295	$\begin{aligned} & 22^{\circ} 33.75^{\prime} \mathrm{N} \quad 121^{\circ} 22.04^{\prime} \mathrm{E} \\ & \text { July } 7-8, \quad 1973 \\ & 5802 \mathrm{~m} \quad\left(19,036^{\prime}\right) \end{aligned}$	$10-1 / 8$ Smith-Sealed Bearing $94 \mathrm{CJS}, 3 \mathrm{CTR}$ \#JZ241	3	3	100	$\begin{aligned} & 29 \mathrm{~m} \\ & 95^{\prime} \end{aligned}$	$\begin{aligned} & 20 \mathrm{~m} \\ & 65^{\prime} \end{aligned}$	69	$\begin{aligned} & 158 \mathrm{~m} \\ & 518^{\prime} \end{aligned}$	Core throat shortened prior to running.
296	$\begin{aligned} & 29^{\circ} 20.41^{\prime} \mathrm{N} \quad 133^{\circ} 31.52^{\prime} \mathrm{E} \\ & \text { July } 10-14,1973 \\ & 2920 \mathrm{~m} \quad\left(9,580^{\prime}\right) \end{aligned}$	$10-1 / 8$ Smith-Sealed Bearing $94 \mathrm{CJS}, 3 \mathrm{CTR}$ \#JZ240	65	64	99	$\begin{gathered} 612 \mathrm{~m} \\ 2,008^{\prime} \end{gathered}$	$\begin{array}{r} 312 \mathrm{~m} \\ 1,024^{\prime} \end{array}$	51	$\begin{gathered} 1087 \mathrm{~m} \\ 3,566^{\prime} \end{gathered}$	T-4, B-4 - in gauge. Core throat modified and in good condition. Several inside teeth missing. One port plugged.
297	$\begin{aligned} & 30^{\circ} 52.36^{\prime} \mathrm{N} \quad 134^{\circ} 09.89^{\prime} \mathrm{E} \\ & \text { July } 15-18,1973 \\ & 4458 \mathrm{~m} \quad\left(14,627^{\prime}\right. \end{aligned}$	$\begin{aligned} & \text { 10-1/8 } \\ & \text { Smith-Sealed Bearing } \\ & \text { F94D, } 3 \text { CTR } \\ & \text { \#KNO84 } \\ & \hline \end{aligned}$								T-1, B-1 - in gauge. Core throat modified. Core throat and parts ok. One cone has 14 cracks between T.C. inserts.
297A	$\begin{aligned} & 30^{\circ} 52.36^{\prime} \mathrm{N} \quad 134^{\circ} 09.89^{\prime} \mathrm{E} \\ & \text { July } 18-20,1973 \\ & 4458 \mathrm{~m} \quad\left(14,627^{\prime}\right) \end{aligned}$	$\begin{aligned} & \text { 10-1/8 } \\ & \text { Smith-Sealed Bearing } \\ & \text { F94D, } 3 \text { CTR } \\ & \text { "KNO84 } \end{aligned}$							$\begin{aligned} & 201 \mathrm{~m} \\ & 659{ }^{\prime} \end{aligned}$	
298	$\begin{aligned} & 31^{\circ} 42.93^{\prime} \mathrm{N} \quad 133^{\circ} 36.22^{\prime} \mathrm{E} \\ & \text { July } 19-22,1973 \\ & 4628 \mathrm{~m} \quad\left(15,184^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith-Sealed Bearing } \\ & 94 \mathrm{CJS}, 3 \text { CTR } \\ & \text { \# JZ242 } \end{aligned}$	16	16	100	$\begin{aligned} & 146 \mathrm{~m} \\ & 479 \end{aligned}$	$\begin{gathered} 67 \mathrm{~m} \\ 219^{\prime} \end{gathered}$	46	$\begin{array}{r} 611 \mathrm{~m} \\ 2,005^{\prime} \end{array}$	Core throad modified

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT	CORES			TOTAL A	UNT CORE			REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S/N	$\begin{aligned} & \text { n } \\ & \text { E } \\ & \frac{0}{4} \\ & \frac{0}{4} \end{aligned}$							
298A	$\begin{aligned} & 31^{\circ} 42.93^{\prime} \mathrm{N} \quad 133^{\circ} 36.33^{\prime} \mathrm{E} \\ & \text { July } 22-23,1973 \\ & 4628 \mathrm{~m} \quad\left(15,184^{\prime}\right) \end{aligned}$	$10-1 / 8$ Smith-Sealed Bearing $94 \mathrm{CJS}, 3 \text { CTR }$ \#JZ242	1	1	100	$\begin{aligned} & 10 \mathrm{~m} \\ & 32^{\prime} \end{aligned}$	0.4 m	0	$98 \mathrm{~m}$ 321^{\prime}	Bit lost in hole.
