INTERNATIONAL PHASE OF OCEAN DRILLING (IPOD) DEEP SEA DRILLING PROJECT DEVELOPMENT ENGINEERING TECHNICAL REPORT NO. 12

DESIGN AND OPERATION OF THE HYDRAULIC PISTON CORER

SCRIPPS INSTITUTION OF OCEANOGRAPHY UNIVERSITY OF CALIFORNIA AT SAN DIEGO CONTRACT NSF C-482 PRIME CONTRACTOR : THE REGENTS, UNIVERSITY OF CALIFORNIA

DISCLAIMER

This report was prepared by the Deep Sea Drilling Project, University of California, San Diego as an account of work sponsored by the United States Government's National Science Foundation. Neither the University nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

THE COVER PICTURE

The two cores shown on the cover are from Leg 64, The Guymas Basin. Both cores recovered Quaternary sediments, and despite the great difference in degree of disturbance, the shipboard party concluded that the upper 152 m is duplicated in the two holes. The following is an excerpt from the shipboard core descriptions:

Site 479, Core 12	Cored Interval:	98 to 107.5 m sub-bottom
		100% recovery

"Uniform, moderate olive brown (5Y 4/4) muddy diatomaceous ooze, and rare streaks of lighter pale olive (10Y 6/2). Any bedding has been totally disturbed. No evidence of varves, sand or H_2S gas."

Site 480, Core 20 Cored Interval: 95 to 99.5 m sub-bottom 99% recovery

"Moderate olive brown (5Y 4/4) muddy diatomaceous ooze and pale olive (10Y 6/2) diatomaceous ooze laminae occur together as varve-like couplets on a mm-scale. A gray sand layer occurs with a discordant, sharp contact against the varves, but shows no grading. Unconformities and some cross-bedding observed in the varved section."

Core 12, Site 479 was taken using conventional rotary drilling technique. Core 20, Site 480 was taken using the Hydraulic Piston Corer (HPC-15).

> (Excerpt from JOIDES Journal Vol. V, No. 2, June 1979)

TECHNICAL REPORT NO. 12

Prepared for the NATIONAL SCIENCE FOUNDATION National Ocean Sediment Coring Program Under Contract C-482 by the UNIVERSITY OF CALIFORNIA Scripps Institution of Oceanography Prime Contractor for the Project

May 1983

W. A. Nierenberg, Director Scripps Institution of Oceanography M. N. A. Peterson Principal Investigator and Project Manager Deep Sea Drilling Project Scripps Institution of Oceanography

v

INTRODUCTION

This Deep Sea Drilling Project Technical Report No. 12 includes a paper on the design and operation of the Hydraulic Piston Corer authored by M.A. Storms, Wil Nugent and D. H. Cameron. Design analyses and detail drawings are included in an appendix.

The Hydraulic Piston Corer was developed at the Deep Sea Drilling Project in response to a scientific requirement for undisturbed core of the upper unlithified section of the seafloor. Conventional coring practice severely disturbed the soft oozes and clays. The new tool recovered complete and undisturbed cores greatly improving stratigraphic resolution. The device also extended by an order of magnitude, the depth capability of piston coring. Conventional piston and gravity corers were limited to approximately 30 meters of penetration. The hydraulic piston corer, through its repeatable process, has penetrated sediments in excess of 300 meters below the seafloor.

Operational tests of the 4.5 m Hydraulic Piston Corer conducted on Leg 64 (December 1978-January 1979), obtained an almost totally undisturbed and complete section from a 152 meter hole along the Guaymas slope in the central Gulf of California. The Hydraulic Piston Corer fully penetrated sediments with shear strengths of 1200 grams per square centimeter recovering in excess of 80% on most cores. Penetration decreased with increasing sediment stiffness. The maximum shear strength of recovered sediment was 3185 grams per square centimeter.

Beginning with Leg 80 (May 1981-July 1981), an improved coring system, referred to as the Variable Length Hydraulic Piston Corer (VLHPC), was utilized. The VLHPC is capable of recovering cores up to 9.5 m in length. Recovery has averaged more than 93% with some holes achieving 100%. In addition, an absolute core orientation system was added and a capability to measure heat flow in situ.

Piston coring operations are conducted with the wireline remaining attached to the barrel. This saves the time required to pump down the core barrel and makes for a more efficient coring system.

The VLHPC recovers core in a standard butyrate core liner. The core bit used is a special 11.5" O.D. roller cone core bit with a 3.62" core throat. Coring must be discontinued when the sediments become too indurated. The VLHPC system is not designed for drilling and coring in hard rock.

A coring system is under development which will be capable of continuing the penetration on to basement. This coring system, called the Extended Core Barrel (XCB), will be compatible with the VLHPC bottom hole assembly. Thus, the XCB will continue coring from that point at which VLHPC coring operations are halted without necessitating a trip of the drill string.

ACKNOWLEDGEMENTS

The Hydraulic Piston Corer (HPC) was designed and developed by Mr. M. A. Storms of the Deep Sea Drilling Project's development engineering group. The HPC proved to be a highly successful adaptation of rotary coring capability to the taking of high quality piston cores. The concept of a high-speed hydraulic ram/corer powered by rig pump pressure has extended the reach of high quality piston cores from 30 to 300 meters below the seafloor of the deep ocean. This capability is contributing to improved understanding of the earth's past climate and to geologic processes reaching back some 15,000,000 years. Mr. Wil Nugent contributed to the system through mathematical analysis and design. Mr. D. Cameron assisted with fabrication and sea trials of the HPC. Mr. S. T. Serocki, Chief Development Engineer, provided general direction of the work. Overall supervision was by Mr. F. C. MacTernan, Deputy Project Manager.

Innali

M. N. A. Peterson Principal Investigator and Project Manager IPOD/DSDP/SIO

CONTENTS

I	HYDRAULIC PISTON CORING - A NEW ERA IN OCEAN RESEARCH M. A. Storms, W. Nugent, D. Cameron	1
II	HYDRAULIC PISTON CORER - LEG 64 OPERATIONAL REPORT D. Cameron	25
III	APPENDIX A - HYDRAULIC PISTON CORER ANALYSIS	33
	APPENDIX B - HYDRAULIC PISTON CORER ORIFICE ANALYSIS W. Nugent	53
	APPENDIX C - HYDRAULIC PISTON CORER STRUCTURAL ANALYSIS W. Nugent	61
	APPENDIX D - HYDRAULIC PISTON CORER THREADED CONNECTION ANAYLSIS W. Nugent	73
	APPDENDIX E - HYDRAULIC PISTON CORER RETRIEVAL FORCE ALLEVIATION W. Nugent	85
	APPENDIX F - HYDRAULIC PISTON CORER LANDING IMPACT	93
IV	VARIABLE LENGTH HYDRAULIC PISTON CORER PARTS LIST AND ASSEMBLY DRAWINGS	109

HYDRAULIC PISTON CORING LIST OF FIGURES

1.	Hydraulic Piston Corer	11
2.	Hydraulic Piston Corer Performance Curve	12
3.	Scale Model Load Test	13
4.	Stress vs Corer Length	14
5.	Hydraulic Piston Corer Operational Sequences	15
6.	DSDP Hydraulic Piston Corer Test	16
7.	Comparison Photos (Rotary vs HPC)	17
8.	Prediction for 9.5 m Hydraulic Piston Corer	18
9.	Extended Core Barrel	19
10.	HPC/XCB Compatibility	20

LIST OF TABLES

I	Specifications for Clay Products	21
II	HPC Statistical Data (Legs 64-79)	22
III	VLHPC Statistical Data (Legs 80-93)	23

HYDRAULIC PISTON CORING A NEW ERA IN OCEAN RESEARCH

by

M. A. Storms Wil Nugent D. H. Cameron

ABSTRACT

In December of 1978, the Deep Sea Drilling Project, International Phase of Ocean Drilling, deployed the first hydraulically actuated piston corer. This coring system utilized a hydraulic piston principle. Fluid was pumped through the drill pipe, activating a piston driven core barrel which was ejected into the sediment at the rate of approximately 20 feet per second. This extremely high penetration rate effectively decoupled the core barrel from the heave induced vertical motion of the drill string. On completion of each coring operation, the core barrel assembly was retrieved by wireline. The core bit was then "washed" down to the next coring point where the piston coring procedure was repeated. Operational tests conducted in 865 meter water depth during Leg 64 obtained an almost totally undisturbed and complete section from a 152-meter hole along the Guaymas slope in the central Gulf of California. Variations in climate, productivity and circulation for more than 250,000 years were recorded. This paper describes the analysis, design, testing and field operation of the hydraulic Piston Coring System.

Deep Sea Drilling Project

The Deep Sea Drilling Project (DSDP) began coring in August of 1968. Funding and direction was given by the National Science Foundation's (NSF) Ocean Sediment Coring Program. Their mandate was to increase man's knowledge of the earth's development through an ambitious ocean sediment coring program. The Prime Contract for the Project was executed in 1966 between NSF and the University of California (UC) Board of Regents. Scripps Institution of Oceanography, an integral part of the UC system, was to be responsible for management of the Project. Global Marine Inc. (GMI), through a subcontract with Scripps, was to provide the drilling vessel and crew.

Major oceanographic institutions of the United States were called upon to support the proposed drilling program by contributing to the planning of the scientific objectives. The resultant organization became known as "Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES". These institutions for Deep Earth Sampling (JOIDES)". These institutions continue to provide scientific guidance for the drilling effort.

International Phase of Ocean Drilling

Prompted by the vast scientific and technical successes of the first seven years, the Project increased the scope of the coring program to include even deeper penetrations into the ocean floor. International interest in the Project was increasing. Several foreign scientific institutions, excited by past scientific results and confident of future successes, were interested in becoming members of JOIDES. These institutions were willing to contribute financially to the Project in exchange for a greater role in the scientific planning. In 1975, the "International Phase of Ocean Drilling", known as IPOD, was born. IPOD was an initial three-year Deep Crustal coring Program supported both scientifically and financially by the governments of France, Germany Japan, England and Russia.

D/V GLOMAR CHALLENGER

The GLOMAR CHALLENGER, with its unique coring procedures, has long been recognized as a major technical achievement in its own right. The 10,500 metric ton drillship utilizes an advanced on-board computer and dual bow and stern thrusters to dynamically position itself. The CHALLENGER has operated as far north as 76° latitude; as far south as 77° latitude and has the capability to maintain its station in 30-knot winds and 7-10 foot seas. Similar to conventional drillships, the vessel incorporates a 43-meter derrick amid-ship with a hookload capacity of 450 metric tons and can deploy a 7000 m drill string. The CHALLENGER utilizes an automatic pipe racker capable of handling 7,300 meters of 5-inch S-135 drill pipe, and is equipped with a drill pipe heave compensation system.

Most coring operations are conducted in very deep water and all sites are carefully screened to ensure that there is no possibility of encountering gas or hydrocarbons. For these reasons no riser or blow prevention equipment is used. Circulation while coring is provided by two National 1600 mud pumps and consists of seawater without return circulation. Core barrels are retrieved by wireline utilizing a coring winch equipped with up to 7900 m of 6 x 16 wire rope. Well equipped shipboard scientific laboratories are utilized to conduct comprehensive core analyses.

SCIENTIFIC OBJECTIVES

The development of the Hydraulic Piston Corer (HPC) was in response to a basic need in the science community to recover high quality cores, particularly in soft sediments. The upper 200 meters of the sedimentary column were highly disturbed during the rotary drilling process. Attempts at detailed disciplines such as paleoceanography, paleoclimatology, magnetostratigraphy and high resolution stratigraphy were all but impossible. It was apparent that some means to overcome the limitations of rotary drilling in unlithified sediments was required. Piston cores historically have provided a means to distinguish events recorded in sediments as little as one thousand years apart; events that are homogenized by rotary drilling. Oceanographic vessels were routinely taking piston cores of mudline sediments. These "conventional" piston coring systems, however, were limited to just a few tens of meters of the surface material, lacking the capability for any significant penetration.

At the request of the science community, the Deep Sea Drilling Project undertook the development of a wireline retrievable piston coring system. This new coring system was to make use of all the advantages of a "conventional" piston coring system yet be compatible with the GLOMAR CHALLENGER'S coring operation and have the capability to penetrate up to 200 meters below the ocean floor.

PROTOTYPE DESIGN

In responding to the scientific mandate for a CHALLENGER piston corer, a set of design and operational criteria were compiled which would govern the development of this new coring system. The corer was to be operated hydraulically; the driving force for the coring system would be the circulating pumps aboard the GLOMAR CHALLENGER. These pumps would be used to pressure the drill string. When released, the energy would drive the core barrel into the sediment at a high rate of speed (Figure 1). Actuation pressure was limited to the 2800 psi operating pressure of the circulating system. The tool was required to be wireline retrievable through 5" drill pipe with a nominal 4.12 inch inside diameter. Scientific preference dictated the nominal 2.43 inch (6.20 cm) core size.

Several areas of concern were investigated including potential column and bending loads imposed upon the core barrel itself; what lateral support could be expected from the formation and what penetration rate would have to be achieved to effectively decouple vessel motion from the tool during the coring operation.

It was recognized that occasionally the coring instrument would be ejected at a high velocity into sediment with little or no resistance. For this reason a dampening system had to be incorporated at the end of the stroke, to lower impact forces.

The Hydraulic Piston Corer design criteria was based on using equipment and techniques already developed, and proven successful, in deep sea drilling operations aboard the GLOMAR CHALLENGER. In addition, a review of advanced conventional piston coring operations was conducted with particular emphasis on sediment stiffness and shear strengths encountered in these tests. The information on subsurface foundation material densities and shear strengths compiled in DSDP Technical Report No. 9, dated September 9, 1976, was included in this review.

The design objectives were:

- * Assess the friction coefficient of the subsurface material(s) entrained in the Hydraulic Piston Core (HPC) tool, at various penetration velocities, consistent with shipboard pumping capacity.
- * Develop mechanization schemes in support of the HPC design.
- * Prepare a hydraulic analysis, determine orifice sizes, and flow conditions compatible with the pumping system.
- * Establish structural guidelines to ensure safety, repeatability of performance, and fabrication capability using immediately available materials.
- * Implement safeguards such as snubbing to reduce end stroke impact.

* Develop procedures for assembly and handling of the HPC compatible with rig floor operations.

ANALYTICAL ANALYSIS

Frictional resistance to coring was recognized to result from sediment shear, internal drag resistance of material being entrained in the corer tube, choking or overspilling at the leading edge of the tool, and external friction. Efforts were directed to the development of a single constant which could be used to characterize the total resistance. The shipboard rig pump pressure and available annulus area provided the force on the core barrel column. The displacement volume of the rig pump provided the core barrel penetration rate. A discharge orifice controlled the discharge rate of the seawater from the lower chamber, and established the maximum achievable corer barrel penetration rate.

An input force is applied by pressure on the piston. The frictional resistance consisted of mechanical sliding friction and the frictional resistance or drag due to the rate at which the hydraulic piston corer penetrated into the sediment.

The sediment was characterized as an emulsified substance rather than a slurry containing particles of discrete size suspended in a fluid. These sediments could be ooze and/or unlithified bases with shear strengths ranging from 100 to 300 grams per square centimeter. The particle grain size was small, less than 0.5 mm average diameter and greater than 50% seawater saturated.

These conditions were recognized to be outside the bounds of discrete particles, and not absolutely fluidic. The substance was similar to a dough which flows as a homogeneous mass, distinct from a turbulent fluid.

It was essential that the corer penetration velocity be controlled. Too fast a penetration rate could cause structural damage to the corer itself or induce core disturbance such as liquifaction. Too slow a penetration rate would fail to decouple the corer from the drill pipe motion, again inducing excessive core disturbance.

With these restraints in mind a velocity requirement was selected in the range of 20 feet per second and decaying not below ten feet per second during the entire coring operation.

The analysis was based on 2000 psi pump pressure and greater than 350 gallons per minute pump delivery capability to the bottom of the drill string. No allowance for compressibility of fluid was taken into account. Since the pump pressure acting on the annulus produces the coring force, the pump displacement (flow rate) produces the corer velocity. The discharge orifice, required for venting seawater from the lower chamber, was used to control the velocity of the corer. For analytical purposes it was assumed that the upper and lower chamber volumes were approximately equal. The effective pressure which discharges fluid through the orifice then becomes the net pressure, or the force on the annulus less the sediment resistance.

Other pressure losses which may occur at the discharge orifice were not considered in the analysis.

The discharge orifice is important in controlling the rate of corer penetration. For a given pressure and penetration resistance, presuming that sufficient fluid flow is available to maintain the pressure, the corer tube will travel at a velocity dependent upon the volume rate of discharge through the orifice.

The characteristics of flow through an orifice are well defined, but the behavior of the sediment when producing resistance to the force on the corer piston requires some definition, particularly for variations in sediment compaction, geology, and the depth of penetration desired.

Although the various sediment types behave neither as a fluid nor as a series of discrete particles, it was recognized that they do have a common characteristic during coring, that is the frictional or drag resistance, which is dependent upon the equation $\tau = \mu \frac{dv}{dx}$ from which the viscosity (μ) of a homogenous substance may be derived when the shear stress is known.

It was assumed that the sediment was "fractured" at an infinite number of diametrically opposite locations along the circumference of the corer during penetration. Knowledge of the sediment shear strength and density allowed an estimate for a friction coefficient (f). Viscous flow conditions were assumed and the characteristic drag expression $D = \frac{1}{2} pv^2 fX(area)$, where v = penetration velocity and p = the mass density of the sediment, were used to define the drag resistance for each successive foot of core barrel penetration. This analytical approach connected the behavior of the material to be cores with the energy available to operate the hydraulic piston corer and the desired rate of penetration.

The drag term represented the sediment resistance to coring, and was a function of velocity. In this approach a theoretical velocity exists prior to establishing equilibrium between the driving force and the resisting force. When penetration resistance equals the force available the piston corer stops (Figure 2). Using these elementary approaches, the performance characteristics of the HPC have to date been predictable within reasonable limits.

A Fortran program was compiled which provided HPC operating forces and computed the working stress level at the critical sections of the piston corer column. This program enabled input changes to sediment shear strength, hydraulic pressure and/or shear pin release, effective piston area, side hole support, and penetration velocity to simulate actual operational conditions.

The computer generated output showed good correlation with the results from coring operations in sediment with shear strengths up to 1200 g/cm^2 (2457 1b/ft^2). Experience in operation confirmed that the hydraulic piston corer performed well in water depths of 3500 m (11,483 ft), and in sediment shear strengths of 2,513 g/cm² (5,146 1b/ft^2) the piston velocity was reduced to zero. Total stroke indication was not observed, although 3.26 m (10.7 ft) of core was retrieved.

Operational results relating shear strength, hydraulic pressure and the length of core recovered, were used to develop an empirical coefficient; which accounted for the observed increase in resistance to coring, with increase in depth of penetration. These sample data were included in an analysis, which yielded the mean values for shear strength, length of core recovered, and applied pressure during coring.

Figure 2 is a data plot predicting the performance of 4.4 meter coring tool used on Leg 68. A sediment drag coefficient was developed using an expression for a uniform two-dimensional flow, which applies the effects of sediment shear strength and mass density.

STRUCTURAL COLUMN

Deflection of the HPC column, resulting from penetration on sloping faces, or offline impact against rock formation, was included as a constraint and analyzed.

This analytical procedure enabled the stresses to be calculated at critical sections, i.e. thread undercuts, etc., along the corer barrel by predicting the deflection and calculating the bending moment.