299	$\begin{aligned} & 30^{\circ} 29.69^{\prime} \mathrm{N} \quad 137^{\circ} 39.72^{\prime} \mathrm{E} \\ & \text { July } 26-28,1973 \\ & 2583 \mathrm{~m} \quad\left(8,475^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith-Sealed Bearing } \\ & \text { F94C, 3 CTR } \\ & \text { \#KN106 } \\ & \hline \end{aligned}$	38	36	95	$\begin{gathered} 361 \mathrm{~m} \\ 1,184^{\prime} \end{gathered}$	173m 564^{\prime}	48	$\begin{array}{r} 532 \mathrm{~m} \\ 1,745^{\prime} \end{array}$	T-1, B-1 - in gauge. In good condition. Core throat modified. Suitable for rerun
300	$\begin{aligned} & 41^{\circ} 02.96^{\prime} \mathrm{N} \quad 136^{\circ} 06.30^{\circ} \mathrm{E} \\ & \text { July } 29-30,1973 \\ & 3427 \mathrm{~m} \quad\left(11,244^{\circ}\right) \end{aligned}$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith-Sealed Bearing } \\ & \text { F94C, } 3 \text { CTR } \\ & \text { \#KN } 106 \\ & \hline \end{aligned}$	2	0	0	$\begin{aligned} & 11 \mathrm{~m} \\ & 35^{\prime} \end{aligned}$	0	0	$117 \mathrm{~m}$ 384^{\prime}	T-1, B-1 - in gauge. Core throat modified. Suitable for rerun. Everything in good condition.
301	$41^{\circ} 03.75^{\prime} \mathrm{N} \quad 134^{\circ} 02.86^{\prime} \mathrm{E}$ July 30-August 1, 1973 $3520 \mathrm{~m}\left(11,549^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith-Sealed Bearing } \\ & \text { F94C, } 3 \text { CTR } \\ & \text { \#KN } 106 \end{aligned}$	0	0	0	0	0	0		T-1, B-1 - in gauge. Good for rerun in hole of shallow basement penetration.
302	$40^{\circ} 29.13^{\prime} \mathrm{N} \quad 136^{\circ} 54.01$ ' E August 2-3, 1973 2399m (7,871)	$10-1 / 8$ Smith-Sealed Bearing $\text { F943, } 3 \text { CTR }$ \#KNO85	18	16	89	$\begin{aligned} & 165 \mathrm{~m} \\ & 541^{\prime} \end{aligned}$	$\begin{gathered} 91 \mathrm{~m} \\ 298^{\prime} \end{gathered}$	55	$\begin{array}{r} 532 \mathrm{~m} \\ 1,745^{\prime} \end{array}$	T-1, B-1 - in gauge. Core throat modified. In good condition for rerun.

HOLE $\mathrm{NO} .$	POSITION	CORE BIT		CORES		TOTAL AMOUNT CORED				REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S/N						$\begin{aligned} & \text { ì } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \circ 0 \\ & \circ \circ \end{aligned}$		
303	$\begin{aligned} & 40^{\circ} 48.50^{\prime} \mathrm{N} \quad 154^{\circ} 27.08^{\prime} \mathrm{E} \\ & \text { August } 18-22,1973 \\ & 5625 \mathrm{~m} \quad\left(18,456^{\prime}\right) \end{aligned}$	$10-1 / 8$ Smith F94C, 3 CTR \#KN105	6	4	66	$\begin{gathered} 54 \mathrm{~m} \\ 177^{\prime} \end{gathered}$	$\begin{aligned} & 26 \mathrm{~m} \\ & 85^{\prime} \end{aligned}$	48	$\begin{aligned} & 229 \mathrm{~m} \\ & 751^{\prime} \end{aligned}$	B-1, T-1 - stuck core barrel in drill pipe.