Additional analysis and scale model tests were conducted to determine the behavior of the upper shaft and the piston rod, for various lengths of HPC configuration. The corer barrel is unsupported when extended beyond the drill bit, but the upper shaft and the piston rod are constrained against deflection with the drill collar assembly. A moment distribution analysis and a static load test on a scale model (Figure 3) showed good correlation.

The result indicated that the maximum rig pump pressure could be applied on the HPC piston configuration, and that precautions should be taken in instances where hole drift angle or excessive side loads could be encountered. A preliminary computer program was compiled, to generate parametric data relating stress and coring length, to various differential side forces applied midway between the cutting shoe, and the drill bit support on the core barrel. Figure 4 presents the results, which indicate the potential to core into 1200 g/cm sediment and retrieve 30 ft (9.5 m) cores, using core barrels fabricated of 4130 CD steel.

OPERATION

The Hydraulic Piston Corer consists of two basic assemblies. An inner assembly which remains stationary during activation of the tool and an outer assembly, which scopes down along the inner assembly during tool operation (Figure 5).

When the tool is in the closed position (ready to run), shear pins secure the outer assembly to the inner assembly.

The tool is lowered down the drill pipe on the wireline until the top sub lands in a special head sub located in the bottom hole assembly. Circulation is then initiated. As the drill string begins to pressurize, the seals around the top sub effect a seal in the head sub. Pressurized water is directed through the top sub and shaft, and out the lower end of the inner seal sub into the annulus between the inner and outer seal subs.

The pressure increases until the pins shear; then the outer seal sub (attached to the outer assembly) is forced down and away from the inner seal sub (attached to the stationary shaft and piston rod). As the outer body penetrates the mud, the piston head remains stationary, causing the fluid above to be vented to the annulus. At the end of its stroke the inner seal sub, which seals along the outer body, uncovers a set of control orifices drilled through the vent sub body wall. The pressurized fluid can then vent through the orifices to relieve the pressure in the drill string and give the rig floor an indication that the corer has fully stroked. The core barrel is then retrieved, the core bit is washed down to the next coring point, and the sequence begins again.

SHORE BASED TESTING

Prior to field deployment a comprehensive shore based performance test was conducted. The objectives of this test were to verify the mechanical actuation, operation, and structural integrity of the hydraulic piston corer. Variables included sediment shear strength, flow rate, and shear pressure, i.e. that pressure at which the barrel releases and begins to move into the sediment.

Energy for the test system was supplied by a BJ Pacemaker "Duplex" cementing unit. This unit could supply the minimum flow rate of 350 gpm at 2000 psi required for the test.

Four different mixes of clay products were purchased to provide several variations in stiffness for the test. Table I shows the physical properties and compositions of the products used. For ease of handling, the clay was put into standard "Burke" fiber tubes normally used for pouring concrete columns. The tubes used were 12.0" inside diameter by .225" wall (regular) and were 15' in length. To support the Burke tubes during handling, a hanger system was fabricated using 16" casing. This "holder" allowed easy insertion and retrieval of the clay filled tubes into and out of the test hole. The test hole was 46-feet deep and lined with 24-inch diameter casing. The piston corer itself was handled with the aid of a 3-ton electric chain hoist located directly over the hole.

An instrumentation system was developed to determine the average penetration velocity of the tool. A pressure transducer was put in line from the BJ Pacemake pump to the test assembly. Input from the transducer was fed as an analog signal into an 8-channel multiplexed data acquisition system connected to an IBM 1130 computer. Figure 6 shows a typical pressure vs time curve obtained during a full sequence of tool operation. From this curve the shoot off point and end of stroke venting can be taken. Knowing the distance traveled and elapsed time, an average penetration velocity was determined. Test data collected with the instrumentation system compared favorably with the previously calculated theoretical data.

OPERATIONAL SEA TRIALS

Sea Trials were conducted on the Hydraulic Piston Corer in December 1978 and January 1979, during Leg 64. The new tool was run a total of 52 times on three sites in the Guaymas Basin of the Gulf of California.

At Site 480 (water depth 657 m), 32 cores were taken to a subbottom depth of 152 meters with an average of over 80% recovery (well over 90%, if two low recovery cores are excluded). Finely laminated sedimentary sections ranging from soft mud to very firm diatomaceous ooze were recovered virtually undisturbed. The singular success of the HPC on this site is underlined when compared to the poor quality of cores recovered in the upper 100 m through rotary coring at Site 479, only 6.8 km to the southwest (Figure 7). Only two cores had little or no recovery. On several of the lower depth runs the core liners returned cracked or partially collapsed. This is believed to have been caused by pull-out suction created when retrieving the HPC from increasingly stiff sediments. The recovery was still good and undisturbed except for the short lengths of liner collapse.

The supply of shear pins was depleted after the numerous runs at Site 480, so for the 16 runs at Site 481 (water depth 2016 m) new pins were fabricated from 3/16" brass brazing rod. Sixty four per cent of the 52.25 m sedimentary column cored was recovered, although six cores, including the last two, recovered over 90 per cent. The intermittently low and high recovery may have been due either to possible wide variations in the shear strength of the new pins, or in the sediment type (e.g., sandy layers.) The latter seems probable since two of the low recovery intervals were recored with the same results. The sediments recovered were, again, undisturbed. The core liners did not collapse or crack on any of these runs.

Throughout the tests, routine maintenance on the HPC consisted of replacing seals as needed and complete breakdown and redressing between sites. The internal seals could not be inspected routinely but were still operable when replaced between sites. The external top sub packing was lost or damaged quite frequently during the earlier runs, but lasted much longer (10 runs) when the retrieval rate was slowed from 300 meters/min to 100 meters/min. Being one-way seals, they tended to flare out and grab at each tool joint if the HPC was retrieved too quickly.

As the rig crew became familiar with handling the HPC, the turnaround time on deck was trimmed to 20 minutes when using a single lower core barrel section. It would have been even faster had they been able to alternate between two lower sections, but one was lost on Site 477A. The time between cores still was only slightly longer than for standard coring operations.

TECHNICAL IMPROVEMENTS

The objective of developing a capability to recover 9.5 m undisturbed cores through the 13 cm (5-inch) drill pipe was not abandoned. An assemblage of components were designed with the purpose of configuring 9.5 m, 8 m, 6.5 m, 5 m, and 3.5 m hydraulic piston corer units by rearrangement of common elements adapted to a single seal-sub within the drill pipe. This unit, designated as the Variable Length Hydraulic Piston Corer (VLHPC), enables coring to be accomplished over a wide range of sediment formations to the limit of the shipboard rig pumping capacity (Figure 8). To date there has been exceptional success with VLHPC operations. After the initial runs, the drill crew handled the entire operation. The VLHPC does not require extensive redressing between runs, and the turnaround time on deck takes about five minutes. The features of this simplistic design approach have been projected into future designs to develop extended coring capability into stiffer formations.

The available force in deep ocean hydraulic piston coring decreases slightly as the corer barrel extends. In the computer program, the resisting force produced by corer penetration is a function of velocity. When the plot of the product of velocity and effective drag coefficient intersects the curve produced as a function of rig pressure and piston area, the corer stroke is assumed to be arrested. The results from operations have validated the analytic procedure within the range of present usage.

ABSOLUTE CORE ORIENTATION

The ability to recover undisturbed soft cores without rotating led quite naturally to a request from the scientific community to develop a means of preserving the downhole azimuthal orientation of the cores. This has been achieved by "piggybacking" a Kuster single-shot survey instrument onto the VLHPC. The Kuster tool is actually incorporated into the sinker bar string which latches onto the VLHPC Top Sub. The Kuster unit essentially consists of a transparent compass and reference line overlaying a film disc, a battery operated delay timer, a magnetic sensor, and a light source. An orientation line on the core liner is aligned with the reference line within the Kuster unit. When the VLHPC is landed in the drill string, the Kuster tool is positioned within a special non-magnetic drill collar. The sensor detects the change in the magnetic field and activates the delay timer which, in turn, activates the light source to take a picture of the compass and reference line. The film is later developed to reveal the angle between magnetic north and the reference line.

OPERATIONAL PERFORMANCE

The original version of the Hydraulic Piston Corer (HPC) was successfully operated aboard the D/V GLOMAR CHALLENGER from December 1978 until May 1981. Its successful performance immediately led to the development of its successor, the Variable Length Hydraulic Piston Corer (VLHPC). This highly improved version has now been deployed in the field for over a year with impressive scientific results. Statistical data for both versions of the HPC can be found in Tables II and III. The application of this new coring technology to the field of earth sciences has unquestionably been a success. Expansion to areas such as geotechnical research and engineering may have even wider reaching ramifications.

Efforts are now underway to develop a coring system which can take over when the HPC system has reached its limitations. This "extended" core barrel (XCB) shown in Figure 9, will be designed to drill down to and into basement, without requiring a pipe trip or change of the HPC bottom hole assembly. The compatibility of these two coring systems is shown in Figure 10.

SCIENTIFIC REWARDS

The Deep Sea Drilling Project (DSDP) Hydraulic Piston Corer (HPC) was developed in response to a major scientific need to recover undisturbed cores from the deep ocean. The technical success of the HPC quite naturally led to an improved successor known as the Variable Length Hydraulic Piston Corer (VLHPC). Hydraulic Piston Coring has been in operation aboard the GLOMAR CHALLENGER for over four years. The scientific rewards are too numerous to mention. DSDP expeditions centering around the use of the hydraulic piston corer have proven to be major successes. The routine recovery of complete geological sections with little or no disturbance has given rise to many new disciplines within the field of marine geology. These new or expanded fields of study are enabling earth scientists to make quantum leaps in their understanding of the earth and its oceans. The potential of this new technology and its contribution to the advancement of earth science research will probably not be fully determined for many years to come.

FROUDE SCALING SCALE FACTOR $\delta = 11$ FORCE FULL SCALE = δ^3 MODEL SCALE = 12.5 (11)³ AXIAL FORCE = 16,637.5 LB NO SIDE FORCE

ni.

STRESS VS CORER LENGTH

Figure 4

CORER LENGTH x 10-2 INCHES

DEEP SEA DRILLING PROJECT HYDRAULIC PISTON CORER (VLHPC)

D. S. D. P. HYDRAULIC PISTON CORER TEST

MEDIUM CLAY

HOLE: 480 CORED INTERVAL: 95-99.5 m

DEEP SEA DRILLING PROJECT

BOTTOM HOLE ASSEMBLY COMPATABILITY HYDRAULIC PISTON CORER / EXTENDED CORE BARREL

TABLE I

	240						1				
NCSD Batch No.	J. Clay Batch No.	Bentonite	<u>Materia</u> Feldspar	l in P Gal	ounds Clay	Batch Weight 1bs	Initial Penetrometer Reading (clay only)	Force ⁽¹⁾ Extract	Piston ⁽²⁾ Pressure Required	Hydraulic ⁽³⁾ Horsepower	K/SF Shear Strength
1	FBI	. 96	384	72		1080		<400	<73	<11	
2	FB2	120	480	68		1166		400	73	11	.03
3	FB3	144	576	63		1245		1100	200	30	.08
4	FB4	168	793	57		1435		2200	400	60	.16
5*	B4	Clay	Soft		1250	1200	4.25-4.75	3000	545	82	.22
6*	B3	Clay	Soft		1250	1200	4.25-7.75	3000	545	82	.22
7*	B2	Clay	Medium	<u></u>	1250	1200	6.15-6.5	8000	1455	218	
8*	BI	Clay	Stiff		1250	1200	9.25-9.75	12000	2182	327	.9

SPECIFICATIONS FOR CLAY PRODUCTS DSDP PISTON CORE TEST MATERIAL

* Indicates J. Clay Co. product mix

 Excludes weight of barrel estimated at approximately 600 lbs dynamic force during coring likely will exceed steady pull out force; force is 15 ft stroke.

(2) Based on force to extract

(3) Not dynamic, based on 257 GPM (15 ft/sec)

NOTES: Annular piston cylinder volume per 15 ft stroke = 4.3 gal Each batch yields approximately 12 cu ft.

TABLE II

HYDRAULIC PISTON CORE RECORD (LEG 64-79)

	and the second											
DESCRIPTION	64	66	68	69	70	71	72	73	74	75	76	79
Number of Sites	- 3	1	1	1	4	2	4	6	3	2	2	1
Number of Holes	3	1	7	1	10	2	5	8	5	4	2	1
Number of Cores	43	11	259	54	85	54	118	203	136	230	50	12
Total Meters Cored	204	52	1012	227	325	229	488	1778	586	922	244	39
Total Meters Recovered	155	30	787	175	304	206	413	686	522	816	194	37
Per Cent Recovery	76	58	78	78	94	90	85	88	89.	88	. 79	94
Max Penetration Depth	152	71	235	237	40	151	183	194	286	291	168	39
Max Shear (g/cm ²)	1160	.1922	3185	1670	319	99	1577	3418	162	2076	635	
List of Holes	477B	492	502	504	506	512	515A	519	525B	530B	533	544B
	480		502A		506B	514	516		526	532	534A	
	481		502B		506C		51.6A	520A	526A	532A		
			592C		506D		517	521	526B	533	5 (9.6	
			503		507D		518	521A	528			
	÷		503A		507F	83		522	а а			
			503B		507H			522A				
			***		508		×	523				
					509			524		•		
					509B							

NOTE: HPC not used on Legs 65, 67, 77, 78,

4

Shear not measured on Leg 79,

			VARIABLE LENG	TH HYDRAUL	IC PISTON COR	E RECORD (LEG	80-93)				
DESCRIPTION	80	81	82	85	86	87	89	90	91	92	93
Number of Sites	2	2	1	4	5	1	1	7	1	6	1
Number of Holes	2	2	. 1	13	10	3	3	12	3	11	1
Number of Cores	77	42	16	183	11	49	61	358	7	49	11
Total Meters Cored	407	217	132	1292	938	258	546	3,546	53	346	91
Total Meters Recovered	355	216	124	1206	878	174	531	2,812	47	262	90
Per Cent Recovery	87	100	94	93	93	67	97	79	89	75	99
Max Penetration Depth	211	193	132	206	176	152	305	315	70	55	91
Max Shear (g/cm ²)				700							
List of Holes NOTE: VLHPC not used on Leg Shear not measured on	548 549A gs 83, 84,88 h HPC cores for	552A 553B r Legs 80,	558A 81, 82, 86,	571 572 572A 572B 572C 573 573A 574 574A 575A 575B 575C	576 5768 577 577A 577B 578 579 579A 580	583 583A 583B 583C	586 586A 586B	587 588 588A 588B 588C 589 590 590A 590B 591 591A 591A 591B 592 593	596 596A 596B	597 597A 598 599 599B 600 600A 600B 600C 601 602A	603C

TABLE III

July 1, 1983

HYDRAULIC PISTON CORER (HPC-15) LEG 64

ABSTRACT

The Hydraulic Piston Corer (HPC) was brought aboard on the evening of December 22, 1978 during a mid-cruise personnel/equipment transfer. Fourteen hours later it had its first test. It was operated a total of 51 times on three sites at depths ranging from 675 meters to 2100 meters. The tool proved fully operational, recovering a near continuous section totaling 152 meters of beautifully laminated, undisturbed cores on Site 480.

The HPC does not need extensive redressing between runs; the turnaround time on deck is about 20 minutes (when no seals have to be changed), using and redressing the same core barrel. After the initial runs, the drill crew handled the entire operation.

The one recurring problem was the frequent destruction of top sub packing. Some modifications are suggested to facilitate operation and handling of the tool.

SUMMARY OF TESTS

Details of each run can be obtained from the notes following the report. The intent of this section is to summarize the results of the tests and the problems encountered at each site.

The Cameron relief valve was not used in the system. On the first site (477B), the blowout was not used. The Saunders line stripper packing was considered adequate to maintain pressure up to 3000 psi. The wiper packing blewout on Run No. 3 when the system overpressurized. The blowout preventer was used from then on.

Once the tool was landed in the head sub, the normal activation procedure was to:

1) Close the blowout preventer.

2) Start pumping at 40 SPM. After about 30 seconds, the pressure in the drill string would begin to rise, first slowly, then quickly as the HPC seated.

3) When the pressure reached 1500-1700 psi, a slight deflection on the gauge would signal the driller that the pins has sheared and he would shut off the pump.

4) The pressure would then drop as it escaped through the vent holes which are open at the end of the HPC stroke.

Site 477B

Water Depth - 2020 M Number of Runs - 3 Blowout Preventor - Not Used

At this water depth, the HPC was pumped down on the wireline to approximately 300 meters from the bottom, then lowered the rest of the way with the pumps off.

Run No. 1, the tool seated and activated, but the pressure did not drop afterwards. Later, it was discovered that the piston rod was 10 inches too long, thus at the end of its stroke, the vent holes were not aligned on either side of the outer seal sub and the HPC could not vent. Somewhere along the return trip, the lower core barrel section below the double pin sub backed off and was lost downhole. The threads were not damaged so it is assumed that the connection was not made tight enough.

On Run No. 2, the tool did not seat. Assuming that the lower core barrel from the initial run was still in the pipe, the HPC was retrieved and an unsuccessful fishing attempt was made. Then a regular core barrel, the same length as the HPC, was sent down. It seated so the pipe was thought to be clean.

On the third run, the HPC again did not seat. The pump rate was slowly increased to 60 SPM with gradual pressure rise. Suddenly the tool seated, shot off, and the pressure rose to 3000 psi, at which time the line wiper packing blewout.

The HPC was retrieved and found to have recovered four meters of very soft mud (using the spring leaf catcher). In the catcher was an eight-inch piece of the upper liner support from the missing core barrel. It was neatly sheared in half. When the pipe was pulled, the other half of this piece was found in the outer core barrel. It had been splayed out to the shape of the I.D. of the outer core barrel.

Problems Encountered

1) The top sub ring packing was destroyed or lost on each run. It is suspected that they are destroyed as the tool is pulled back up the pipe, and the lips of the seals snag at the pipe joints (a 1000 pound increase in weight was noted each time a joint was passed until the packing was gone). Each time the HPC was retrieved without pumping and at one half the rate of regular core barrel retrieval.

2) The sectioned piston rod, later found to be ten inches too long, was used for all three runs. After the first run, we replaced the 9-3/4" lower sub with a 15" lower sub to keep the piston head from jamming through the core xatchers. But, as stated earlier, this also caused misalignment of the venting holes in the rod.

3) The piston head packing had to be replaced after the second run.

4) After the first run, great care was taken to torque tight the pin sub/ core barrel connection. Chain tongs were braced against the standing-off section of drill pipe and a 26" pipe wrench with cheater was used to tighten the connection.

5) After the split locking collar is removed and the cap sub connection is broken, it is still very hard to unscrew the cab sub, since the shaft above the connection cannot be kept straight enough to keep it from binding the cap sub. Therefore, the locking collar was not removed after Run No. 2. Tension was ekpt on the top sub via the tugger while unscrewing the cap sub.

6) The 3/8" set screw locks are too soft. They frequently jam in their hole, making it necessary to use an easy out to back them out.

Site 480

Water Depth - 765 M Number of Runs - 32 Blowout Preventor - Used

HPC operation on this site was a total success. One hundred fifty two meters of core were drilled with over 90% recovery. The beautifully varved sedimentary sections, ranging from soft mud to very firm diatomacous ooze, were virtually undisturbed.

Prior to this site, the HPC was totally dismantled and redressed. Both the inner and outer sub seals were worn but still good. They were replaced. There were no damaged parts, but the piston rod was corroded. It was sanded, greased, and stowed away. The outer body was swabbed with solvent and greased on the inside. the HPC was reassembled with the one piece piston rod. The head sub landing surface was filed to smooth the rough edges where the metal had "rolled" slightly.

In an attempt to preserve the top sub packing, the six packing rings were oriented such that they faced each other in sets (i.e., the first ring pointing up; the second pointing down; the third pointing up; etc.). The brass ring was situated between the upper four and lower two packing rings.

To test this configuration, the HPC was run 200 meters down pipe, then retrieved. The lower three packing rings were gone. In order to remove the top connector to change the packing, the eight pins had be sheared (it is impossible to pull them out once they are set). The method used is as follows:

1) Lay down the upper section HPC and unscrew the outer body cap to pull the shaft about a foot out of the outer body.

2) With a sledge and a wedge, force the outer body cap away from the top sub to shear the pins.

3) Slide the outer body cap down the shaft to reveal the set screw locking the top sub to the shaft. The rest is easy.

The packing was replaced in the original configuration and the tool run down the pipe. No pumping was needed in this shallow water.

The first two runs had excellent core recoveries, but the packing was lost each time. On the third run, however, all the packing returned intact. The derrickman had been continually reducing the rate of retrieval, and finally found a slow enough speed to preserve the packing (just under 100 m/min). The packing had to be changed, again, after Runs Nos. 12, 20, and 25.

The piston head "V" packing was changed after Run No. 3. They were replaced with polypaks. The polypaks did not inhibit the tool from scoping together during assembly. This packin g had to be changed, again, after Runs Nos. 12, 25, and 27. On Runs Nos. 3, 25, and 27, the core liner had partially collapsed and cracked. This may have caused the damage to the piston head packing.

Runs Nos. 12 and 13, had low recovery. Each of these runs was also characterized by an absence of pressure relief after tool activation. It was suspected that a sandy layer was keeping the HPC from fully extending during actuation. Some sand was recovered on Run No. 13. The driller washed down 4.75 meters in an attempt to get through the sandy section. Also, the inner and outer seals were changed, though after 13 runs, the old ones still looked OK. On the subsequent runs, the recovery increased and the tool actuated normally.

The core liner returned cracked or partially collapsed after Runs Nos. 3, 21, 24, 25, 28 through 32. This may have been caused by the increasing stiffness of the sediment. The recovery was still good. The liners usually collapsed just above the lower liner support. The cracks were longitudinal and usually at the upper end of the liner.

Site 481

Water Depth - 2016 M Number of Runs - 25 Blowout Preventor - Used

Prior to this site, the HPC was totally dismantled and redressed. The outer sub seals were badly damaged. The "V" packing on the inner seal sub was worn but undamaged. The piston rod was corroded. It was sanded and regreased. We had run out of shear pins, so we made more out of 3/16" brass brazing rod. They worked very well, shearing at a slightly higher pressure 1700-1900 psi).

On this site, the HPC was pumped down (as it was on Site 477B). The first two runs were water cores. The recovery was good on the next three runs. On the sixth run, the recovery dropped to 1.7 meters; the eighth and ninth runs produced zero recovery. Starting with Run No. 5, the pressure did not drop quickly after the pins sheared. The pressure would build up to 2000 psi, but no deflection registered on the pressure gauge. The driller said there was no evidence of a hard or sandy layer. Suspecting that the inner or outer seals were leaking, the HPC was overhauled. Seals were undamaged. Runs Nos. 9 and 10, attempted to recore lost intervals from the two previous runs. No recovery on Run No. 9, and 0.2 meters was recovered on Run No. 10. Recovery picked up to 4.57 meters with Run No. 11. On Run No. 12, the HPC came back with pins unsheared. Runs 13 through 16 had good recovery.

The blowout preventer, which had been in use since the beginning of Site 480, was by this time leaking badly (there was no spare packing). This may have had an effect on the driving force behind the HPC as it sheared, thus inhibiting complete extention and proper venting.

The top sub packing had to be changed after Runs Nos. 4 and 14.

CONCLUSIONS

The HPC was an operational and scientific success.

Advantages

1) Good recovery of undisturbed sediments.

- 2) Relatively fast turnaround time on deck.
- 3) No major tool damage or breakdowns after extensive use.
- 4) Entire operation can be handled by rig crew.

Disadvantages

1) The necessity of using a special large diameter drill bit and head sub for HPC coring requires tripping the pipe to change the bottom hole assembly when piston cores are desired.

2) Top sub ring packing lasts from two to ten runs before becoming lost or damaged. The HPC is retrieved at a very slow speed in order to save the packing. In deep water holes this will be time consuming.

3) When making up the double pin sub/cab sub connection (the lower core barrel section is hung off in the pipe, and the upper HPC section is on the tugger line), a rig hand has to ride up on the harness to hold the shaft straight to keep from binding the threads. This is dangerous when the ship is rolling. If the shaft swings out of his grasp, it can swing back and smash him against the drill pipe.

Suggestions

1. Changing shear pins was the most time consuming phase of the turnaround routine. The pins should be made stronger to reduce the number needed. Also, threaded shear pins should be considered. They would eliminate the necessity of lining up the outer body cap with the shear groove to punch out the used stubs. Eliminating the set screw backers would mean less small parts to keep track of during turnaround operation.
2) Several ratchet drive allen keys and a set of easy outs should be purchased. Also need spares for all of the special assembly tools (i.e., handling clamp, special spanner wrench for outer seal sub).

3) Need a reciprocating seal for the top sub.

4) Several spare upper liner supports should be on hand. These damage easily with rough handling on rig floor.

5) Consider machining pin thread at one end of outer body. This would facilitate installation of inner seal sub without damaging seals. An additional double box sub could be used to make the connection.

6) Use the "V" packing only on the inner seal sub. The piston head works fine with polypak packing. Polypaks were tried on the inner seal sub when the "V" packing spares were depleted, but the increased friction makes it very hard to scope the tool together during assembly.

7) Fabricate a special support plate to hang shaft in pipe so the top sub can be removed to change packing without having to lay down the upper section of the HPC. The existing shear pin groove could be used to hang the shaft, or a new groove could be cut about one foor from the top of the shaft.

8) A method should be devised to keep shaft from binding when the double pin sub/cab sub connection is made up or broken when the HPC is hung off in the pipe.

Non Cameron

APPENDICES

APPENDIX A

HYDRAULIC PISTON CORER.

ANALYSIS

CONTENTS

Problem Statement

Work Done

Discussion

Conclusion

Topics

Giant Piston Corer Comparison

Sediment Resistance to Coring

Shore Test Results of H.P.C. penetrating sediment.

H.P.C. coring velocity and resistance to penetration prediction and comparison with operational results.

Development of empirical approaches for H.P.C. performance in varying sediment shear strength and compaction.

Prepared by.

Wilfred Nugent.

SUBJECT Hydraulic Corer	W. NUGENT	MODEL
ENGINEER.W. Nugent	3/36 GAYLE STREET	REPORT
CHECKER:	SAN DIEGO, CA 92115	DATE Lay 26 1978
1.0 Problem Statem During Deep Se undisturbed co of the coring string,is to b at a pressure thus pressuriz tool piston. F	ent a Drilling operations there is re samples from the drilling s tool 30 ft. long compatible wi e hydraulically actuated by se of 2500 psi and with a flow ra ing the drill string and actin igure 1. presents the details.	a need to take ite. The design th the drill a water pumped te of 350 gpm; g on the corer
 1.1 Objectives. The objectives (a) Fredict the vecorer tool whe (b) Determine the (c) Predict the end (d) Develop shear (e) Predict the lo 	of the analyses is to: locities, column loads and cri n penetrating the sub-surface structural adequacy of the cor d of stroke snubbing and recom pin positioning / latching dev ad to be reacted by the tension	teria for the to depths of 100m. er tool. mend devices ices. n rod.
 Work Done. A review of the Univers Review of t strength. R 	the Giant Piston Corer (GPC) ity of Hawaii. he sub-surface foundation mate eference DSDP Technical Report	test conducted by rial densities and shea No 9 September 1976
 3) Predict fri entrained i consistent 4) Develop mec 5) Prepare hyd clearances 6) Analyze and 7) Conduct str 	ction coefficients for sub-sur nto the the corer tool at vari with the surface pump capacity hanization schemes in support raulic analysis to determine o to ensure an out flow compatib recommend snubbing devices. uctural analysis of critical c	face materials ous velocities of the corer tool desig rifice sizes, diametral le with the pump inflow omponents.
3.0 Discussion The GFC tests acceleration, the mass of ea penetration wa Technical Repo values at comp sub-surface ma were developed the circumfere ocities for th comparison wit	(University of Hawaii letter) and depth of penetration data. ch GPC test, the force develope s calculated. Data from Plates rt no 9 provided soil shear st arable depths of penetration. terial viscosity was made, and using the Reynolds Number of nce of the pipe. This approach e hydraulic coring tool which h the GPC tests.	provided velocity, With knowledge of d during corer 15 and 18 of DSDF rength, and density An estimate of the friction coefficients a plate simulating yielded loads and vel- show favourable
The resistance was calculated penetration.Th $V = \frac{C \perp \alpha}{A^{3}r^{2}} \left(\frac{29}{5}\right)$	(drag) of the material passin by the expression $R = \frac{1}{2} \frac{7 \sqrt{2}f}{\sqrt{2}}$ e resistance in terms of $\sqrt{2}$ wa $\frac{1}{2} \left[F - (4F + R) \right] \frac{1}{2}$ to determine the	g through the pipe per foot s used in the equation corer piston velocity

The procedure yields velocities with reasonable accuracy.

SUBJECT	W. NUGENT	MODEL
SECTION:	7776 6 6	PAGE
ENGINEER	5750 GAYLE STREET	REPORT
CHECKER	SAN DIEGO, CA 92115	DATE:

The loads predicted for the hydraulic corer appear to be 12 per cent higher than anticipated when compared to the GPC data.

4.0 Conclusions.

1) Coring operations 0 to 50 feet below the surface are predicted as follows:

Depth of Penetration Ft.	Column Stress psî	30 Ft.Column Buckling Stress psi	Deflection 30 Ft. Column ins	Safety Nargin
15	1353	2831	1.67	2.08
20	1739	2831	2.17	1.63
25	2077	2831	2.55	1.36
30	2406	2831	3.00	1.17
*30 at 100m.	2602	2831	3.25	1.08

Taking cores greater than 25 ft. in length with the 3.5 inch diameter barrel is not recommended prior to full scale test.Figure 2 presents a plot of the column stress, corer end load, and penetration velocity versus penetration depth.

2) Coring at 100 m. is accomplished by limiting the surface pump pressure to 1000psi and 200 gpm.

3) Orifice Characteristics. 2-0.5 inch diameter orifices below the corer piston, Refer to Figure 1. provide fluid flow out from the core chamber at 410 gpm. This added flow compensates for the release of additional fluid stored during pressurization of the drill string. A diametral clearance not less than .028 inches is required to disharge the fluid from the top side of the corer barrel. Refer to Figure 1.

4) Snubbing is provided by a double stack of Bellville washers .19 thickness (a total of 20) to dissipate 2255 ft lbs which results in 40,000 lb/inch² to be reacted by the tension rod.

5) Shear Pin(s) are provided to retain the corer barrel in the lockshut position during deployment, and to be released under 2000 psi pump pressure

A 0.37 inch diameter single pin is required.

Two pis having 0.213 inch diamer are required as alternatives to one pin. The material 4130 steel HT F_{tu} 125,000 psi with a yield value 109,000 psi is required.

MAY 26 1978.

COMPARISON OF G.P. C TEST Nº4 UNIV. HAWAII

WITH UNIV CAUFORNIA SCRIPPS INST. HYDRAUUC PISTON COREL PROPOSED CONFIGURATION

HYDRAULIC PISTON COILER CASE I

	DIMENSIONS	AREA INZ	AREA FT2
CORER PISTON ANNULUS	(2,88 ID = 1,12 ROD)	5,5	.0382
DRILL COLLAR	4,125	13,364	, 0928

VOLUME OF DRILL STRING 18,000 (,0928) 1670.5 FT3

COMPRESSION OF FRESH WATER , 0065 VOL @ 2000 PS(THEN $\Delta V = 10065$

COMPRESSED VOLUME IN 18000 FT STRING = 10.86 FT³ INCREMENTAL CORER PISTON LOAD (10,86×64.3) = 698,3 INCREASED PISTON PRESSURE 6983 5,5 = 126 PSI EQUIVALENT WATER COLUMN IN DRILL PIPE = 117 FE¹

DATA FROM G.P.G. TEST Nº 4

DISPL, DEPTH	Accer(0)	VELOCITY F.P.S	SHEAR STRU MCCLELLAND DATA J 1B/FT2	$\mathcal{M} = T(\frac{dx}{dv})$
10	0.6	18	50	
20	0.8	20	75	
30	1,1	22	114	
40	1,4	18	152	9.45
50	1.6	16 1	190	1 G

FRICTION ESTIMATE $f = 1.328 \int \frac{4}{P \times x} = 1.328 \int \frac{9.45}{3.85(18)(1.12)} = .463$ A VALUE OF 18 FEET PER SECOND HAS BEEN USED IN 39 THE ESTIMATE FOR THE ANEIZAGE PENETRATION VELOCITY.

SINCE (T' DIAM) OF THE PIPE & 12 IN
D =, 892 V²(PSF) = RESISTANCE PER FOOT LENGTH OF PENETRATION
THE FOLLOWING EXPRESSION IS USED TO RELATE THE PENETRATION
VELOCITY AND THE RESISTANCE OF THE SEDIMENT TO CORING,

$$V = CL^2 \left(\frac{29}{29}\right)^{\frac{1}{2}} \left[RIG PRESSURE - DINAMIC IMPACT PRESSURE
 $= CL^2 \left(\frac{29}{29}\right)^{\frac{1}{2}} \left[\left(\frac{F-UF}{A}\right)^{\frac{1}{2}} - \left[D(PSF)\right]^{\frac{1}{2}} \right]$
WHERE: V = PISTON VELOCITY FPS (TBD)
 $A = PISTON VELOCITY FPS (TBD)$
 $A = PISTON VELOCITY FPS (TBD)$
 $A = PISTON VELOCITY FPS (TBD)$
 $F = FORCE ON PISTON = 11, 000(.8) = 8800LB$
 $h = CEFFICIENT OF SIDING FRICTION = 0.2$
 $G = SEDIMENT MASS DENSITY = 3.86 SLUGS/FT2$
 $a = 02IFICE AREA = 2.2 INDIM = 0.00273 FT2$
 $C_{d} = 02IFICE DISCHARCHE COFFFICIENT = 0.2C2$
 $G = VOLUMETRIC DISCHARCHE = .62(.0073)/212L(M) = 0.9365 FT5$
 $= 448.83(0.9365) = 420.9 pm.$
 $D = RESISTANCE OF THE SEDIMENT (ASSUMED TO BE CONSTANT
FOR LIQUIDIC SEDIMENT (ASSUMENT) ESTIMATION
 $V = .0442C \left[230.400 \right]^2 \left[5(.892) V^2 \right]^{\frac{1}{2}} \right]$
 $= 21.24 - .0935V$
 $= 19.42 FT/SEC$$$$

DYNAMIC PRESSURE (SEDIMENT RESISTANCE TO CORING) $D = \frac{1}{2} P V^2 f$ P.SF. $= 1.925 (.463) V^2 = .892 V^2 PSF$

THE COLUMN LOAD ON THE CORER = $5(,892)V^2$ = 1682 LB.

CORING TO 40 FEET PENETRATION

$$V = .04426 \left[230,400 \right]_{-}^{1/2} \left[40(.892) V^2 \right]_{-}^{1/2}$$

1.

= 16.8 FT/SEC

THE COLUMN LOAD ONTHE CORER = 10,006, LB.

FIGURE 4 SHOWS A PLOT OF THE DATA GENERATED BY THE FIRST TRIAL ANALYSIS.

THESE DATA WERE COMPARED WITH THE RESULTS OF THE GIANT PISTON COREL TESTS Nº 4 AND 5 * ALLOW ADDED MASS AS THE CORE IS TAKEN

G.P.C DATA

VELOCITY (F.P.S)	20	22	18	16
PENETRATION(FT)	10	20	30	40
ACCELERATION (q)	8,	1,1	1,4	1.6
TOTAL MASS (SLUGS) 141		146	152	157 *
RESISTANCE (LBS)	3632	5171	6852	8095
H.P.C. (CASE)	2990	5450	7640	10006

THE RESULTS OF THE H.P.C. FIRST ORDER ANALYSIS COMPARE FAVORABLY WITH THE RESULTS OF THE GIANT PISTON CORER RECORED. TEST CONDITIONS,

FIGURE 5 SHOWS THE RESULT OF A TYPICAL SHORE TEST, WHEN THE H.P.C IN THE OPERATIONAL CONFIGURATION WAS "SHOT" INTO A STIFF CLAY MIX ~ 0.9 K/SF.

FIGURE 4

HYDRAULIC PISTON CORER CASE I

SEDIMENT SHEAR STRENGTH = 152 P.S.F CORER BARREL DIAMETER = 2,88 INCHES 1.D. ORIFICES 2-0.5 INCHES DIAMETER

D. S. D. P. HYDRAULIC PISTON CORER TEST

HYDRAULIC PISTON CORER ANALYSIS

Alternative methods for determining the forces and velocities developed during coring were investigated. One suggestion recommended the use of a friction factor in a Darcy Equation of .08 which was extrapolated from test data obtained from evaluating the characteristic of slurry pumped through a continuous loop.

The approach was as follows:

Head loss = Entrance loss + Friction loss = $\left[0.5 + f.(1/d)\right] V^2/2g$ h

Nomenclature:

h	=	Head loss in feet
f	=	Friction factor
1	=	Length of pipe in feet
d	=	Diameter of pipe in feet
V	=	Velocity of flow (rate of penetration) in feet
Q	=	Flow rate of circulating fluid in gpm.
g	=	Gravitation acceleration in feet/ second ²

The flow was assumed to be laminar

The density of the sediment was taken to be 118 lbs/ft³

$$h = \left[0.5 + 0.08(30/0.24) \right] V^2/64.4$$

From previous shore testing the control of the penetration velocity within the limits of 20 ft/second was achieved. Using this value in the above equation, yields a head loss of 65.22 feet. Expressing pressure as a function of head loss and density, a value of 7696 lbs/ft² is obtained. Let 7696 lbs/Ft² be the corer barrel internal pressure

The friction force on the inner wall = (.753)(30)(7696) = 173,777 Lbs which appears unrealistic, in relation to the test results. This approach was was abandonded in favor of expression

 $= \frac{Cda}{A^{3/2}} \left(\frac{2g}{p}\right)^{1/2} \left[Force - Drag\right]^{1/2}$ V

Operational data from leg 68 indicated that full cores were not retrieved repeatedly in sediment with shear stress in excess of 3000 g/cm². Figure 5 shows the predicted plot of a data sample. CaseI is the mean of ten trials where partial cores were retrieved. Case II represents a condition where 95% of a full core was retrieved. The curves are defined by the law

$$y = a + b x^{\prime\prime}$$

HYDRAULIC PISTON CORING

ESTIMATE OF CORING RESISTANCE FROM OPERATIONS REPORT. LEG No 68

CASE I

MEAN VALUE OF	DATA FROM	CORES No	37	THROUGH	No 47	
Mean Sediment	; Shear Str	ength		2,666	.28	g/cm^2
Mean Corer Re	lease Pres	sure		2,103		p.s.i.
Mean Length c	of Core Rec	overed		2	3114	meters

CASEII

DATA FROM CORE 29Sediment Shear Strength1,170Corer Release Pressure1,650Length of Core Recovered4.43Meters

FIGURE 5

HYDRAULIC PISTON CORER ANALYSIS

Derivation of Coring Depth Exponent Refer to Case I x = 2, y = 5600 $a + b 2^n = 5600$ (1)When x = 4 y = 7800 $a + b 4^n = 7800$ (2)x = 8 y = 9600 $a + b 8^{n_{1}} = 9600$ (3) $b 2^{n} (2^{n} - 1) = 2200$ Subtract (1) from(2) $b 2^{n} 2^{n} (2^{n} - 1) = 1800$ (2) from (3) $2^n = \frac{1800}{2200} = .81818$ n = -.2895 $b = \frac{2200}{2^n(2^n-1)} = -14788$ $a = 5600 - (-14788 \times 2^{-2895})$

 $y = 17700 - 14788 x^{-.2895}$

Applying these principles to the ratio of x_1 , x_2 , x_3 , to L the length of core retrieved.

when x (-L - x)2 1.225 a + b 2ⁿ = 1.225 4 1.583 a + b 4ⁿ = 1.583 8 3.665 a + b 8ⁿ = 3.665 $2^n = -\frac{2.082}{.358} = 5.8156$ n = 2.539 b = 0.01278

 $a = 1.225 - .01278 \times 2^{2.539}$

 $y = 1.151 + 0.0128 x^{2.539}$

A program was compiled to calculate the constants and the exponent for a number of cases. During this process a variable for the effect of sediment shear strength was applied.