303A	$\begin{aligned} & 40^{\circ} 48.50^{\prime} \mathrm{N} \quad 154^{\circ} 27.08^{\prime} \mathrm{E} \\ & \text { August } 22-24,1973 \\ & 5625 \mathrm{~m} \quad\left(18,456^{\prime}\right) \end{aligned}$	$\begin{aligned} & \text { 10-1/8 } \\ & \text { Smith } \\ & \text { F94C, } 3 \text { CTR } \\ & \text { \#KN } 105 \end{aligned}$	10	8	80	$\begin{aligned} & 820 \mathrm{~m} \\ & 263^{\prime} \end{aligned}$	$\begin{gathered} 6 \mathrm{~m} \\ 19 \end{gathered}$	7	$\begin{aligned} & 293 \mathrm{~m} \\ & 961^{\prime} \end{aligned}$	B-8, T-2 - 7.5 m chert, 8 m basalt.
304	$39^{\circ} 20.27^{\prime} \mathrm{N} \quad 155^{\circ} 04.19^{\prime} \mathrm{E}$ August 24-27, 1973 $5640 \mathrm{~m}\left(18,505^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { F94C, } 4 \text { CTR } \\ & \text { \#PC188 } \end{aligned}$	17	14	82	131 m 430^{\prime}	$\begin{aligned} & 30 \mathrm{~m} \\ & 98^{\prime} \end{aligned}$	23	$347 m$ $1,138^{\prime}$	B-8, T-5 - cored 12m basalt. Two cones were locked.
305	$\begin{aligned} & 32^{\circ} 00.13^{\prime} \mathrm{N} \quad 157^{\circ} 51.00^{\prime} \mathrm{E} \\ & \text { August } 29-\text { September 3, } 1973 \\ & 2921 \mathrm{~m} \quad\left(9,584^{\prime}\right) \end{aligned}$	$\begin{aligned} & \text { 10-1/8 } \\ & \text { Smith } \\ & \text { F94C, } 4 \text { CTR } \\ & \text { \#PCl } 88 \end{aligned}$	58	48	82	$\begin{array}{r} 631 \mathrm{~m} \\ 2,070^{\prime} \end{array}$	$211 \mathrm{~m}$ 689^{\prime}	33	$\begin{array}{r} 641 \mathrm{~m} \\ 2,103^{\prime} \end{array}$	B-8, T-8 - penetrated 450 m chert. Left 2 cones and one shank in hole.
306	$30^{\circ} 52.02^{\prime} \mathrm{N} \quad 158^{\circ} 28.71$ ' E September 3-8, 1973 $3416 \mathrm{~m}\left(11,208^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & 9 \mathrm{C}, 4 \mathrm{CTR} \\ & \text { \#KC071 } \end{aligned}$	43	39	90	$\begin{array}{r} 381 \mathrm{~m} \\ 1,250^{\prime} \end{array}$	$\begin{aligned} & 27 \mathrm{~m} \\ & 88^{\prime} \end{aligned}$	7	$\begin{array}{r} 475 \mathrm{~m} \\ 1,558^{\prime} \end{array}$	B-8, T-8 - drilled 470 m chert streaks. Left 4 cones in hole.
307	$28^{\circ} 35.26^{\circ} \mathrm{N} \quad 161^{\circ} 00.28^{\prime} \mathrm{E}$ September 9-13, 1973 $5708 \mathrm{~m}\left(18,728^{\prime}\right)$	$\begin{aligned} & \text { 10-1/8 } \\ & \text { Smith } \\ & \text { F94C, } 4 \text { CTR } \\ & \text { \#PC203 } \end{aligned}$	13	13	100	111 m 364^{\prime}	$\begin{aligned} & 19 \mathrm{~m} \\ & 62^{\prime} \end{aligned}$	18	$\begin{aligned} & 317 \mathrm{~m} \\ & 1,040^{\prime} \end{aligned}$	B-4, T-7-275m chert. 7m basalt. Inside teeth broken.