HYDRAULIC PISTON CORING.

On Leg 68 10,000 feet of drill string was deployed and pressurized to approximately 3,000 p.s.i. which compressed the water column an equivalent 10 cub. ft. The volume of the corer piston barrel is 0.55 cub. ft. The force on the corer piston is assumed to be constant under these conditions. From shore test results the force available for coring is around 8,500 lb. when friction and orifice control are considered.

The resistance to coring (drag) increased with depth as evidenced from the operations report from Leg 68. An exponent was developed as a depth factor using the expression:

 $y = a + b x^n$

Where $x = The coring depth (x_1...x_2...etc.)$

n = 1.3 + .00044 J

J = The sediment shear stress in g/cm²

a = Constant = 1.3

b = Constant = 0.01

This emperical expression was developed by general determination laws connecting a set of tabular values which yielded a regular curve. The slope of the curve at regular intervals was plotted against the predicted value of the Coring Resistance, to give a straight line. A ratio of L/(L-x) relating the x1..x2.. and the total length of core recovered also yielded a straight line plot, which indicated that $y = a + bx^n$ might be used to provide a solution.

A program was compiled and the results of the extreme conditions reported from Leg 68 are shown.

Sediment 117	0 g/c ^{m2}	Sediment 266	6 g/cm ²
Core 14.9 2.	length	Core 10.864 2.	length
SOLVE FOR .2119337174 .7924478128 3.739130435	М	SOLVE FOR .3571188138 2.210545507 6.189944134	N
SOLVE FOR .0206926793	B B	SOLVE FUR .0111163783	B
SOLVE FOR 1.232411387 1.232411387	Ĥ	SOLVE FOR 1.29444153 1.29444153	H.

Background,

Designs for the Hydraulic Piston Corer (HPC.) were completed in 1978. The performance was predicted on the basis of controlling the penetration velocity between the limits of 20Ft./sec and 10Ft./sec. The available shipboard rig pump pressure and flow were 2500 psi.

and 350 gpm respectively. An expression $V = \frac{C_{da}}{A^{3/2}} \left(\frac{2g}{c}\right)^{\frac{1}{2}} \left[\text{Piston Force - Sediment Drag} \right]^{\frac{1}{2}}$

was used as an initial analytical tool.

Laboratory testing in a deep hole with a uniform sediment showed good co relation between the analysis and test. Operation in stiffer sediments indicated that the resistance to penetration increased exponentially with depth. A second "lump" factor in addition to the drag coefficient was developed by evaluating the operational data, as previously discussed.

The drag values were based on an apparent viscosity, applicable for Ooze and unlithifide sediment, the terms used were:

1 - Y (dx)	Where	7	= Sediment shear strength
4= 1 (20)	c	dx	= the distance between surfaces
	(dv	= the velocity change
	1	4	= viscosity

Substituting these terms in a friction equation where $\sigma = \text{Sediment density}$ $f = 1.328 \left(\frac{1}{\sqrt{2\sigma}} \right)^{\frac{1}{2}}$ $f = 1.328 \left(\frac{1}{\sqrt{2\sigma}} \right)^{\frac{1}{2}}$

is obtained

Relating the friction to Hydrodynamic Drag by $D = \frac{1}{2} \sigma V^2$ f S where S is the surface area. A step function analysis was developed which considered each foot of corer penetration and the circumference of the barrel as a unit area. (3.5N)x each foot of penetration allows the S term to be neglected numerically.

The drag term can be written
$$\frac{1}{2}$$
 (σ) V² 1.328($T/V^{2}\sigma$) $\frac{1}{2}$
which reduces to D = 0.664($J\sigma$) $\frac{1}{2}$ (V)
then V = $\frac{C_{da}}{A}/2$ [Piston Force - 0.664 ($J\sigma$) $\frac{1}{2}$ (V) (D) exp] $\frac{1}{2}$
which is solved as a quadratic in the form of aV^{2} + bV - C = 0
Orifice Parameter-
Drag constant _______
Piston Force _______

Figures 6and 7 are analytical solutions which compare with the results obtained during actual coring operations.

HYDRAULIC PISTON CORER ANALYSIS

NUMERICAL EXAMPLE PREDICTING THE VALUES FOR VELOCITY AND RESISTANCE

CONDITIONS

2,000 psi. 5.5:" (.0382 ft²) Shipboard Rig Operating Pressure P = Annulus Area of the Corer Piston A = (.00273ft²) a = Orifice Area 2-zinch diameter .62 non dimentional Orifice Discharge Coefficient $C_d =$ 2,400 psf. Sediment Shear Stress = 3.65 slugs/ ft² Sediment Mass Density =

The Sediment Resitance = $.664(2400 \times 3.65)^{\frac{1}{2}}$ (V) = 61.7V

Then $V = \frac{.00273 (.62)}{(.0382)3/2} (11000 - 67.7V)^{\frac{1}{2}}$ = .2265 (11000 - 67.7V) $\frac{1}{2}$ 19.49 V^2 = 11000 - 67.7V

Solution of the quadratic by completion of the square

 $19.49 (V^2 + 3.47V - 564.32) = 0$ $v^{2} + 3.47v + (1.737)^{2} = 564.32 + (1.737)^{2}$ + 1.737 = 23.81V V = 22.08 ft/secondAfter one foot penetration The Sediment Resistance to Coring = 67.7(22.08)for the first foot depth = 1494.81 lbs. At a Coring Depth of 10 feet n = $1.3 + (.00044 \times 1200) = 1.828$ = 1.3 + .01 (10) exp 1.828 = 1.973 Exponent У The Sediment Resistance to Coring = $67.7 \times 10^{1.973} (V)$ $19.49 (V^2 + 326V - 564)$ = 0 V + 163.2 = 164.9V = 1.7 Feet/ Second At 10 Feet penetration The Sediment Resistance to Coring = 10,939 Lbs.

APPENDIX B

HYDRAULIC PISTON CORER

ORIFICE ANALYSIS

CONTENTS

Problem Statement

Work Done

Discussion

Conclusions

Topics

Orifice Sizing to control the H.P.C. penetration rate during coring. This control feature enables the recovery of high quality undisturbed cores to be retrieved.

An arrangement of Vent Orifices provides an efficient method for regulating the end of stroke velocity of the H.P.C, and effects a method of snubbing with reduced impact forces.

A data plot shows the decay in velocity vs the H.P.C. travel (snubbing stroke).

Prepared by: Wilfred Nugent.

HYDRAULIC PISTON CORER ORIFICE ANALYSIS

PROBLEM STATEMENT

Velocity control was a prime design factor in the development of the Hydraulic Piston Corer. A method for regulating the rate of penetration of H.P.C. into a variety of sub-surface foundation materials was essential.

The procedure should be accomplished at the assembly or redress of the H.P.C. on the drill deck.

Protection against impact damage as the H.P.C. is scoped out to the full extended length should be provided.

OBJECTIVES.

Modification of the H.P.C. consistent with operation requirements, shear pin release, and related configuration build-up, should be accomplished in the sea state environment, from the drill deck.

WORK DONE.

The velocity control is accomplished by discharging the fluid through an orifice in the Lower Chamber.

The Expression:	V	$= \left(\frac{C_{da}}{A^{3/2}}\right) \left(\frac{2g}{p}\right)^{\frac{1}{2}} \left[\text{Force - Drag} \right]^{\frac{1}{2}}$	
is derived from	v	= C_{da} $2g \frac{P}{Q}$	
The mister Ferres i	a the	muchust of the magging and the anal	_

The piston Force is the product of the pressure and the area. The Drag is a function of the dynamic impact pressure when penetrating the sediment.

The snubbing orifices function to reduce the rate of displacement of the H.P.C. barrel at the end of the end of the stroke, thus alleviating the impact forces.

DISCUSSION

The results of the orifice analysis indicate that the H.P.C. can be equipped with a range of velocity control orifices for both sediment penetration control, and end stroke impact avoidance.

BY LUNAGent DATE 11-30.79	PAGE
CH'KD DATE	TITLE HYDRALILIC
	PISTON CORER
HYDRAULIC PISTON CORER ORIFIC I. CONTROL ORIFICES IN THE UPP BETWEEN THE OUTER BODY & T	ER CHAMBER HE UPPER SHAFT.
2. THE ORIFICES FUNCTION THROUGHO IS, THE COMBINED DISCHARGE R RATE OF PENETRATION. THER ARE SIZED TO PERFORM THAT	ATE CONTROLS THE EFORE THE DRIFICES FUNCTION.
3. SNUBBING ORIFICES LOCATED A TELESCOPING OUTER BODY ABO PISTON ENABLE VELOCITY CONT TO BE ACCO MPLISHED SIMULT. E.G. WHEN THE FIRST HOLE-I BELOW THE PISTON, FLUID DIS UPPER CHAMBER & ABOVE STA PRODUCES DAMPING, THE FIRST BELOW THE PISTON BLEEDS R THE RESULT; REDUCED FORCE O DISPLACEMENT AND REDUCED FROM THE UPPER CHAMBER, REPEATING THIS SEQUENCE WI PROVIDES AN EFFECTIVE CON	AT THE END OF THE DVE THE STATIONARY TROL AND DAMPING ANEOUSLY. N-LINE PASSES SCHARGE FROM THE ATIONARY PISTON, HOLE-IN-LINE NOW IG FLUID & PRESSURE. IN THE PISTON, REDUCED DISCHARGE RATE (REF FIGURE 1) TH 4 OR 5 ORIFICES ITROL DEVICE,
4, THE CONTROL OCCURS AT THE E THE SNUBBING ORIFICES HAV TO REDUCE THE VELOCITY T FROM 46 FT/SECOND WITHIN C	ND OF THE STROKE, VE CAPABILITY 10 15 FT/SECOND G INCHES OF STROKE
5. THE RESULTS OF THE ANALYSIS A	RE SUMMERIZED IN FIG.2
6. ESTIMATE THAT IMPACT FORCE OVER THE LAST 0.5 INCH OF STR KE = 12×400 = 2400 FT L	E CAN BE CONTROLLED LOKE B
FORCE = 60,000 LB.	

FORM NO. 1360-0

BY DATE		PAGE		
		PISTON CORER		
SNUBBING ORIFICE ANALYSIS				
CONDITION: TAKING A CORE IN SEA WATER. PRESSURE = 3000 P.S.I PISTON AREA (ANNULUS) = 5.26IN ² (.03656FT ²) CONTROL ORIFICE = 2×5/3 =.0447 Cd ORIFICE = .62 SLURRY MASS DENSITY 6 = 3.6 SLUGS/FT ² SLURRY SHEAR STRENGTH Y = 100 LB/FT ²				
THEN RESISTANCE TO CORING = $.644 \sqrt{(00\times3.6)} \vee$ SAY = 15V.				
V = 13779[15,78	80 - 15V J 1/2			
$7[V^2+2.14V-2253]=0$				
V2 +2,1	$(4V + (1,07)^2 =$	= 2254,9		
V	+ 1,07 =	4.7,48		
V	_	46.41		
USE 46 FT/SEC AS THE CRITICAL VELOUTY FOR SNUBBING.				
Q = FLOW IN THE CORER BARREL = 46 (.03656).				
	ž	11682 FT3/SEC		
CONSIDER VENTING THE FLOW FROM ABONE THE PISTON TO REPLICE THE VOLUME OF FLOW IN THE CORE BARREL				

FORM NO. 1360-0

BY DATE	PAGE			
CH'KD DATE	TITLE			
SNUBBING ORIFICE ANALY SIS				
PRESSURE	3000 PSI = 432,000 PSF			
PISTON VELOCITY Po	46 FT/SEC			
PISTON ANNULUS AREA A	. 03656 FT2			
DISCHARGE COSFRICIENT CI	162			
Gaa	.0005 FT2			
FLOW RATE IN BARREL Q	V(A)			
INITIAL VELOCITY 46 FT /SEC				
$0 = A((03) = 160 E^{3}/et)$				
- ESTIMATE FOR FLOW THROUGH A 3/BINCH DIA ORIFICE				
$= .0005 [432 \times 10^4 = .3286 \text{ FT}^3/\text{SEC}$				
AFT VELOCITY TUROUS I ODIELSE - 2001 / ADDE - GET ET/SKS				
U = VELOCITY THROUGH ORTFICE = . 3236,0005 - 051 F1/30.				
WHEN THE FIRST VENT 'IS EXPOSE	D BELOW THE STATIONARY PISTON			
$Q = 1.6823286 = 1.353 \text{FT}^3$	SEC			
$V_1 = 1.353 / .03656 = 37. FT/SEC$				
	-			
SOLVE FOR P				
5/ = .068 [- 255]				
$299,082 = P_1 = 2,077 P.S.1$				
WHEN SECOND VENT IS EXPOSED				
$C_{1}a = .001$				
$Q_2 = .001/299082 = .547 FT^3/SEC$				
$V_2 = 1.682 - (i3286 + i547) / .03657$				
= 22.06 FT/SEC				

BY DATE CH'KD DATE		PAGE		
SNUBBING ORIFICE ANALYSIS				
SOLVE FOR P_2 22 = . 136 [P - 330] ^{1/2}				
26497 = P = 184 P.S.1				
WHEN THIRD HOLE IS EXPOSED.				
$C_{da} = .0015$				
$Q_3 = .0015 \sqrt{26497} = .2442 \text{ FT}^3/\text{SEC}$				
$V_3 = 1.686 - (.3286 + .547 + .2442)/.03656$ = 15,37 FT/SEC				
SOLVE FOR P_3 15,37 = .2139 [P - 15(15,37] ^{1/2}				
$5391 = P_3 = 37.43 P.5.1$				
FINAL VENT 4-0.5IN DIA HOLES EXPOSED				
$C_{da} = .0074$				
$Q_4 = .0074\sqrt{5391} = .5433$				
$V_4 = 1.682 - (.3286 + .547 + .2442 + .5433) / .03656 = 0.517 FT/SEC$				

CHART Nº 2

SNUBBING CHARACTERISTICS

CONDITIONIS' BOODPSI RIG PRESSURE CURVE & HPC SHOT DUT IN WATERY SELIMENT CURVE B CORING IN 400 PSF SEDIMENT WITH 15 FT H.P.C.

раях раях на соло. 1951 година

60

1)

APPENDIX C

+ 11

HYDRAULIC PISTON CORER

STRUCTURAL ANALYSIS

CONTENTS

Problem Statement

Work Done

Discussion

Conclusion

Topics

Beam-Column Analysis of the Drill Collar and extended H.P.C. Corer Barrel.

Flexural Model Test. A unit load applied on a scale model to demonstrate the deflection characteristics of the H.P.C.

Froude Scaling Techniques applied to predict the magnitude of the full scale H.P.C. structural loads and stresses.

A Moment Distribution Analysis for the scoped-out H.P.C 9 M column.

A parametric analysis for varying distributed transverse loads Shows H.P.C. barrel length vs stress due to axial and transverse load application.

Prepared by:

Wilfred Nugent.

Problem Statement

Requirements for coring into increasingly stiff sediment introduced the posibility of slant angle penetration, or other related conditons which could produce side load effects in addition to column loading. The increase in stresses on both the H.P.C. components and the drill collar were considered critical.

Objective

The objective of the analysis was to : Predict the ability to recover long cores in stiffer sediment.

Preclude the possibility of yielding the H.P.C. core barrel thus preventing the retrieval of the H.P.C. through the drill pipe.

Providing guidelines for safe operation.

Work Done

A Beam-Column analysis was made to determine the combined bending characteristics of the H.P.C. and the Drill Collar. Particular attention was given to the location where the H.P.C. barrel exited the Drill Collar.

The Upper Shaft of the H.P.C. and the stationary piston were analyzed for similar loading conditions by moment distribution methods.

Scale models of equivalent dimensions were tested with axial and transverse loads applied. The reaction at the supports and contact points were observed and measured.

A Froude Scaling technique was used to calculate comparative values for full scale conditions.

Discussion

The results of these analyses and tests are presented herein. A parametric study was made which used the beam-column analysis approach to indicate the penetration depth (H.P.C. corer length) and differential side loading capability within the limits of the corer barrel yield stress.

Conclusions.

The analysis and the test show good co relationship considering that the model unit load test produced a 7.5 inch deflection and the analysis developed a 10.5 inch deflection.

The H.PC. core barrel and stationary upper shaft have sufficient flexural stability to be considered suitable for use in a 9 meter (30 Feet long) coring tool.

2.0 M. H.P.C. SCOPED OUT

SUBJECTSECTION ENGINEER CHECKER	W. NUGENT 3736 Gayle Street San Diego, CA 92115	MODEL: PAGE: REPORT: DATE:
M = [Id^2y AND $M = P(y - y) + dx^2$	VX WX
SOTHAT di di	$y = \frac{P}{EI}y_0 - \frac{P}{EI}y + \frac{W}{EI}x$ AND	DIVIDING BY ZI
AND USING AS AS dz. dx	$J = A \sin Wx + BCO$ $J = -W^2 A \sin Wx - W^2 B \cos Wx$ $= -W^2 (A \sin Wx + B \cos Wx)$	$\frac{DSW_{X} + W_{X} + y_{0}}{P} = \frac{P}{EI}$
AND WHEN X=1	$y = 0$, THEN $\frac{dy}{dx} = 0$; WHEN $x = 0$	0 y= y0
AND A =	ASM WE + BCOONE + WE + yo NACOSWE - WSMWL + W O - B + Y WL ALSO ASMWE = (AND , So B=0 - <u>W</u> PW (COSWL))SMWL
THEN W PW	tanWl+Wl+y0=0 OR	
yo=	W (tan WL - WL) NOTE EI=	$W^2 \& \frac{PL^2}{EI} = W^2 L^3$
Ngo=	W Kl ³ (tan Wl-Wl) P EI (W ³ l ²)	Ξφ.3.

SUBJECT
 N. NUGENT
 MODEL

 SECTION
 3736 GAYLE STREET
 MAGE
 3

 ENGINEER
 SAN DIEGO, CA 92115
 DATE
 3

 SUB STITUTING, 11386 WL³
 IN EQUATION (3)
 DATE
 3

 SUB STITUTING, 11386 WL³
 IN EQUATION (3)
 DATE
 3

 SUB STITUTING, 11386 WL³
 IN EQUATION (3)
 DATE
 3

$$Y_0 = \frac{11386 WL^3}{EL_0} (MUL-WL) (11386)$$
 LET U = WL OR $L [P]$ RADIANS SINCE $W^2 = P_{EL}$
 THEN

 $Y_0 = \frac{11386 WL^3}{EL_0} (MUL-WL) (11386) = DEFLECTION
 DEFLECTION

 $Axiat And Normal Load Active
 DATE

 USING IBOO LB AXIAL LOAD
 U = $[13000^{\circ})$
 $= 01586$ PADIANS

 $Uai U-U$ (.11386) = $3.9095 \times 10^{\circ}$
 $= 01586$ PADIANS

 $Uai U-U$ (.11386) = $3.9095 \times 10^{\circ}$
 $= 03752$
 $Uai U-U$ (.11386) = $3.9095 \times 10^{\circ}$
 $= 03752$
 $M_0 = \frac{(11386 W (118)^3}{(03752)} = .0515 W$
 $= 03752$
 $M_0 = \frac{(11386 W (118)^3}{(03752)} (.03752) = .0515 W$
 $= 268, 125 (ME)$

 BENDING MOM, ON HPC DRILL COLLAP
 $= 268, 125 (ME)$
 $= 268, 125 (ME)$
 $M_0 = P_{Y_0} + WL = 13,000 (.0515) 150 + 150 (1118)$
 $= 268, 125 (ME)$
 $= 268, 125 (ME)$
 $=$$$

HY DRAULIC PISTON CORER (H.P.C)
SCALE MODEL TEST
TO DETERMINE THE FLEXURAL CHARACTERISTICS
OF THE H.P.C.
SCALING CONDITIONS
FULL SCALE H.P.C. BARREL
O.D 3.51N SECTION MODULUS O.D. O.191 IN. SOLID
I.D 2.7 IN I= 4.751N⁴ I= 6.52×10⁻⁵1N⁴
WALL 0.4 IN
(
$$\frac{1}{5}$$
 = MOMENT OF TNERTIA SCALE = 1:9.5 (F.S)
FULL SCALE LIPPER SHAFT MODEL UPPER SHAFT
O.D. 2.63 IN I= 1.70 O.D 0.081 IN. SOLD
I.D. 1.881N I = 2.11×10⁶ IN⁴
($\frac{1}{5}$) = MOMENT OF INERTIA SCALE = 1:15
BALLBG.
PULLEY
R₁
R₂ STOP ANGLE
OBIC CLEVIS
THE CORER MODEL WAS SUPPORTED AT R.d R3
TO REPRESENT CONTACT POINTS AT THE DRILL BIT
A THE I.D. OF THE DRILL COLLAR. THE STOP ANGLES
REPRESENT TON THE DRILL COLLAR. THE STOP ANGLES
REPRESENT THE I.D. OF THE DRILL COLLAR.
DEFLECTION OF THE CORE COLUMN IS RESTRICTED
AS THE CORE BARREL BENDS & MAKES CONTACT
WITH THE DRILL COLLAR (DEPRESENTED BY THE STOP
AS THE CORE BARREL BENDS & MAKES CONTACT
WITH THE DRILL COLLAR (DEPRESENTED BY THE STOP

•

Hydrauluc Piston CORER
FROUDE SCALING
FOR THE SECTION OF THE CORE PAREL EXTENDED
DEFLECTION =
$$\partial = \frac{W_{0}^{3}}{BEL}$$

So THAT ∂ MODEL = $\frac{F_{M} L_{M}^{3}}{BEL_{M}}$ or $\frac{d_{M}}{L_{M}} = \frac{F_{M} L_{M}^{2}}{BEL_{M}}$
WRITING
 $\frac{F_{M} L_{M}^{2}}{BEL_{M}} = \frac{F_{FS} L_{FS}^{2}}{SO THAT} \frac{\delta M}{L_{M}} = \frac{\delta F.S}{BEL_{M}}$
NOW
 $\frac{I_{M}}{I_{FS}} = \frac{FORCE_{MOREL}}{FORCE_{FS}} \left(\frac{L_{MODEL}}{L_{F,S}}\right)$
SINCE FORCE SCALING = $(\frac{1}{V})^{3} & L_{M} & L_{F,S} \\ SCALE FORCE SCALING = $(\frac{1}{V})^{3} & L_{M} & L_{F,S} \\ FFS. = \frac{F_{M} L_{M}^{2} (I_{FS})}{I_{FS}} = \frac{I \times 20^{2} 44}{(5521 \times 10^{-5} (300)^{2}} = 2731.S$
 $= 10.9 LB/LIN FT.$
DEFLECTION FULL SCALE
 $\delta_{FS} = \frac{\delta_{M} L_{FS}}{L_{M}} = \sqrt{5} (150) = 7.5 INCHES$
CALCULATED BENDING MOMENT (NO AXIAL LOAD)
BM = 273 (150) = 40, 008 IN, LBS
APPLIED AXIAL FORCE = 13,000 LB
TOTAL B, M = 13,000 (7.5) + 40,008
 $= 137,5001N, LB$ (NO SECONDARY BENDING)$

Ξ

-7

HYDRALIC PISTON COREL	D			
UPPER SHAFT ANALYSIS				
$I = 4 IN^4$ $I = 2.19 IN^4$				
$A = \frac{180}{180} - \frac{180}{180} - \frac{360}{180} - \frac{180}{180} - \frac{180}{180$				
EIL 0.02 .013.02 .013.0006 .00				
DIST FACTOR 01 .39.61 .956.044 01				
 CARRY ONSE 0.61 0.61 .01				
FEM (KIPS) + 313.39 0				
BALANCE JOINT'B' - 313,39				
CARRY OVER TO'C' -191.16				
BALANCE JOINT 'C' + 74.56 +116.61				
CARRY OVER TO'D' 0 +71.13				
BALANCE JOINT 'D'				
CARRYOVER TO E O				
MOMENTS +313.39 -313.39 -116.6 +116.6 +3.13 -3.13				
AXIAL LOAD = 13,000LB.				
DISTRIBUTED SIDE FORCE = 1.5 LB/LIN INCH				
MAX BENDING MOMENT = Py, + WL = 313,390 IN-LB.	~			
DIRIVATION OF CONSTANTS (CORRECTION FOR STIFFNESS FACTOR REFERENCE: BRUHN E.F. AIRCRAFT STRUCTURES A. 11, 21, 1952	R)			
SPAN THE THE KFACT K DIST FACT C.O.F.				
AB 3.74 .011 - D O				
BC 1.83 .022 .89 .02 161 CB 1.83 .59 .013 .39 0				
CD 1.83 .022 .89 .02 .61 .61 DC 1.83 .59 .013 .956 0	. 71			
DE 5 .0016 .0006 .044 00	/1			

APPENDIX D

HYDRAULIC PISTON CORER

THREADED CONNECTIONS ANALYSIS

CONTENTS

Problem Statement

Work Done

Discussion

Analysis Summary

Topics

Taper threads in relatively thin section pipe. Methods for reacting couping forces by shoulder abuttment.

The effects of reduced cross sectional area due to thread relief and pressure seal grooves.

The effects of "snatch" forces during H.P.C. make up and redress. Stopping of the travelling mass when taking inadvertent water cores.

Corrosion alleviation by substituting Nimonic stainless steel.

Prepared by:

HYDRAULIC PISTON CORER THREAD ANALYSIS

PROBLEM STATEMENT

The connecting thread elements used in the H.P.C. are generally consistent with thosed used in the drill string. In the H.P.C. function there are additional loads applied to the threads which result from load reversal, impact stop forces and pull-back. The available envelope (diameter of the drill collar and spacing of the components) is a constraining factor.

Lengthening of thread engagement can be accomplished without severe change to the configuration. The critical regions are in the area of thread relief, necessary to achieve shoulder-to-shoulder abutment, and the recesses for the seal rings.

The alleviation of corrosion and the substitution of material to meet that objective was were also included.

OBJECTIVES

The object of the analysis was to determine the feasibility of using corrosion resistant metal which may have lower working yield stress capability. The purpose was to investigate potential improvement in service life of the H.P.C., to reduce the time to redress the components between successive coring deployment; to improve the cost effectiveness and life expectancy of the equipment.

Work Done

Nimonic 60 stainless steel was proposed in an effort to combat corrosion and improve operational turn-around for the H.P.C. Particular attention was required in the areas of undercutting and recessing which create "notch sensitivity" especially when impact and load reversal conditions apply.

These critical sections were subjected to detail analysis. The end stroke snubbing which involves methods for venting pressure and discharging the flow of fluid through drilled holes in the barrel had significant impact on the analysis.

Discussion

The analysis indicates that Nimonic 60 stainless steel in the mill condition was satisfactory but a reduced margin of safety resulted. The impact design case used showed the inner seal sub to have a negative margin. The condition can be solved by improvement in the snubbing system.

A summary of the results of the analysis is included along with recommendations for limiting the applied pull-out force.

BY NILLIGENT DATE 11, 2172 CH'KD DATE 11-30179	PAGE
SUMMARY OF ANALYSIS	M 50 J
ITEM DWG NO DESCRIPTION 31 1084 TOP SUB BODY REF PAGE 1	REMARKS CONTROL IMPACT = 70000LE STRESS ON THREAD CONNECTION TO UPPER SHAFT $f_t = 42,169$ PSI MARCIN = 1.3 ON YIELD FOR NITRONIC GO,S.S
27 1210 SHAFT 1213	UNDER CUT GROOVE FOR SHEAR PIN. 2.36 DIA-1.875 DIA IMPACT FORCE Z 70,000LB 43,392 P.S.I. MARGIN 1.29 ON YIELD FOR NITRONIC 60 ST. STL.
23 1214 INNER SEAL SUB	IMPACT FORCE Z 70,0001B STRESS ON THREAD CONNECT WITH 1210 MARGIN 2.7 ON VIELD FOR NITRONIG 60 ST. STL. IMPACT 210,000 LB NEG 1.11 MARGIN ON YIELD FOR NITRONIC 60 ST. STL.
11 1231 DOUBLE PIN SUB	NO CHANGE MARGIN ADEQUATE FOR 4130.
8? 1212 LOWER OUTER BODY	IMPACT FORCE 210,000 LB. JE = 158,447 p.s.1. IMPACT = 70,000 JE = 52,830

вү	DA1	re			PAGE	
ITEM	DWG No. 1216	DESC OUTER S	21PTION EAL SUB	RE THREAD IF IMPAC Jt= 31,7 MAGIN C STAINLE	MARKS RELIEF TZ 70,000 LB TIS P.S.I. DN YIELD FOR NIT SS STEEL = 1.76	TEONIC
10	1219 1232	PISTON	ROD	LIMIT P	ULL OUT FORCE EXCEED 20,000	LB.
CUT TH IN	GIUDI READ LE CREASE	es. Ngths D Mai	CAN BE	INCREAS	ED TO PRODU	CE
RE	VIE W OF	· CONTIC	OL ORIF	ICES IN	UPPEIC CHAM	BEIL
•				24		
-						2
						1
			с - -			8

4

1 2 27 7

BY DATE	New All All All All All	page P.4.
CH'KD DATE		TITLE
INNER SEAL SUB. B	.1214-00	512 10 ⁷
THREADED CONNECTION	ON TO UPPERSHI	LFT
PARIS 0124-00 - E	51210-00	
3 75 - 78 - 44 +10	A LENGTH OF E	A DISCONTINUINIS THDE
5.75-(.15+,74 TIO	TUDEAD:	
ELVI THEADS ENGLAS	n = 9(2.077)	$x_{0.071}x_{0.07} = 3.3x^{2}$
CORING & PULL OUT FO	DRE E 5.5/3000	= 16,500
		$f_{1} = 4876 PS1$
		NOT CRITICAL
IMPACT STOP (ASSUM	AE SNUBBING EFFE	CTIVE IN , OOB SEC)
$F_{t} = M(V_{2} - V_{1});$	= 21×10 THEN	
F = 210/.0	003 = 70000 LB	
fr =	20,691 P.S.	I. (MORE PRUBABLE)
5.0	, i k îx	
NOTE , THE EFFE	CT OF SNUBBING	"SPREADING THE IMPACT
OVER A LO	NGER TIME PERIOR	D REDUCES THE FORCE
BUT THAT F	ORCE IS STILL TO	BE REACTED BY THE
UPPEICSHA	FT. CONI	
INNER SER SUB FI	OK THEM (18) PIN	L = 54 111 PS1
U.U= 1.795 AUG	A = 1, 2935 IN-	JE = JAITH I SI
1.02 (1233) NO	I CRITICAL THICH	TO DEAL THE LOAP.
INNERSEN SUB- POD	ONNECTION	
DWG B1214-00 & B12	.17-00	
PULL OUT CONDITI	ON = . 8 (16 500) = 13,200 LB
THREAD AREA = 1.04	66TT (1.125/.125) X.0	$7084 \times .8 = 1.708$
2	Įt	= 7728 P.S.1
	5	
	h	JOT CUTICAL
	2	

~ - .

BY DATE CH'KD DATE	PAGE
DOUBLE PIN SUB DWG, BIZZI-OO ESTIMATE 5 STUBACME THREAD AREA ~ 3.13TT $(2/2)(.13)($ PENETRATION CSTATIC ANALYSIS) = 16 ft = 110 ft = 100 ft = 1000 ft = 10000 ft = 10000 ft = 10000 ft = 10000 ft = 100000 ft = 100000 ft = 1000000 ft = 10000000 ft = 100000000000000000000000000000000000	(80) = 10.3111 ² 1500 LB 201 PSI NOT CRITICAL OUBLE PIN SUB 20, 388 PSI FOR MAX IMPACT. FOR MAX IMPACT. FOR MAX IMPACT. FOR MAX IMPACT. 10,000 LB 70, 842 P.S.I 70,000 LR = 93,649 P.S.I
LOWER OUTER BODY - BIZIZ SIMILAR CONNECTION TO BIZZ THREAD NOT CRITICAL UNERCUT AT THREAD TERMINATION O.D 3.5 AREA IMPACT FOR I D 3.25 1.325 Jt IF IMPACT FORCE IS REDUCED TO Jt THIS SECTION WAS CRITICAL IN	E = $210,000$ LB = $158,447$ psi 70,000 LB = $52,830$ PSI 4130 STEEL.

82 -

()

1.1.1

Ì

* · ·	1	
BY DATE CH'KD DATE	 9	PAGE_P7
CENTER PISTON R LOWER PISTON R THE IMPACT FORCE ROD CONNECTION THE CRITICAL L TO BE PENETRA PENETRATION - C PISTON ROD IN T HENCE ALLOW FRU PRESSLIRE MAX PISTON AREA A FORCE AREA	St	VE THE PISTON ONS APPEATZ US SNATCH LOADS ULL FIXITY BOTH ENDS OF SLIDING FRICTION = 0,2 = 3000 P.S.1 = 5,5 IN2 = 3300 LB 1.2272 IN2 2689 PS1
EXTRATION FORCE $ \int_{E} = \frac{16}{1} $ STRESS AT RED	E USUME 39 JERK $500 \times 8 \times 3 =$ 1.2272 SUCED SECTION = 2	AT PULL OUT B2,268 PS1, B9,560 PS1
THREADED CONNEC THREAD 7/8 N.S.C. AREA = 0,42	CTIONS R1232, AI DARSE 9 TPI LENGTHI IN^2 $ft = 94, 2$	218, & B 1219 12 (8 THREADS ENGAGED) -85 P.S.1
STRESS ON THRE	EXTRATION FORCE TRATION FORCE ft = 47, 61	PS!

ľ

M.);

••

APPENDIX E

HYDRAULIC PISTON CORER

RETRIEVAL FORCE ALLEVIATION

CONTENTS

Problem Staement

Candidate Approaches

Study Matrix

Discussion

Category Grouping.

Topics

Study Matrix a listing and first order evaluation of proposed approaches for the solution.

Sketches for design concepts.

Description of a cursory test and scaling technique.

Prepared by: Wil Nugen

Wilfred Nugent.

HYDRAULIC PISTON CORER

RETRIEVAL FORCE ALLEVIATION

Problem Statement

Hydraulic Piston Coring into increasingly stiffer sediment, produces greater resistance to pull-out. These H.P.C. pull-out forces are approaching the capacity limits of ship-board auxilliary equipment.

The objective of this study is to evaluate methods for the alleviation the holding force of the corer barrel when driven into the sediment.

Candidate Approaches

Cutting shoe profile (shaping)

Fluid flow to the shoe tip & annulus.

Expendable sheath.

Rotation of the lower barrel.

Vibration & Jarring of the corer

Retrievable sheath.

Coated lower barrel.

Flexible shoe.

Study Matrix.

The study matrix presents a description, functional analysis, a statement on the available equipment, fabrication factors, test requirements and competitive criteria comparison.

Discussion

Sketches which show the configurations are shown to aid in the selection process of candidate concepts. There appears to be a possibility of grouping concepts which involve similar design and/or functional approach.

Category Grouping The shaping of the shoe may be designed to compress or splay the cored hole (sidewall) thus relieving the retention condition. Items No1 & No 8 may be evaluated on competitive terms. The expendable and retrievable sheath configurations 3 & 6 and the coated barrel No 7 have similar end approaches.

The Deep Sea Drilling Project has significant advantage over"gravity drop" oceanographic coring tools in that jarring and pull-back can be accomplished by raising the drill pipe.

RETRIEVAL FORCE ALLEVIATION MATRIX

CONCEPT	DESCRIPTION	FUNCTION ANALYSIS	FAB. FACTORS	TEST REQMTS	REMARKS
Cutting Shoe Profile	Shape the externa profile of the cutting shoe	al Hydrodynamic shaping. Flow testing of models	Machine Test parts	Flow Channel Stab tests	No operation- al risk
Fluid flow to shoe & tip	Cut spiral flutes Cut flutes axial along core barre	Break the side by of the cored hole. Neg. Press. in pull-back draws in water lub.effec	Machine O.D. of barrel	Test in operation	Notches the barrel
Expendable Sheath	On O.D. of Barre Instal a sliding element	l Provide initial sliding at start of pull-out	No impact	Test in op ation Stab tests	Left in core hole could cause problem
Rotation of Lower barrel	Unlock a thread connection & allow the barrel to rotate	Rotate the barrel to break the side hole bond	New design to unlock the cutting shoe in pull out	Model test & shore test in sediment	Core barrel must not rotate around core Destoy alignmt. or twist core
Vibration & Jarring	Use drill deck equipment				Limit force on drill string
Coated lower barrel	Hard smooth surface on lower barrel	Provide an inpenetrate- able surface on the barrel	Electroplate Flame sp ay	Test in oper- ation	No risk involved.
Corer barrel 0.D. config- urations	Refer to sketches 8,9,&10	Enlarge core hole during penetration relax during	New shoe Design	Stab test Test in oper- ation	No risk involved.

BY WINDLENT DATE 5/22/82 PAGE CH'KD. DATE TITLE ITEM 8 8 10 C" RING ITEM. 11 LATCH DOG. LATCH DOG-CIRCULAR SPRING RETAINER 88 137 · · · · · ·

SCALE TEST

A CURSORY TEST WAS RUN TO QUALITATIVELY OBSERVE THE EFFICIS OF PULL BACK FORCE ON FOUR SECTIONS OF TUBE, DRIVEN INTO SATUARATED GARDEN CLAY, THE RESULTS ARE TABULATED AS FOLLOWS!