$\begin{aligned} & \text { HOLE } \\ & \text { NO. } \end{aligned}$	POSITION	CORE BIT		CORES		TOTAL AMOUNT CORED				REMARKS
	Latitude/Longitude Dates of Operation Water Depth - Meters (Ft)	Size Make Type S/N								
308	$34^{\circ} 58.94^{\prime} \mathrm{N} \quad 172^{\circ} 08.98^{\prime} \mathrm{E}$ September 16-17, 1973 $1346 \mathrm{~m}\left(4,416^{\prime}\right)$	$\begin{aligned} & \text { 10-1/8 } \\ & \text { Smith } \\ & \text { F94C, } 4 \text { CTR } \\ & \text { \#PC189 } \end{aligned}$	5	4	80	$\begin{gathered} 31 \mathrm{~m} \\ 102 \end{gathered}$	$\begin{gathered} 7 \mathrm{~m} \\ 23^{\prime} \end{gathered}$	24	$\begin{gathered} 69 \mathrm{~m} \\ 226^{\prime} \end{gathered}$	B-1, T-1 - same as new.
309	$34^{\circ} 54.32^{\prime} \mathrm{N} \quad 171^{\circ} 33.67^{\prime} \mathrm{E}$ September 17-18, 1973 $1470 \mathrm{~m}\left(4,823^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { F94C, } 4 \text { CTR } \\ & \text { \#PC189 } \end{aligned}$	1	0	0	$\begin{aligned} & 2 \mathrm{~m} \\ & 7 \end{aligned}$	0	0	$12 \mathrm{~m}$ 39^{\prime}	Broke bottomhole assembly. Bit lost in hole.
310	$36^{\circ} 52.15^{\prime} \mathrm{N} \quad 176^{\circ} 54.06^{\prime} \mathrm{E}$ September 20-21, 1973 3524 m ($11,562^{\prime}$)	$\begin{aligned} & \text { 10-1/8 } \\ & \text { Smith } \\ & \text { F94C, } 4 \text { CTR } \\ & \text { "PC } 192 \\ & \hline \end{aligned}$	21	21	100	194^{\prime} 636^{\prime}	$\begin{aligned} & 146^{\prime} \\ & 479 \end{aligned}$	75	$\begin{gathered} 94 \mathrm{~m} \\ 308^{\prime} \end{gathered}$	Cleared mudline. Wait on weather.
310A	$36^{\circ} 52.15^{\prime} \mathrm{N} \quad 176^{\circ} 54.0^{\circ} \mathrm{E}$ September 23-24, 1973 $3524 \mathrm{~m}\left(11,562^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { F94C, } 4 \text { CTR } \\ & \text { \#PC192 } \end{aligned}$	18	20	95	164m 538^{\prime}	$\begin{aligned} & 28 \mathrm{~m} \\ & 92^{\prime} \end{aligned}$	16	$\begin{array}{r} 353 \mathrm{~m} \\ 1,158^{\prime} \end{array}$	
311	28007.06'N $\quad 179^{\circ} 44.25^{\prime} \mathrm{E}$ September 27-28, 1973 $5280 \mathrm{~m}\left(17,324^{\prime}\right)$	$\begin{aligned} & \text { 10-1/8 } \\ & \text { Smith } \\ & \text { F94C, } 4 \text { CTR } \\ & \text { \#PC } 191 \\ & \hline \end{aligned}$	5	5	100	$\begin{gathered} 37 \mathrm{~m} \\ 121 \end{gathered}$	$\begin{aligned} & 19 \mathrm{~m} \\ & 62^{\prime} \end{aligned}$	51	$\begin{gathered} 46 \mathrm{~m} \\ 151^{\prime} \end{gathered}$	Lost in hole.
312	$25^{\circ} 34.70^{\prime} \mathrm{N} \quad 178^{\circ} 08.00^{\prime} \mathrm{W}$ September 29-30, 1973 $5355 \mathrm{~m}\left(17,570^{\prime}\right)$	$\begin{aligned} & 10-1 / 8 \\ & \text { Smith } \\ & \text { F94C, } 4 \text { CTR } \\ & \text { "PC } 187 \end{aligned}$	0	0	0	0	0	0	0	Bad weather. Hole was not drilled.

CORE BIT SUMMARY - LEG 32

/148