DIA INS	CIRCUMF .	GINCE	LENGTH . LOAD/IN	FORCE LOAD/IN		
3/8	1.178	6	.85	12.5	, 884	
۱.	3.1416	13	.69	25	.663	
海	3.927	15.5	.637	·33 ^{wb 60}	. 70	
13/4	5.977	18	.5019	-		

THE (FORCE) LOAD PER INCH APPEARS TO DECREASE WITH INCREASE IN DIAMETER, HOWEVER IT SHOULD BE NOTICED THAT THE L/D RATIO IS 32 FOR A 12 INCH LENGTH OF 3/8 DIA TUBE WHEREAS THE L/D REDUCES TO 9.6 FOR A 12 INCH LENGTH OF 1/4 DIA TUBE.

APPLYING FROUDE SCALING FACTORS L = LENGTH L= AREA Fm= Vm/Lmg > Fm V2m LES 13 = FORCE F= - V=/L=g - F= V= Lmg V model _____ V FULL SCALE THEN V motel V L FULL SCALE 9 Lm (VF) VELOCITY SCALING (VFULL SCALE) Vmodel = PRESSURE SCALING PFULLSCALE Pmodel V^2Sf AREA = $(\frac{1}{2})^2$ $PRESSURE = (\frac{1}{2})^2$ TOTAL FORCE W $W_{\text{model}} = \left(\frac{1}{\chi}\right)^3 W_{\text{FULL SCALE}}$ THEN

THE 3/8 DIA X 12 INCH TUBE MORE CLOSELY CONFORMS TO THE 3.5 INCH × 180 INCH CORER BARREL, & WILL

BE REVIEWED FOR COMPARISION USING FROUPE SCALING TECHNIQUES.

3/8 DIA TUBE

SCALE FACTOR L= 9.334

FORCE VARIES AS THE CUBE OF THE SCALE FACTOR

FFULL SCALE = FMODEL L3

 $12,5(9,334)^3 = 10,165 LB$

THIS COMPARISON NEGLECTS THE LENGTH FACTOR 180/12= 15. TO COMPENSATE FOR THIS DIFFERENCE USE THE RATIO OF CIRCUMFERENCE 9,934 AND THE AREA SCALING FACTOR L², AND THE PULL BACK FORCE PER INCH,

FOR THE 3/8 DIAX 12 INCH TUBE USE, 884 LB/INCH

THEN

 $F_{\text{FULLSCALE}} = F_{\text{MODEL}} L^2$ = , 884(9,334)² = 77 LB/INCH

FOR 15 FEET LENGTH OF 3.5 INCH DIA CORER BARREL THE PROBABLE PULL BACK FORCE = 13,863, LB. THERE IS A HIGH PROBABILITY THAT THE PULL BACK FORCE INCREASES EXPONENTIALLY WITH THE DEPTH OF CORER PENETRATION.

APPENDIX F

HYDRAULIC PISTON CORER LANDING IMPACT

CONTENTS

Problem Statement

WorkDone

Discussion

Conclusions

Topics

A H.P.C. instrumented core barrel was to be landed onto a suuport bearing within the Drill String to a depth of 20,000 feet.

Terminal velocity estimates with varying hydrodynamic drag values An evaluation of the impact on the instrument package.

Transmissibility of shock .

Testing of the shock mitigation device.

Prepared by: Jul Negen

Wilfred Nugent.

W. NUGENT Mr.S.T.Serocki. Chief Engineer REG. PROPESSIONAL ENDINEER Deep Sea Drilling Project. ASSOCIATE FELLOW AIAA University of California at San Diego. La Jolla, California Subject: Impact of the Core Barrel on the Support Bearing Mount. 1.0 Problem Statement. During coring operation an instrumented core barrel is allowed to fall within the drill pipe at its terminal velocity, estimated to be 500 feet per minute. The purpose of this analysis is to define the impact acceleration and make a preaction as to the shape of the curve. 2.0 Work Done. A check on the range of the terminal velocity was made, with variation in hydrodynamic drag coefficient. An estimate of the spring rate for the elements and the characteristics at the impact face was made and used in the solution of a spring mass system. Damping factors were developed and used intuitively Five Cases were examined as follows: I.Free fall of the mass at 10 ft/sec. no damping. II " 18 ft/sec. light damping III 10 ft/sec. more heavily damped IV same as III, but with reduced damping coefficient & spring rate. same as IV, dut with reduced damping coefficient. An additional analysis evaluates the effect of the impact on the instrument package installed within the core barrel. 3.0 Conclusions. The conclusions drawn from the work done are: 1) Case I an undamped system does not occur in reality, but serves to indicate the maximum impact condition for the selected case. 2) Case II was developed to examine the effects of increased descent velocity (18ft/sec.) 3) Cases III, IV, and V, vary mainly by the degree of damping coefficient applied. 4) Case II presents the most severe condition. 5) The instrument package can be protected against exposure to high positive or negative acceleration if the mounting has a spring frequency $J = \frac{1}{211} \sqrt{\frac{f_2}{m}} = 83.5 \text{ Hz}^2$ A 30 lb instrument The data generated is plotted for Cases I, II, III, IV, & V. The plotted data shows the Change in Velocity versus Time and enables the acceleration to be derived as a tangent to points on the curve.

3736 GAYLE STREET SAN Diego, CA 92115

94

TELEPHONE (714) 582-0530

VALUES FOR C AND K.

THE CORE BARREL PACKAGE FALLS AT A TERMINAL VELOCITY ATTAINED WHEN THE STATE OF EQUILIDELIUM. IS REACHED BETWEEN THE TOTAL DRAG FORCE ACTING (FRONTAL & SURFACE FRICTION) AND THE WEIGHT. THEN W = D. IN A FLUID MEDIUM DRAG IS EXPRESSED AS 1/2 PCDSV² THEN W = 1/2 PCDSV² AND

$$V = \left(\frac{W}{1/2} \right)^{1/2}$$

FROM THE GEOMETRY OF THE CORE BARREL & CD OF 215 USED THE MASS DENSITY OF SEA WATER ~ 2 FRONTAL AREA 121N2 = VIZ FT2

$$\left(\frac{360 \times 12}{2}\right)^{\frac{1}{2}} = 46.47 \text{ FT/SEC}$$

THE VALUE FOR DRAG COEFFICIENT FOR A LONG SLENDER BODY MOVING WITHIN A CYLINDER IS SIGNIFICANTLY HIGHER THAN THE CHARATERISTIC CASE OF 2.0 THEREFORE CONSIDER AN INCREASE BY ORDER OF MAGNITUDE, AND WE GET 14,7FT/SEC SPECIFIED VELOCITY IS 500 FT/MIN. ~ USE 10 FT/SEC

DAMPING CONSTANT ZERO TO ESTABLISH MAXIMUM IMPACT

SPRING RATE

USING 180,000 PSL BEARING STRESS AND. 80 OF THE ANNULUS AREA OF THE IMPACT STOP. ~ 2,64 IN² ASSUME THE COLUMN DEFLECTS 0,12 (BOWING DURING IMPACT) DEFLECTION OF CONTACT 0.005 BEARING DEFLECTION 0.005 TOTAL DEFLECTION 0.13 INCLES \$,0175.

ALLOWABLE SURFACE LOAD = 180,000 × 2.64 = 475,200 16. SPRING RATE LB/F7 = 47,520,000

THE PLOT OF THESE DATA POINTS WILL INDICATE A CONTINUING CYCLE WHICH IN REALITY DOES NOT OCCUR.

SUBJECT. D. 5. D. P. SECTION COCE BARREL ENGINEER:	N. NUGENT 3736 GAYLE STREET SAN DIECO CA 92115	MODEL PAGE REPORT DATE: AP:21L 12, 1977
	SAN DIEGO, UN SZILJ	

WRITING THE EQUATION OF MOTION IN TERMS OF THE DISPLACEMENT X, A DAMPING CONSTANT C AND A SPRING RATE K, THE FOLLOWING EQUATION IS DEVELOPED $Cx + Kx = -M\ddot{x}$ OR $\frac{d^{3}x}{dt^{2}} + \frac{c}{m}\frac{dx}{dt} + \frac{k}{m}x = 0$ EQU(1) LET C/M = 2a AND $k/m = b^{2}$ THEN EQU(1) CAN BE WRITTEN AS $\frac{d^{2}x}{dt^{2}} + 2a\frac{dx}{dt} + b\frac{dx}{x}$ SOLUING THE QUALATIC USING Aa^{dk} $a^{2} + 2a + b^{2} = 0$ $d + a = t\sqrt{a^{2} - b^{2}}$ $d_{1} = -a - \sqrt{a^{2} - b^{2}}$ $d_{2} = -a + \sqrt{a^{2} - b^{2}}$ THEN $X = Ae^{d_{1}k} + Be^{d_{2}k}$ IS THE COMPLETE SOLUTION

	NUMERICAL.	ADALYSIS	CASE	NUT
--	------------	----------	------	-----

•

MASS OF CORE BARLILL = $.360/32.2 = 11.180 \ \text{LESEC}^2$, ACCELERATION = $T.B.D. \sim 6000 \ \text{EST}.$ PESCENT VELOCITY = $10 \ \text{FT}/\text{SEC}$ SPRING RATE = $47.5 \times 10^6 \ \text{Ib}/\text{FT}.$ DAMPING CONSTANT = .0
FROM PACE (1) $\chi = Ae^{a_1 t} + Be^{a_2 t}$ $c/m=2a=0, k/m = b^2 = 4,248,611; b = 2061$
LET D = 2000 FOR NUMERICAL ANALYSIS
$d = -a \pm \sqrt{a^2 - b^2}$ WHEN $a = 0$ $b^2 = 4,000,000$
THEN $X = Ae^{(2000i)t} + Be^{(-2000i)t}$
AND WHEN CED ARE CONSTANTS DEPENDING ON THE INITIAL CONDITIONS, $X = E^{\pm}(C \cos 2000 \pm 4)$ Sim 2000 \pm)
$dx = e^{t} (C \cos 2000 t + DSin 2000t) de + e^{t} (-2000 C \sin 2000t + 2000 D \cos 2000t)$
FOR THE INITIAL CONDITIONS X=0, V=10, & E.=O
WHEN $t=0$, $X=0$. THEN $C=0$ WHEN $t=0$, $V=10$. THEN $D=,005$
PUT THESE VALUES IN X = et (ccos 2000t + DSil 2000t)
= et(,005 Sin 2000t)
$\frac{dx}{dt} = e^{t}(.005 \sin 2000t + 10 \cos 2000t)$
$\frac{d^2x}{dt^2} = e^{t(.005Sin 2000t + 10 (052000t))}$ $\frac{d^2x}{dt^2} + e^{t(10\cos 2000t - 20000sin 2000t)}$

FIGURE | WN 4.22

FIGURE 3 W.N 4-19-77

A PRIL 19.1977 MEETING WITH MES.T. SEROCLI ME BURT ADAMS MR MICHAELSTORMS SUBJECT' CODE BATRREL DROP TEST
1. DATA PRESENTED ROUGH DRAFT OF REPORT DS.DP H.2 GENERAL CONCLUSION OF MEETING FORCE OF IMPACT ~ 335,000 LB THEORETIC G'S ~ 900 G TRANSMITTED G'S ~ 90 G.
2. CORRECTION TO ESTIMATE FOR DETERMINING SPRING CONSTANT LIMIT THE ALLOWARLE STIZESS AT THE FACE OF THE LANDING SUB & THE BEARING BLOCK TO 120,000 psl THIS PRODUCES (120,000 × 1.35) 162,000 LB END FORCE THE END FORCE 360 (400g)/1.35 = 106,666 PSL
CASE IV
MASS OF CORE BARREC = 11.18 LBSEC/F. ACCELERATION T.B.D. DESCENT VELOCITY = 10.732 C. EPICING RATE R: = 10.84x10 ⁵ LB/FT DAMPING CONSTANT = 11952 LB-SEC/F. DESTACED VOLVE IN LOWER CHAMBER 3.5T (6)/(1728) = 0.033 FT ² PLISE PRESSURE IN COWER CHAMBER 3.5T (6)/(1728) = 0.033 FT ² PLISE PRESSURE IN COWER CHAMBER 3.5T (6)/(1728) = 0.033 FT ² PLISE PRESSURE IN COWER CHAMBER 5.5T (6)/(1728) = 0.033 FT ² PLISE PRESSURE IN COWER CHAMBER 5.5T (6)/(1728) = 0.033 FT ² PLISE PRESSURE IN COWER CHAMBER 5.5T (6)/(1728) = 0.033 FT ² PLISE PRESSURE IN COWER CHAMBER 5.5T (6)/(1728) = 0.031 FT ² ENCITH OF THE LOWER CHAMBER 5.5T (6)/(1728) = 0.031 FT ² FLOW THROUGH THE CONSTRUCTORY FLOW THROUGH CONCENTRIC CYLINDERS Q = $\frac{10.55}{100} \times 1.3x0^2 FT^3/SEC$ $\frac{1}{2}N^2$ ($\frac{29}{6} \times F$)) $F = \frac{\sqrt{2}A^3 ST}{(Cda)^2 (25)}$ DAMPING FORCE = 2988 LR. (110.5 FT IN .05 SECONIES THEN DAMPING RATE = 2988 FORME = 11952 LB-SEC (119520 LB/10FT/SEC VEL TIME DIST FT 101

NUMERICAL ANALYSIS CASE IV

 $X = Ae^{a_1t} + Be^{a_2t}$ C/m = 2a = 1069; $f_2/m = b^2 = 16.85 \times 10^5$ let a = 500; Let b = 1298 $d = -a \pm \sqrt{a^2 - b^2}.$ = -500± 1198.87L THEN X = Ae (-500+12001) + Be (-500-12001) + = e- soot (Ae 12001 + Be-12001) = e-500t (C cosizoo & + D sui izoot) V= dx = -500e=500t (C cosizoot + DSin 1200t) + e = 500t (-1200 C Sin 1200t + 1200 D Cas 1200t) INITIAL CONDITIONS : X=0, V=10, t=0 WHEN E= 0, X=0, AND C=0 WHEN E=6, V=10 THEN D=.0833 X = e-soot (20833 Sm 1200t) dx = - 500 e 500t (.00833 Sin 1200t) + e 500t (10 cos 1200t) $d^2 x = 25 \times 10e^{-500t} (.00833 Sin 1200t) - 500e^{-500t} (.10 Cos 1200t)$ - 500 = 500 (10 Cos 1200 t) + e - 500 t (- 1200 0 Sui 1200 t) PERIOD J= 2TI = 5.22 × 10-3 SECONDS

CORE BARREL ASSEMELY IMPACT CONDITION

A PREVIOUS DROP TEST OF A CYLINDRICAL SHAPED BODY WITH & POINTED SPIKE ON & FLAT STEEL PLATE PRODUCE A 700 9 (.O.4 MILLISECOND) HALF SINE WAVE PULSE THE SHOCK RESPONSE OF A SPRING MASS SYSTEM WAS CALCULATED BY THE FOLLOWING PROCEDURE F = ITN TO NAT FREP m THE EQUATION OF MOTION IS =qu(1) m[dx + v(E)] - kdx = 0 WHERE SX IS THE RELATIVE ACCL=(X-V) 7777777 - J VIS THE INPUT ACCL = Vmax Sin II when 0=t=Y = O when J=E T IS THE ACCELERATION PULSE WIDTH IN SECONDS THE SOLUTION OF EQU(1) IS! $EPU(2) \quad \partial_{x} = \underbrace{\mathbb{S}_{P}}_{1-T^{2}/4T^{2}}\left(\operatorname{SIN} \frac{\Pi t}{T} - \underbrace{\mathbb{I}}_{2T} \operatorname{Sin} \mathcal{W}_{n} t\right) \left[0 \leq t \leq T \right]$ EQU (3) dx = Sp (T/ TCOS (TI T/T) Sin W(E- K) [Y = E WHERE SP IS THE STATIC DEFLECTION OF THE MASS ASSUMING A STEADY LOAD SX'IS MAXIMUM WHEN E>T TIS ASSUMPTION. LET THE INSTRUMENT PACKAGE WEIGH ESLB. AND THE POTTING COMPOND HAVE A COMPRESSIVE YIELD = 3,000 PEL THE SUPPORT AREA = SO INCH AND THE TOTAL DEFLECTION BE . OS INCHES FOR THE APPLIED STATIC LOAD OF 3000 LB f = 1 / 72×104 = 83,2 HZ 103

IF THE CORE BARREL AND THE BOTTOM DRILL COLINILISI ARE CONSIDERED AS A SPRING MASS SYSTEM CASE IT THE INSTRUMENT RECEPTICLE DEFLECTS 105 BY A & DOOLIS STATIC LOAD . 6000/80 = 75 GRAVITIES f = 83.2 HZ. T = "01304 SECONDS 7 = ,0016 MILLISECOND; T/7 = 8,15 $W_n = 2II$ IN NATURAL FIREQUENCY RADS/SEC $EQU(4) \ S_{MAX} = \frac{5}{5p} \frac{7.37}{(.0123)^2} \frac{\cos(\pi.7.37)}{(4(.0016^2)^{-1})} \sin(\frac{2\pi}{T} [t - \frac{7}{2}] [T = t]$) = ,03463 % LOOK FOR MAXIMUM PRODUCED BY FUNCTIONS OF + SIN 21 [E-Z] LET THIS = | IF ... THEN SIN(TI) IS PROBABLY & MAXIMUM 2TT [t-72] = 1 $AND t = \frac{TT}{2T} \left(\frac{T}{2T} \right) + \frac{2}{2}$ Sus II = Sun (2][L-1] £ = ,00391 4 - 00326 : 03463 (960) 31,16 < 31.16 < 35.29

by Augent 10.12.79
1. FOLOUL OF COLUMN AT IMPACT

$$f = \frac{1}{2\pi} \int_{M}^{K_{0}} \frac{1}{2\pi} = \frac{1}{2\pi} \int_{11.18}^{10} \frac{19 \times 10^{6}}{11.18} = 207 \text{ Hz}$$

ESTIMATE ENALS 200 TO 400 HZ
ESTIMATE ENALS ANALOGY OF A WARE $a_{n=2} \neq 61$ P. 432
 $a_{n=3} = 131$
 $a_{n=5} = 2982$
 $a_{n=5} = 2982$
 $A_{1} = \frac{1}{2\pi} a_{1} \int_{1/2}^{1/2} \frac{1}{12}$ WHELE $a_{n=2} \neq 61$ P. 432
 $a_{n=5} = 2982$
 $A_{1} = \frac{1}{2\pi} a_{1/2} \int_{1/2}^{1/2} \frac{1}{12} = \frac{18 + 12}{2\pi}$
 $A_{1} = \frac{1}{2} \int_{1/2}^{1/2} \frac{1}{12} \int_{1/2}^{1/2} \frac{1}{12} = \frac{16 + 12}{2\pi}$
 $A_{1} = \frac{1}{2} \int_{1/2}^{1/2} \frac{1}{12} \int_{1/2}^{1/2} \frac{1}{2} = \frac{16 + 12}{2\pi}$
 $A_{1} = \frac{1}{2} \int_{1/2}^{1/2} \frac{1}{12} \int_{1/2}^{1/2} \frac{1}{2} \int_{$

10 10 10
W. Nugent 10.12,79

FROM THE TRANSMISSIBILITY EXPRESSION IT IS SEEN THAT THE TRANSMISSIBILITY IS INFINITE AT RESONANCE

FROM ANALYSIS AND TEST THE DAMPING RATE IS SHALL THE FREQUENCY RATIO W/WN APPEARS TO BE ~ 0.95 AS A CONSEQUENCE THE CONDITIONS ARE NEAR RESONANCE

CONSIDER THE DAMPING RATIO 4GC = 0.2 W/Wn~ 1.0

$$K_T = \int \frac{1 + (2(0.2)^2}{(2.(0.2)^2)} = 2.693$$

WHEN C' = 0.15 KT = 3.5

W. Nagent 10. 17. 79

conclusions:

- I. FROM THIS AND PREVIOUS ANALYSIS IT IS SEEN THAT THE IMPACT CONDITIONS APPROACH OR EXCEED THE BOUNDARY CONDITIONS (SOOG AND SHE PULSE - 3000g IMS PULSE) OF THE ACCELEROMETER.
 - NOTE : 311 g AND 4.85 MS HALF SINE PULSE AT IMPACT THIS CASE 930 g AND 1.6 MS " CASE I STUDY ~400 g AND 2.0 MS " CASE IV STUDY

THE TEANSMISSIBILITY ~ 2.5 TO 3 COULD PRODUCE ~ 1000g

THE VIBRATION DUE TO FLOW THROUGH DURING DESCENT 200-400 42 IT IS NOT APPARENT THE THE LOAD FACTOR WOULD BE EXCEED IN THIS CASE

WITHOUT SPECIAL HANDLING & OR SHOCK & VIERATION PROTECTION THERE APPEARS TO BE HIGH RISK DEPLOYING THE INSTRUMENT PACKAGE (PARTICULARLY THE ACCELERGMETER) IN THIS ENVIRONMENT

1. .

PARTS LIST AND ASSEMBLY DRAWINGS

VARIABLE LENGTH HYDRAULIC PISTON CORER (VLHPC)

VARIABLE LENGTH HYDRAULIC PISTON CORER (VLHPC) PARTS LIST - COMPONENTS

PART NUMBER	DESCRIPTION	DRAWING NUMBER
OL 1019	Seal Sleeve	B-1030
	TOP SUB ASSEMBLY	N/A
OP 4309	Top Sub Cap	R-0P4309
OP 4307	Top Sub Body	B-0P4307
OP 4156	Male Adapter F/Top Sub	A-1264
OP 4157	Female Adapter F/Top Sub	A-1256
OP 4155	V-Spacer F/Top Sub	A-1266
	SWIVEL ASSEMBLY	N/A
OP 4365	Inner Swivel Body	B-0P4365
OP 4366	Swivel Retainer	B-0P4366
OP 4367	Outer Swivel Body	B-0P4367
	SHAFT ASSEMBLY	
OP 4329	Bypass Sub (7/32")	R-0P4329
OP 4317	Shear Bushing (7/32) F/Bypass Sub	A-0P4317
OP 4314	Shaft Connector	B-0P4314
OP 4320	4.5 m Shaft Link	B-0P4320
OP 4354	3.0 m Shaft Link	B-0P4354
OP 4355	Lower Shaft	B-OP4355
	INNER SEAL SUB ASSEMBLY	N/A
OP 4150	Inner Seal Sub	в-0927-0
OP 4151	Inner Seal Retainer	B-0928
OP 4324	Male Adapter F/Inner Seal Sub	A-0P4323
OP 4325	Female Adapter F/Inner Seal Sub	A-0P4325
OP 4326	V-Spacer F/Inner Seal Sub	A-0P4326
	PISTON ROD ASSEMBLY	N/A
OP 4364	Upper Piston Rod	B-0P4364
OP 4371	4.5 m Piston Rod Link	B-0P4371
OP 4335	3.0 m Piston Rod Link	B-0P4335
OP 4341	Rod Connector	A-0P4341
OP 4344	Lower Piston Rod	B-0P4344
	PISTON HEAD ASSEMBLY	N/A
OP 4381	Q-R Piston Head	B-0P4381
OP 4345	Q-R Piston Seal Retainer	A-0P4345
OP 4383	Lock Pin - Piston	A-0P4383
OP 4390	Male Adapter F/Piston Head	A-0P4390
OP 4391	Female Adapter F-Piston Head	A-0P4391
OP 4392	V-Spacer F/Piston Head	A-OP 4392

VARIABLE LENGTH HYDRAULIC PISTON CORER (VLHPC) PARTS LIST - COMPONENTS Continued

PART NUMBER	DESCRIPTION	DRAWING NUMBER
	SHEAR PIN ASSEMBLY	N/A
OP 4312	Sleeve - Outer Body Cap	A-0P4312
OP 4310	Sleeve Ring - Outer Body Cap	A-0P4310
OP 4321	Outer Body Cap (7/32)	A-OP4321
OP 4318	Shear Bushing (7/32) F/Outer Body Cap	A-0P4318
OP 4357	7/32" Dia. Shear Pin	A-0P4357
	OUTER BODY ASSEMBLY	N/A
OP 4313	Outer Body Vent	B-0P4313
OP 4343	4.5 m Outer Body Link	B-OP4343
OP 4356	3.0 m Outer Body Link	B-OP4356
OP 4328	Lower Outer Body	B-0P4328
	OUTER SEAL SUB ASSEMBLY	N/A
OP 4160	Outer Seal Sub	C-0921
OP 4363	Outer Seal Retainer	A-0P4363
OP 4394	Male Adapter F/Outer Seal Sub	A-0P4394
OP 4395	Female Adapter F/Outer Seal Sub	A-0P4395
OP 4396	V-Spacer F/Outer Seal Sub	A-0P4396
	QUICK DISCONNECT ASSEMBLY	N/A
OP 3055	Q/R Shoulder Sub	R-0P3055
OP 4338	Q/R Cap Sub	C-OP4338
OP 4337	Sleeve - Q/R Shoulder Sub	B-OP4337
OP 4340	Dogs - Q/R Shoulder Sub	B-OP 4340
	INNER BARREL ASSEMBLY	N/A
OP 4342	Upper Liner Seal Sub	B-0P4342
OP 3210	4.5 m Inner Core Barrel	B-WL-21
OP 4353	3.0 m Inner Core Barrel	B-0P4353
OP 4360	Lower Liner Seal Sub	B-0P4360
OP 3400	Core Liner	A-1230
OP 4382	Plastic Tube Support (VLHPC)	A-0P4382
	CORE CATCHER ASSEMBLY	N/A
OP 4376	Catcher Sub	B-0P4376
OP 4109	Spring, Flapper Core Catcher	A-1290
OP 4112	Flapper, Flapper Core Catcher	B-1296
OP 4113	Cylinder, Flapper Core Catcher	B-1297
OR 7020	Dog (8) Type Core Catcher	A-0191

VARIABLE LENGTH HYDRAULIC PISTON CORER (VLHPC) PARTS LIST - WIRELINE

PART NUMBER	DESCRIPTION	DRAWING NUMBER
OP 4347	Single Shot Pressure Case	B-0P4347
OP 4350	Single Shot Top Plug F/Pressure Case	B-0P4350
OP 4349	Single Shot Bottom Plug F/Pressure Case	B-OP4349
OP 4358	Pipe Plug F/Bottom Plug	A-0P4358
OP 4351	Non-Magnetic Sinker Bar	B-0P4351
	KUSTER SINGLE SHOT ASSEMBLY	KUSTER P/N
	0-20 Angle Unit (short)	2299-101
	Battery Case, 5 Cell*	4030-105
	Electronic Timer**	3600-101
	Main Frame, Short	4100-102
	Spacer Tube, Short	4104-101
	E.T. Test Sleeve	3601-000
	Anchor	6221-001
	Plug	6221-002
	Tang	6221-003
	Anchor Screw	6221-004
	Set Screw	791-049
	Nose Spring 6"	6221-001
	0-Ring	6205-001
	Film Disc Loader	4301-100
	Developing Tank	4401-100
	Carrying Case - S.S.	4600-000
	Disco Reader	4602-000
	Orientation Reader	4604-000
	Non-Steel Jacketed Batteries (1.5 V C-size (Hot Shot Prod. Col.)	

*Battery Case, 3-Cell **Clock, 90 minutes Flash Unit 4030-103 3201-101 4025-101

VARIABLE LENGTH HYDRAULIC PISTON CORER (VLHPC) PARTS LIST - SET SCREWS, ETC.

PART NUMBER	DESCRIPTION	DRAWING NUMBER
OP 4302	1/2-13 x 3/4 Socket Set Screw F/Top Sub Cap 1/2-13 x 3/4 Socket Set Screw F/Q.R. Sleeve	A-OP4302 A-OP4302
OP 4301	1/2-20 x 3/4 Socket Head Cap Screw F/Overshot Alignment	A-0P4301
OP 4369	5/8-11 x 1/2 Socket Set Screw F/Outer Swivel Body	A-0P4369
OP 4361	3/8-16 x 3/8 Socket Set - Half Dog Core Liner Retainer Screw F/Upper Liner Seal Sub	A-0P4361
OP 4185	3/8-16 x 3/8 Socket Set Screw F/4.5 m Shaft Link 3/8-16 x 3/8 Socket Set Screw F-3.9 m Shaft Link 3/8-16 x 3/8 Socket Set Screw F/Inner Seal Sub 3/8-16 x 3/8 Socket Set Screw F/Lower Outer Body 3/8-16 x 3/8 Socket Set Screw F/Outer Shaft 3/8-16 x 3/8 Socket Set Screw F/Outer Seal Sub	A1471 A-1471 A-1471 A-1471 A-1471 A-1471
	3/8-16 x 3/8 Socket Set Screw F/Swivel Retainer	A-14/1

NOTE: All set screws are alloy steel with cadmium plating and nyloc locking.

VARIABLE LENGTH HYDRAULIC PISTON CORER (VLHPC) PARTS LIST ANCILLARY TOOLS

P. NUI	ART MBER	DESCRIPTION	DRAWING NUMBER
OP	4192	Hang Off Plate	B-0942
OP	4330	Sighting Bar - Baseline Orientation	C-0P4330
OP	4331	Telescope Frame - Baseline Orientation	C-OP4331
OP	4332	Sighting Bar Reducer	B-0P4332
OP	4334	Orientation Hold Down Strap	A-0P4334
OP	4389	Drill Jig - Core Liner Orientation Lock	A-0P4389
OP	4327	Quick Release Nose Guard	R-0P4327
OP	4384	Assembly Bar for Swivel Assembly Face Spanner Wrench F/Outer Seal Retainer Assembl Parmelee Wrench (1.25 dia) F/Piston Rod Assembly Parmelee Wrench (2.18 dia) F/P Case Assembly	А-ОР4384 у
OP	3615	HPC - Handling Clamp Non-Magnetic Drill Collar Magnetic Pickup & Stud Finder (Craftsman 94001) Spanner Wrench	C-OP3615
OP	4305	Seal Installation Tool-Single Shot Pressure Case	A-0P4305
OC	1080	XCB Core Bit (10 7/32 x 3 13/16)	D-1694
OP	4333	Core Orientation Baseline Adjustment	B-0P4333

VARIABLE LENGTH HYDRAULIC PISTON CORER (VLHPC) PARTS LIST - ANCILLARY DRAWINGS

PART NUMBER	DESCRIPTION	DRAWING NUMBER
OP 4300	Variable Length Hydraulic Piston Corer Assembly	R-0P4300
OP 4311	VLHPC System Schematic	C-0P4311
OP 4348	VLHPC Single Shot Assembly	R-0P4348

VARIABLE LENGTH HYDRAULIC PISTON CORER (VLHPC) PARTS LIST - SEALS, O-RINGS, BACK-UP RINGS

PART NUMBER	DESCRIPTION	VENDOR NUMBER
OP 4158	Top Sub Seal (3.63 x 2.87)	37502850VP
OP 4154	Inner Seal Sub Seal (2.87 x 2.25)	31202250VP
OP 4393	Outer Seal Sub Seal (1.87 x 1.25)	31201250VP
OP 4179	Piston Head Seal (2.00 x 2.62)	31202000VP
OP 4148	O-Ring F/Shaft Connectors	2-326
	O-Ring F-Alternate Bypass Sub - 7/32	2-326
	O-Ring F/Inner Seal Sub	2-326
OP 4165	O-Ring F/Outer Seal Sub	2-231
OP 4147	O-Ring F/Upper Liner Seal Sub	2-232
	O-Ring F/Lower Liner Seal Sub	2-232
OP 4306	O-Ring F/Single Shot Bottom Plug	2-324
	O-Ring F/Single Shot Top Plug	2-324
OP 4385	Parbac F/Single Shot Bottom Plug	8-324
	Parbac F/Single Shot Top Plug	8-324
OP 4303	Polypac F/Inner Swivel	18702375
OP 4304	Polypac Alt. F/Single Shot Top & Bottom Plugs	18701375

			REVISION	VS				
	NO.	D	ESCRIPTION ,		DAT	E BY	CH.	APR
perior in pro-	1	.228 was .195		-	5.7.	BIRK	714	1.4
]	21	LOCTITE WAS	#431		A-128	ZKK	Grint	Taking
				1/2		i.		
(CHAME WHEN I	ER	V32 × 45°CHAM TO BE INWART TALLED)	±.0022	1+.000 5625 E	NA*			
*.~~			T: CARPEN T: STENTO	TER TO R-OIL	D ELLIS	EL.		
AFTE	RI	NISTALLING (ID CHAMFE	R INIL	ARD)	317	2.17	
1.51.15	~~					1		
		DO NOT SCALE	CONCENT	RICITY ALL	DIAMETERS:	TIR .003	3	
		TOLERANCES UNLESS NOTED FRACTIONS ± 1/64 DECIMALS ± .005 ANGLES ± 1/2°	DEEF SCRIPPS UNIVERS LA JOLLA, CALIFOR	SEA DRIL	LING PRO	ECT RAPHY DIEGO		92093
		CORNERS 1/64 x 45° or 1/64 R FINISH	NBY PASS	G, SHEA SUB ~	R 7/32 VLHP	c		4
		SURFACE TREATMENT	MATERIAL SEE DWG	DATE 4.23.81	BYRK	HECKED	APPF	OVED
		HEAT TREATMENT	SCALE REO'D/ASS'Y	PART NO.	7-2 1	NG. NO.	217	IREV.
1000		Lace DWG		01131	1 - 1		5	See.

The

(WAS 25-0573-01)

العادي بتداري بنجا

134

1:

7		REVISIONS		_	-	
1	NO.	DESCRIPTION	DATE	BY	CH.	APR.
1	1	9.37 WAS 9.5	1.7.81	1211	Ne!	112
	2	15/1-8 THO WAS 5/8 SUCKER ROD THO	2.581	181	na!	1 J
-	3	MAT'L WAS 4130, DELETE 1/4 1.D., NO. H.T.	3.5.81	RK	MA	140

		REVISIONS		
NO.	D	ESCRIPTION	DATE BY	CH. APR.
IR	EDRAWN		10-14-3 FJ	21
2 5/	6-8 WAS 5/351	JCKER ROD	2.631 8.5	1. 194
AM E	T'L WAS A130	AWALL TUBE, NO H.T.	3.581 RE	11. 1.1
4 R.	EVISED NOT	E	3.9.81 RI	14 1/2
	====	- 1.250 DIA	(9 77	
DRILL .862 1%-8 × 1/2 DP (TYP BOTH ENDS) (SEE DWG A. 1657) (BAKERLOC IN FINAL ASSEMBLY)		SCRIBE OP4	371-3	
$\frac{NO, REQ'D}{3.5m=0}$ 5.0m = 1 6.5m = 0	DO NOT SCALE	CONCENTRICITY ALL DIAL	HETERS' TIR MIS	
8.0m = 1	TOLERANCES		C PROJECT	
9.5m * 2	UNLESS NOTED	SCRIPPS INSTITUTION OF	OCEANOGRAPHY	
	DECIMALS 1.005	UNIVERSITY OF CALIFOR	NIA, SAN DIEGO	
	ANGLES 2 1/2° CORNERS 1/64 × 45° or 1/64 R FINISH 123	111LE 4.5 m PISTON ROD ~VL HPC~	LINK	92093
	SURFACE TREATMENT	MATERIAL & DATE BY	CHECKED	APPROVED
* SAME AS AQUAMET 18	HEAT TREATMENT	SCALE REODIASSY PART NO.	- 4 B-OPA	STI-4

				REVISION	S					
NO.		1	DESCRIPT	ION /			DATE	BY	CH.	AP
1	CHANGE 1	MAT'L FRO	M 304.557	TO 17-4 PHS	S, ADD	HIISO	7-13-31	DC	12al	1011
					19 (J.					
				•						
	4									
	.375	5 DIA		s						
			6	T						
8				1						
				15/						

,

	DO NOT SCALE		CONCENT	RICITY ALL	DIAMETE	RS: TIR.003	
	TOLERANCES UNLESS NOTED FRACTIONS ± 1/64 DECIMALS ± .005 ANGLES ± 1/2°	LA JOLI	DEEP SCRIPPS UNIVERS	SEA DRI	LLING P N OF OCEA IFORNIA,	ROJECT NOGRAPHY SAN DIEGO	92093
	CORNERS 1/64 x 45° or 1/64 R FINISH 125		DCK PIN	J- PI	STON	<u>,</u>	
1	SURFACE TREATMENT	MATERIA 17-4	PH SS	DATE D.H.SU	₿ŘK	CHECKED	APPROVED
	HEAT TREATMENT	SCALE	REO'D/ASS'Y	PART NO. OP439	3-1	A-OP43	83-1

- 16 × 45° CHAM.

FABRICATE FROM 25/8 × % WALL MECH. TUBING .- 304 S.S.

DO NOT SCALE		CONCENT	RICITY ALL	DIAMETER	S: TIR.003	
TOLERANCES UNLESS NOTED FRACTIONS ± 1/64 DECIMALS ± .005 ANGLES ± 1/2°	LA JOLI	DEEP SCRIPPS UNIVERS	SEA DRI INSTITUTIO ITY OF CAL NIA	LLING PR N OF OCEAN IFORNIA, S	OJECT OGRAPHY AN DIEGO	92093
CORNERS 1/64 x 45° or 1/64 R FINISH	THTLE MAN (P	LE V-PA	(CKING HEAD)	ADAP	TER PC~	99999999999999999999999999999999999999
SURFACE TREATMENT	MATERIA SEE	ABOVE	DATE	RK	CHECKED	APPROVED
HEAT TREATMENT ANNEALED	SCALE	REO'D/ASS'Y	PART NO.	90-2	DWG. NO. A-OPAE	190 - C

1/.7

	n Benedar Barker and Benediate Standard Standard Standard Standard Standard Standard Standard Standard Standard	REVISION	IS ·				
NO.	D	ESCRIPTION -		DATE	BY	CH.	APR.
- 1 .22	8 WAS . 195,	CHAM, WAS ON	INSIDE	5.7.81	RX	7.4.4.	1.114
2 .0	37 WAS FRO	# 431	URFACE	4.6.82	KK		neat
MAT'L: CARPENTER	45°CHAM		4.10 002 002 	ETH	RU		
H.T. STENTOR	OIL HARD	· ·	e Jane	9		a e e	
* LOCTITE"	271 W/P/N INS DO NOT SCALE	OP4321, G STALLATIO	RIND FLU	JSH TERS: TI	AF 8.003	TE	R
	TOLERANCES UNLESS NOTED FRACTIONS ± 1/64 DECIMALS ± .005 ANGLES ± 1/2° CORNERS 1/64 x 45° or 1/64 R FINISH	DEEF SCRIPPS UNIVERS LA JOLLA, CALIFOR TUTLE BUSHIN ~OUTER B	SEA DRILLING	PROJEC EANOGRA IA, SAN D	CT PHY IEGO		5 2093
	SURFACE TREATMENT	MATERIAL SEE DWG SCALE REO'D'ASS'Y	DATE 4.23-81 RK	CHEC	CKED	APPE	INCAL (HEAL)
	SEE DWG	1:1 6	0 P4318-	2 A-0	P43	18	-2
152	antan dine di Kakutandi Admini Kalamini Tanunyyaki	ጜቚዿዸኯዸጛዿኯዹፘፙኯጛፙፙፙኯ፼ቘዸፙፙኯዸኯፙኯኯኯፙኯኯ	а и манса, рад, колостравание и на нечение и се 1	**************************************		A MARAN Direted	1674 fa 1932 adri

.

	1	·**	REVISIONS	S.			-
	NO.]	DESCRIPTION ."		DATE	BY	H. APR.
	1	WAS: 3/16 DIA,			5.7.81	RX	al alle
				(e) (¹)			
			2				a.
				3 ⁴			
	a a						
i.							
t.	•				45		· · · ·
					1		
24				· · ·			
			а. 1				100
		3	12	_			11 14
*			,(7.			
			. ·			\wedge	
				-7	DIA	<u> </u>	. 19
					52		
		<u></u>			•		. 616
5		1.	· · · · ·				
		BREAK ET	DGES				-
							19
MATL				- 1			
10	180	.R. STEEL, TEN	SILE 85,000	S PSI,Y	IELD 7	0,00	0751
ALL P	114	LIELDION A TE	NELLE DR DOC	DSI. Y	IEIN.	200	OPSI
		LUNDED I M, IC				1.0,0	20101
1		PINS A	ARE INT DOLL	BIE SHE	AR.		ate ar
						9 1 S	
			a a ann chuir ann an		i e i i	~	2
		DO NOT SCALE	CONCENTR	ICITY ALL DIAM	ETERS: TI	R .003	
•		UNLESS NOTED	DEEP	SEA DRILLIN	G PROJE	СТ	
r son a _b ara	· · · ·	FRACTIONS ± 1/64	UNIVERSI	NSTITUTION OF O	CEANOGRA	PHY	
		ANGLES ± 1/2°	LA JOLLA, CALIFORM	IIA		1200	92093
		CORNERS 1/64 x 45° or 1/64 R	TITLE 7/ SLI	FAR PIN		÷	
		FINISH 125	32 ~	LHPC~	• • •		
		SURFACE TREATMENT	MATERIAL SEE LOGUE	DATE BY	СНЕ	CKED	APPHOVED
			DEF AROVE	Arraik K	≥ 40	1.1 1	MAL-
		HEAT TREATMENT	SCALE REO'D'ASS'Y	PARTNO	DINC	NO	LEEV 1

	REVISIONS			
NO	DESCRIPTION	DATE	BY CH.	APR
I	.76 WAS .50	10.138	RK Sill	12
2	1.265 WAS 1.252	5.13.81	RK Vill	Aut
3	15/16 WAS 1.265	6.25.81	RK	12:3

CONCENTRICITY: ALL DIAMETERS TIR .003	NUTE: BREA RADIU	K ALL SHAR JS ALL INSI	RP EDG DE COF	es RNERS		
TOLERANCES UNLESS NOTED FRACTIONS ± 1/54 DECIMALS ± .005 ANGLES ± 1/2°	DEEP SEA SCRIPPS INST UNIVERSITY (LA JOLLA, CALIFORNIA	A DRILLIN	G PRC DCEANOO NIA, SA	JECT GRAPHY N DIEGO		92093
CORNERS 1/64 x 45° or 1/64 R FINISH 123	MILE OUTER	SF.A.L. VL- H-P	RETA	NNER		
SURFACE TREATMENT PARKOLUBRITE	ALAO STEEL	DRAWN BY	DATE 3.21.7	CHECKED	APPI	OVED
HEAT TREATMENT 34-38 KC	PART NO. OP 4363-3	SIZE DWG.	NO. 3431	63-		RFV.
a ta taningini intarun ta an tara dara dara dara dara dara dara dara	The states car in the contraction of the Armer Arme	n na shakar ka marakar zirin salahar A	ALLES, MORY BAY AND L	I I	1	59

1	REVISIONS	•		
NO.	DESCRIPTION /	DATE	BY	CH. APR
1	.140 WAS YO	2.5.81	RK	All Ast
 2	1.347 WAS 1.285 DIA	4.21.81	RK.	MAL WAL

DO NOT SCALE		CONCENT	RICITY ALL	DIAMETER	S: TIR.003	3
FRACTIONS ± 1/64 DECIMALS ± .005 ANGLES ± 1/2°	LA JOLI	DEEP SCRIPPS UNIVERS	SEA DRI INSTITUTION ITY OF CAL NIA	LLING PF N OF OCEAN IFORNIA, S	ROJECT IOGRAPHY SAN DIEGO	92093
CORNERS 1/64 x 45° or 1/64 R FINISH 125	FEN	TALE AT	DAPTER	2-00TR	ER SEA	NL SUB
			Line	D.V.	1	
SURFACE TREATMENT	MATERIA 304	SSI	03. 11.0	RK	CHECKED	APPROVED

DO NOT SCALE		CONCENT	RICITY ALL	DIAMETER	S: TIR .003	
TOLERANCES UNLESS NOTED FRACTIONS ± 1/64 DECIMALS ± .005 ANGLES ± 1/2°	LA JOLI	DEEP SCRIPPS UNIVERS	SEA DRI INSTITUTION ITY OF CAL NIA	LLING PR N OF OCEAN IFORNIA, S	OJECT OGRAPHY AN DIEGO	92093
CORNERS 1/64 x 45° or 1/64 R FINISH 125	V-S	PACER	- MA	LE-FEI UTER	MALE SEAL	SUB
SURFACE TREATMENT	MATERIA 304	55	DATE 10.17.8.)	BYRK	CHECKED	APPROVED
HEAT TREATMENT ANNEALED	SCALE REO'D/ASS'Y PART NO. 111 OP4396 A-OP4396					196- U

한 것이 안 안 안 안 다. 것이 같아요.		
•	4	ITEVISIONS NO DESCRIPTION DATE BY CH 1 ADD V32 × V32 GROOVE S981 RK //// RK ////////////////////////////////////
•		
3.085 	DIA	- 2% DIA 2.6000
1/32 1/4 50° **	2.726 DIA & 1 4 R-A (3 CORNERS ONLY) (1 CORNER) 1 1 1 1 1 1 1 1 1 1 1 1 1	- 1/2 1/2 1/32×45° CHAMFER 32 CHAMFER
JIZY CHAM.	GROOVE OF OP 4338.	TAP 14 NPT (4 AT 90°, 4 TAP 14 NPT (4 AT 90°, 45° FROM .68'T HOLES (DEBURR INSIDE AFTER TAPPING) SEE DWG B-0508 BAKERLOC W/P/N 0P434 -STAMP: OP 4338-5 DEEP SEA DRILLING PROJECT SCRIPPS INSTITUTION OF OCEANOGRAPHY PRACTIONS 2 1/04
* TYP 2 PLCS AT 180"	RADIUS ALL SHARP CORNERS AND A SHARP EDGES, DEBURR HOLES INSIDE AND OUT.	DECIMALS 2:005 ANGLES 3: 107 CORNENS 104 A 45 WIVERSITY OF CALIFORNIA, SAN DIEGO TITLE CORNENS 104 A 45 WILLFORNIA WILL

L____

1:1

١

OP4382-1

REVISIONS CH. APR NO. DESCRIPTION DATE BY 34 R 1/2 MER THP 3/16 % DIA HOLE THRU TOLERANCES DEEP SEA DRILLING PROJECT UNLESS NOTED SCRIPPS INSTITUTION OF OCEANOGRAPHY FRACTIONS ± 1/64 UNIVERSITY OF CALIFORNIA, SAN DIEGO DECIMALS ± .005 LA JOLLA, CALIFORNIA 92093 ANGLES ± 1/2° CORNERS 1/64 x 45° TITLE SPRING, FLAPPER CCATCHER ~H.P.C 15'~ or 1/64 R FINISH 125 MATERIAL DRAWN BY DATE CHECKED APPROVED SURFACE TREATMENT 0 HEAT TREATMENT PART NO. SIZE DWG. NO. REV. 014101 A-1290--0-00 174

-

		REVISIONS					
NO.	D	ESCRIPTION		DATE	BY	CH.	APP
		· · · · · ·	* 0				
а 11 ж				3			
			HEX	4	•		
e e a		1 2		2	· ·		
	(<u> </u>					
	0			·			
	ž.	1					
		Γ4					
			ł				
	-						
			72. T				
	23/0	TAN OIL	Ť				
					ų.		
						ē.	2
*0	N	:JTC	97 B 28				
		AFTER INSTA	LLATION	TOP	OF		
		PLUG MAY K	TEREFRE	MCF L	IN	INC	2
		P/N NO. OP	4350.				÷ -
		BAKER LOC	IN PLA	CE.		-	
	DO NOT SCALE	CONCENTRI		TERS TI	B 003		
	TOLERANCES	DEEP S	SEA DRILLIN	G PROJE	СТ		-
	FRACTIONS ± 1/64	SCRIPPS IN	STITUTION OF O	CEANOGRA	PHY		
•	DECIMALS ± .005 ANGLES ± 1/2°	LA JOLLA, CALIFORN	IA	na, san d	IEGO	9	920
	CORNERS 1/64 x 45° or 1/64 R	PIPE PLUG	-SINGLE	SHOT	BC	DTT	M
	FINISH 123	PLUG ~ VI	. HPC ~				
	SURFACE TREATMENT	NITRONIC 60	1.11.81 RH	CHE 191	CKED	APPR	OVE
1.	the second s		•	11120			

REVISIONS BY CH. APR NO. DESCRIPTION DATE 12-13 x 34 SOCKET SET SCREW MAT'L ----- ALLOY STEEL FEATURES'-NYLOC, CUP POINT FINISH :- CAD. PLATE USED ON! TOP SUB CAP - OP 4300 QUICK RELEASE SLEEVE-OP4337 DO NOT SCALE CONCENTRICITY ALL DIAMETERS: TIR.003 TOLERANCES DEEP SEA DRILLING PROJECT UNLESS NOTED SCRIPPS INSTITUTION OF OCEANOGRAPHY FRACTIONS ± 1/64 UNIVERSITY OF CALIFORNIA, SAN DIEGO DECIMALS ± .005 LA JOLLA, CALIFORNIA 92093 ANGLES ± 1/2° CORNERS 1/64 x 45° 1/2-13 x3/4 SOC SET SCREW-TOP SUB CAP or 1/64 R FINISH SURFACE TREATMENT MATERIAL DATE BY CHECKED APPROVED RK CAD. PLATE ALLOY ST. 4.16-81 Ilit ist HEAT TREATMENT SCALE REO'D/ASS'Y PART NO. DWG. NO. (HEV. OP4302 A-OP4302-0 -----١ 183

REVISIONS DATE BY CH. NO. DESCRIPTION APP RE-DRAWN 3.5.8 ١ 25/64 WAS 3/8 DIA S 3.1981 3 ADDED 45° CHAMFE 9.24.8 1/2-20 x 3/4 SOC. SET SC. 132 × 45° CH. (CUP POINT) 17/32 25/A DIA CHAMFER 16 × 45° NOTE BAKER-LOC W/ PULLING DO NOT SCALE CONCENTRICITY ALL DIAMETERS: TIR .003 TOLERANCES DEEP SEA DRILLING PROJECT UNLESS NOTED SCRIPPS INSTITUTION OF OCEANOGRAPHY FRACTIONS ± 1/64 UNIVERSITY OF CALIFORNIA, SAN DIEGO DECIMALS ± .005 LA JOLLA, CALIFORNIA 92093 ANGLES ± 1/2° CORNERS 1/64 x 45° TITLE ALIGNMENT SCREW-OVERSHOT CYL or 1/64 R FINISH 123 SURFACE TREATMENT MATERIAL 3.5-81 BYRK CHECKED APPROVED ALIOY STEEL CIPSI MY Me HEAT TREATMENT SCALE REQ'D/ASS'Y PART NO. DWG. NO. (REV.) A-OP4301 - 3 OP4301-3 1:1 ONE 184

REVISIONS DATE BY CH. APR NO. DESCRIPTION -5%-11x 34 SOCK SET SCREW MATL: ____ALLOY STEEL FEATURES:-NYLOC, CUP POINT FINISH:-CAD. PLATE USED ON: OUTER SWIVEL BODY OP 4367 ----1. 1.00 DO NOT SCALE CONCENTRICITY ALL DIAMETERS: TIR .003 TOLERANCES DEEP SEA DRILLING PROJECT UNLESS NOTED SCRIPPS INSTITUTION OF OCEANOGRAPHY FRACTIONS ± 1/64 UNIVERSITY OF CALIFORNIA, SAN DIEGO DECIMALS ± .005 LA JOLLA, CALIFORNIA 92093 ANGLES ± 1/2° CORNERS 1/64 x 45° 1/2-13x3/4 SOC SET SCREW-OUTER SWIVEL BODY ~ VLHPC~ or 1/64 R FINISH 123 BYRK SURFACE TREATMENT DATE MATERIAL CHECKED APPROVED ALLOY ST. 4.16.81 CAD.PLATE Thirt REQ'D/ASS'Y PART NO. 0P4369 -0 HEAT TREATMENT SCALE (REV.) OP4369-0 -0-()--ì 185

REVISIONS DATE BY CH. APR NO. DESCRIPTION 3/8-16x 3/8 SOCK SET SCREW MATL: ALLOY STEEL FEATURES: NYLOC, CUP POINT FINISH: CAD. PLATE USED ON: (VLHPC) BYPASS SUB OP4309 4.5m SHAFT LINK OP4320 INNER SEAL SUB _ OP 4323. LOWER OUTER BODY OP 4328 3.0 m SHAFT LINK OP 4354 LOWER SHAFT OP4355 OUTER BODY SEAL OP4362 SWIVEL RETAINER OP 4366 SINGLE SHOT PRESS. CASE OP4347 DO NOT SCALE CONCENTRICITY ALL DIAMETERS: TIR.003 TOLERANCES DEEP SEA DRILLING PROJECT UNILESS NOTED SCRIPPS INSTITUTION OF OCEANOGRAPHY FRACTIONS ± 1/64 UNIVERSITY OF CALIFORNIA, SAN DIEGO DECIMALS ± .005 LA JOLLA, CALIFORNIA 92093 ANGLES ± 1/2° CORNERS 1/64 x 45° TITLE 3/8-16 x 3/8 SOC SET SCREW-~ HPC + VLHPC~ or 1/64 R FINISH 125 APPROYED SURFACE TREATMENT DATE MATERIAL BYRK CHECKED 4.16.81 ALLOY ST. CAD. PLATE 1.4 HEAT TREATMENT SCALE REO'D/ASS'Y FAST NO. DWG. NO. 1724 - C (REV. 014185-0 · inper -07-187

USED ON : ECB , HPC , VL . HPC

P/N OC 1000 10 100 10 100 100 10 100 10 100 100 10 100 10 100 100 10 100 100 100 10 100 1

	REVISIONS		LIST OF MATERIALS				LIST OF MATERIALS				LIST OF MATERIALS			
	LINPOATED SEAL SLEEVE	DATE BY CH APR.	NO PART NO	SIZE DWG NO	DESCRIPTION	NO. ITE	PART NO.	SIZE . DWG. NO.	DESCRIPTION	NO. ITE	M PART NO. SIZ	E . DWG. NO.	DESCRIPTION	N
	2 OP3055 REPLACES OP4339	12033 RK	OP4302	A	SOC SET SC 1/2-3x 3/4		OP4369	A	5/2-11 x % SET 50	3				INEQ
			OP4303	A	POLYPAK 18702375		024371	B	PISTON ROD LINK, 4 5m	i II	OP4112 B		FLAPPER - CORE CATCHER	V
		and the second second second	OP4309	DR	TOP SUB GAD		OP4376	B	CATCHER SUB	11	OP 4113 B		CYLINDER "	V
			OP4310	A	RETAINER RING		OP4382	A	PLASTIC TURE SUPPORT		OPALAT -		0-PING # 2-232	1
			OP4312	A	SLEEVE	- 1	OP4383	A	LOCK PIN - PISTON	1	OP4148 -		0-RING - 2-326, NITRIL -701	DURG 4
			OP4313	Bo	OUTER BODY VENT		OP4390	A	MALE V-PACKING ADAPTER	1	0P4150 B		INNER SEAL SUB	1
		Standard Standards	OP4320	B	SHAFT LINK 45m	2-1-0	004392	A	FEMALE ADAPTER		OPAISI B		INNER SEAL RETAINER	
			OP4321	A	BODY	1	OP4393	12	SEAL RING # 31201250 VP		OP 4155 A.	-126%	ADAPTER V. PACKING (ME 356	-221 2
			OP4324	A	MALE ADAPTER	1	OP4394	A	MALE ADAPTER	i	OP 4156 A.	-1264	(MALE *	
			024326	A	LEMALE ADAPTER		OP4395	A	FEMALE "		OP 4157 A.	1265	" (FEMALE	- 7 1
		the state of the state of the	094323	B	LOWER OUTER BODY	1	014316	-	V-SPACER, MIT	E	OP 4158 -	0921	OUTER SEAL SUB	SAP 3
			OP4329	R	BYPASS SUB	1					OP4165 -		0-RING - 2-231 (NITRI - 70 DUR	i (c
			OP4335	B	PISTON ROD LINK, 3m	2								
			OP4338	C	SUB CAP. "						OP4179 -		V-PACKING 2 x2.62 (*31202000)	5
			OP4339	R	SHOULDER SUB, Q.R.	ill					024185		SOC SET SC 3/0-16 3/ 41104	1
			004340	B	DOGS, Q.R.	2								C
The share of the state of the s			004341	AA	KOD CONNECTOR	2-1			UPAD CUD	1. 11		-		
1. Hundred & bouldraphan la the	Land Land Land	A DE	OP4343	B	OUTER BODY I INK 4.5m		011010	DR	SEAL SLEEVE		OKIOZO A		CORE CATCHER ASSY	
			OP4344	B	LOWER PISTON ROD	i	OLIOZO	č	TOP SUB	1 II				
			OP4345	A	PISTON SEAL RETAINER			_						
			OP4354	DR	SHAFT LINK 30	01.2	001080	D	10 132 × 3 YIL ECB-HPC-VLHPC BI	1 1				
			OP4355	B	LOWER SHAFT	1	OP3210	B	INNER CORE BARREL 14-9.5"	2	1			
			OP4356	B	OUTER BODY LINK, 3 m	1	OP3055	R-093055	SHOULDER SUB	- ī			TOLERANCES DEEP SEA DI	RILLING
			024351	AR	SHEAK MIN, 132		00000		CODE LINES BUSUDIES				FRACTIONS : 1/64 SCRIPPS INSTITUT	ION OF DCE
			OP4361	A	RETAINER UPPER LINER S. SU	RIII	043400		CORE LINER, DUTYRATE				ANGLES : 1/2" LA JOLLA, CALIFORNIA	LIFORNU
			OP4363	A	OUTER SEAL RETAINER	- i							CORNERS 1/64 x 45" TITLE OF 1/64 R VARIABLE I FN	GTH H
			OP4364	B	UPPER PISTON ROD								FINISH PISTON CORE	R AS
			OP4366	OR	SLIVEL BETAINER								SURFACE TREATMENT MATERIAL	AWN BY D
			OP4367	B	OUTER SWIVEL BODY								HEAT TREATMENT PART NO SIZ	E DWG NO
FT1	· · · · · · · · · · · · · · · · · · ·	· · ·					11						DP 4300-2 R	: OP4

